1
|
Straightforward Analysis of Sulfated Glycosaminoglycans by MALDI-TOF Mass Spectrometry from Biological Samples. BIOLOGY 2022; 11:biology11040506. [PMID: 35453706 PMCID: PMC9024577 DOI: 10.3390/biology11040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Glycosaminoglycans (GAGs) are considered to be the most difficult type of glycoconjugates to analyze as they are constituted of linear long polysaccharidic chains having molecular weights reaching up to several million daltons. Bottom-up analysis of glycosaminoglycans from biological samples is a long and work-extensive procedure due to the many preparation steps involved. In addition, so far, only few research articles have been dedicated to the analysis of GAGs by means of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) because their intact ionization can be problematic due to the presence of labile sulfate groups. In this work, we had the aim of exploring the sulfation pattern of monosulfated chondroitin/dermatan sulfate (CS/DS) disaccharides in human tissue samples because they represent the most abundant form of sulfation in disaccharides. We present here an optimized strategy to analyze on-target derivatized CS/DS disaccharides via MALDI-TOF-MS using a fast workflow that does not require any purification after enzymatic cleavage. For the first time, we show that MALDI-TOF/TOF experiments allow for discrimination between monosulfated CS disaccharide isomers via specific fragments corresponding to glycosidic linkages and to cross-ring cleavages. This proof of concept is illustrated via the analysis of CS/DS disaccharides of atherosclerotic lesions of different histological origins, in which we were able to identify their monosulfation patterns.
Collapse
|
2
|
Structural Characterization and Interaction with RCA 120 of a Highly Sulfated Keratan Sulfate from Blue Shark (Prionace glauca) Cartilage. Mar Drugs 2018; 16:md16040128. [PMID: 29662015 PMCID: PMC5923415 DOI: 10.3390/md16040128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/21/2023] Open
Abstract
As an important glycosaminoglycan, keratan sulfate (KS) mainly exists in corneal and cartilage, possessing various biological activities. In this study, we purified KS from blue shark (Prionace glauca) cartilage and prepared KS oligosaccharides (KSO) through keratanase II-catalyzed hydrolysis. The structures of KS and KSO were characterized using multi-dimensional nuclear magnetic resonance (NMR) spectra and liquid chromatography-mass spectrometry (LC-MS). Shark cartilage KS was highly sulfated and modified with ~2.69% N-acetylneuraminic acid (NeuAc) through α(2,3)-linked to galactose. Additionally, KS exhibited binding affinity to Ricinus communis agglutinin I (RCA120) in a concentration-dependent manner, a highly toxic lectin from beans of the castor plant. Furthermore, KSO from dp2 to dp8 bound to RCA120 in the increasing trend while the binding affinity of dp8 was superior to polysaccharide. These results define novel structural features for KS from Prionace glauca cartilage and demonstrate the potential application on ricin-antidote exploitation.
Collapse
|
3
|
Ricard-Blum S, Lisacek F. Glycosaminoglycanomics: where we are. Glycoconj J 2016; 34:339-349. [PMID: 27900575 DOI: 10.1007/s10719-016-9747-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/21/2023]
Abstract
Glycosaminoglycans regulate numerous physiopathological processes such as development, angiogenesis, innate immunity, cancer and neurodegenerative diseases. Cell surface GAGs are involved in cell-cell and cell-matrix interactions, cell adhesion and signaling, and host-pathogen interactions. GAGs contribute to the assembly of the extracellular matrix and heparan sulfate chains are able to sequester growth factors in the ECM. Their biological activities are regulated by their interactions with proteins. The structural heterogeneity of GAGs, mostly due to chemical modifications occurring during and after their synthesis, makes the development of analytical techniques for their profiling in cells, tissues, and biological fluids, and of computational tools for mining GAG-protein interaction data very challenging. We give here an overview of the experimental approaches used in glycosaminoglycomics, of the major GAG-protein interactomes characterized so far, and of the computational tools and databases available to analyze and store GAG structures and interactions.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS - Université Lyon 1, INSA Lyon, CPE Lyon, 69622, Villeurbanne Cedex, France.
| | - Frédérique Lisacek
- SIB Swiss Institute of Bioinformatics, 1 Rue Michel-Servet, 1211, Geneva, Switzerland.,Computer Science Department, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Abstract
Lectin-based glycomics is an emerging, comprehensive technology in the post-genome sciences. The technique utilizes a panel of lectins, which is a group of biomolecules capable of deciphering "glycocodes," with a novel platform represented by a lectin microarray. The method enables multiple glycan-lectin interaction analyses to be made so that differential glycan profiling can be performed in a rapid and sensitive manner. This approach is in clear contrast to another advanced technology, mass spectrometry, which requires prior glycan liberation. Although the lectin microarray cannot provide definitive structures of carbohydrates and their attachment sites, it gives useful clues concerning the characteristic features of glycoconjugates. These include differences not only in terminal modifications (e.g., sialic acid (Sia) linkage, types of fucosylation) but also in higher ordered structures in terms of glycan density, depth, and direction composed for both N- and O-glycans. However, before this technique began to be implemented in earnest, many other low-throughput methods were utilized in the late twentieth century. In this chapter, the author describes how the current lectin microarray technique has developed based on his personal experience.
Collapse
Affiliation(s)
- Jun Hirabayashi
- Research Center for Stem Cell Engineering, National Institute of Advance Industrial Science and Technology (AIST), Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568, Japan,
| |
Collapse
|
5
|
Przybylski C, Gonnet F, Buchmann W, Daniel R. Critical parameters for the analysis of anionic oligosaccharides by desorption electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1047-1058. [PMID: 22899514 DOI: 10.1002/jms.3052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sulfated oligosaccharides derived from glycosaminoglycans (GAGs) are fragile compounds, highly polar and anionic. We report here on the rare but successful application of desorption electrospray ionization (DESI) - LTQ-Orbitrap mass spectrometry (MS) to the high-resolution analysis of anionic and sulfated oligosaccharides derived from the GAGs hyaluronic acid and heparin. For that purpose, key parameters affecting DESI performance, comprising the geometric parameters of the DESI source, the probed surface and the spraying conditions, applied spray voltage, flow rates and solvent composition were investigated. Under suitable conditions, the DESI technique allows the preservation of the structural integrity of such fragile compounds. DESI enabled the sensitive detection of anionic hyaluronic acid and heparin oligosaccharides with a limit of detection (LOD) down to 5 fmol (≈10 pg) for the hyaluronic acid decasaccharide. Detection of hyaluronic acid oligosaccharides in urine sample was also successfully achieved with LOD values inferior to the ng range. Multistage tandem mass spectrometry (MS(n) ) through the combination of the DESI source with a hybrid linear ion trap-orbitrap mass spectrometer allowed the discrimination of isomeric sulfated oligosaccharides and the sequence determination of a hyaluronic acid decasaccharide. These results open promising ways in glycomic and glycobiology fields where structure-activity relationships of bioactive carbohydrates are currently questioned.
Collapse
Affiliation(s)
- Cédric Przybylski
- CNRS UMR 8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, F-91025, Evry, France
| | | | | | | |
Collapse
|
6
|
Chesnik M, Halligan B, Olivier M, Mirza SP. Sequential abundant ion fragmentation analysis (SAIFA): an alternative approach for phosphopeptide identification using an ion trap mass spectrometer. Anal Biochem 2011; 418:197-203. [PMID: 21855524 PMCID: PMC3188319 DOI: 10.1016/j.ab.2011.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
Abstract
Phosphorylation has been the most studied of all the posttranslational modifications of proteins. Mass spectrometry has emerged as a powerful tool for phosphomapping on proteins/peptides. Collision-induced dissociation (CID) of phosphopeptides leads to the loss of phosphoric or metaphosphoric acid as a neutral molecule, giving an intense neutral loss product ion in the mass spectrum. Dissociation of the neutral loss product ion identifies peptide sequence. This method of data-dependent constant neutral loss (DDNL) scanning analysis has been commonly used for mapping phosphopeptides. However, preferential losses of groups other than phosphate are frequently observed during CID of phosphopeptides. Ions that result from such losses are not identified during DDNL analysis due to predetermined scanning for phosphate loss. In this study, we describe an alternative approach for improved identification of phosphopeptides by sequential abundant ion fragmentation analysis (SAIFA). In this approach, there is no predetermined neutral loss molecule, thereby undergoing sequential fragmentation of abundant peak, irrespective of the moiety lost during CID. In addition to improved phosphomapping, the method increases the sequence coverage of the proteins identified, thereby increasing the confidence of protein identification. To the best of our knowledge, this is the first report to use SAIFA for phosphopeptide identification.
Collapse
Affiliation(s)
- Marla Chesnik
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Carbohydrates exhibit many physiologically and pharmacologically important activities, yet their complicated structure and sequence pose major analytical challenges. Although their structural complexity makes analysis of carbohydrate difficult, mass spectrometry (MS) with high sensitivity, resolution and accuracy has become a vital tool in many applications related to analysis of carbohydrates or oligosaccharides. This application is essentially based on soft ionization technique which facilitates the ionization and vaporization of large, polar and thermally labile biomolecules. Electrospray-ionization (ESI), one of the soft ionization technique, tandem MS has been used in the sequencing of peptides, proteins, lipids, nucleic acids and more recently carbohydrates. The development of the ESI and tandem MS has begun to make carbohydrate analysis more routine. This review will focus on the application of the ESI tandem MS for the sequence analysis of native oligosaccharides, including neutral saccharides with multiple linkages, and the uronic acid polymers, alginate and glycosaminoglycans structures containing epimers.
Collapse
Affiliation(s)
- Zhenqing Zhang
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Robert J. Linhardt
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
8
|
Iwaki J, Minamisawa T, Tateno H, Kominami J, Suzuki K, Nishi N, Nakamura T, Hirabayashi J. Desulfated galactosaminoglycans are potential ligands for galectins: evidence from frontal affinity chromatography. Biochem Biophys Res Commun 2008; 373:206-12. [PMID: 18555795 DOI: 10.1016/j.bbrc.2008.05.190] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 11/24/2022]
Abstract
Galectins, a group of beta-galactoside-binding lectins, are involved in multiple functions through specific binding to their oligosaccharide ligands. No previous work has focused on their interaction with glycosaminoglycans (GAGs). In the present work, affinities of established members of human galectins toward a series of GAGs were investigated, using frontal affinity chromatography. Structurally-defined keratan sulfate (KS) oligosaccharides showed significant affinity to a wide range of galectins if Gal residue(s) remained unsulfated, while GlcNAc sulfation had relatively little effect. Consistently, galectins showed much higher affinity to corneal type I than cartilageous type II KS. Unexpectedly, galectin-3, -7, and -9 also exerted significant affinity to desulfated, GalNAc-containing GAGs, i.e., chondroitin and dermatan, but not at all to hyaluronan and N-acetylheparosan. These observations revealed that the integrity of 6-OH of betaGalNAc is important for galectin recognition of these galactosaminoglycans, which were shown, for the first time, to be implicated as potential ligands of galectins.
Collapse
Affiliation(s)
- Jun Iwaki
- Lectin Application and Analysis Team, Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Suzuki K, Yamamoto K, Kariya Y, Maeda H, Ishimaru T, Miyaura S, Fujii M, Yusa A, Joo EJ, Kimata K, Kannagi R, Kim YS, Kyogashima M. Generation and characterization of a series of monoclonal antibodies that specifically recognize [HexA(+/-2S)-GlcNAc]n epitopes in heparan sulfate. Glycoconj J 2008; 25:703-12. [PMID: 18461440 DOI: 10.1007/s10719-008-9130-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 11/29/2022]
Abstract
Five monoclonal antibodies AS17, 22, 25, 38 and 48, a single monoclonal antibody ACH55, and three monoclonal antibodies NAH33, 43, 46, that recognize acharan sulfate (IdoA2S-GlcNAc)n, acharan (IdoA-GlcNAc)n and N-acetyl-heparosan (GlcA-GlcNAc)n, respectively, were generated by immunization of mice with keyhole limpet hemocyanin-conjugated polysaccharides. Specificity tests were performed using a panel of biotinylated GAGs that included chemically modified heparins. Each antibody bound avidly to the immunized polysaccharide, but did not bind to chondroitin sulfates, keratan sulfate, chondroitin nor hyaluronic acid. AS antibodies did not bind to heparan sulfate or heparin, but bound to 6-O-desulfated, N-desulfated and re-N-acetylated heparin to varying degrees. ACH55 bound to tri-desulfated and re-N-acetylated heparin but hardly bound to other modified heparins. NAH antibodies did not bind to heparin and modified heparins but bound to heparan sulfate to varying degrees. NAH43 and NAH46 also bound to partially N-de-acetylated N-acetyl-heparosan. Immunohistochemical analysis in rat cerebella was performed with the antibodies. While NAH46 stained endothelia, where heparan sulfate is typically present, neither ACH55 nor AS25 stained endothelia. On the contrary ACH55 and AS25 stained the molecular layer of the rat cerebella. Furthermore, ACH55 specifically stained Purkinje cells. These results suggest that there is unordinary expression of IdoA2S-GlcNAc and IdoA-GlcNAc in specific parts of the nervous system.
Collapse
Affiliation(s)
- Kiyoshi Suzuki
- Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato, Tokyo, 207-0021, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gemma E, Meyer O, Uhrín D, Hulme AN. Enabling methodology for the end functionalisation of glycosaminoglycan oligosaccharides. MOLECULAR BIOSYSTEMS 2008; 4:481-95. [DOI: 10.1039/b801666f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Oguma T, Tomatsu S, Okazaki O. Analytical method for determination of disaccharides derived from keratan sulfates in human serum and plasma by high-performance liquid chromatography/turbo-ionspray ionization tandem mass spectrometry. Biomed Chromatogr 2007; 21:356-62. [PMID: 17236248 DOI: 10.1002/bmc.760] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We established a highly sensitive LC/MS/MS method for the analysis of the disaccharides produced from keratan sulfates (KS). It was revealed that the disaccharides produced by keratanase II enzymatic digestion of KS could be determined with high sensitivity by negative ion mode of multiple reaction monitoring. Furthermore, monosulfated and disulfated disaccharides can be separated using a Hypercarb (2.0 mm i.d. x 150 mm, 5 microm) with a gradient elution of acetonitrile-0.01 m ammonium bicarbonate (pH 10). This method was applied to the determination of KS in serum and plasma of control subjects. The intra-day precision expressed as %CV was within 6.8% for five replicate analyses with three different control serum. The inter-day (overall, n = 15) precision was within 7.3% for three days. This method is sensitive, reproducible and would be useful for clinical analysis.
Collapse
Affiliation(s)
- Toshihiro Oguma
- Drug Metabolism and Physicochemistry Research Laboratory, Daiichi Pharmaceutical Co. Ltd, 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | | | | |
Collapse
|
12
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1520-1531. [PMID: 17103385 DOI: 10.1002/jms.958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
13
|
Kamekawa N, Hayama K, Nakamura-Tsuruta S, Kuno A, Hirabayashi J. A Combined Strategy for Glycan Profiling: a Model Study with Pyridylaminated Oligosaccharides. ACTA ACUST UNITED AC 2006; 140:337-47. [PMID: 16861248 DOI: 10.1093/jb/mvj154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Structural glycomics plays a fundamental role in glycoscience and glycotechnology. In this paper, a novel strategy for the structural characterization of glycans is described, in which MS2 analysis involving a LIFT-TOF/TOF procedure is combined with frontal affinity chromatography (FAC). As model compounds, 20 neutral pyridylaminated (PA) oligosaccharides were chosen, which included four groups of structural isomers differing in sequence, linkage, position, or branching features. By depicting significant diagnostic ions on MS2, most of the analyzed oligosaccharides were successfully differentiated, while two pairs of linkage isomers, i.e., LNT/LNnT, and LNH/LNnH were not. For subsequent analysis by FAC, 14 lectins showing significant affinity to either LNT (type 1) or LNnT (type 2) were screened, and a galectin from the marine sponge Geodia cydonium (GC1) and a plant seed lectin from Ricinus communis (RCA-I) were used for determination of type 1 and 2 chains, respectively. With these specific probes, both of the isomeric pairs were unambiguously differentiated. Furthermore, a pair of triantennary, asparagine-linked oligosaccharide isomers could also be successfully differentiated. Thus, the combination of MS2 and FAC is a practical alternative for the structural characterization of complex glycans.
Collapse
Affiliation(s)
- Natsuko Kamekawa
- Glycostructure Analysis Team, Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Central-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568
| | | | | | | | | |
Collapse
|