1
|
Cao H, Jin Y, Wang Y, Wang H, Qin Y, Guo X, Tian S, Huang J, Li Y. Quantification and clinical performance of serum parathyroid hormone 1-84 via immunocapture coupled to LC-MS/MS in chronic renal failure. J Pharm Biomed Anal 2025; 256:116678. [PMID: 39842077 DOI: 10.1016/j.jpba.2025.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Accurate measurement of serum parathyroid hormone (PTH) is crucial for diagnosing and managing endocrine and osteological diseases. Conventional immunoassay methods struggle with cross reactivity issues between full-length PTH and truncated fragments or post-translationally modified forms. Both the standardization of PTH assays and the peptide's stability are concerning. This study addresses these issues by establishing an immunocapture coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to precisely quantify PTH1-84. PTH1-84 was isolated from one mL serum samples by immunocapture on a polystyrene bead and eluted from matrix, then quantitated by LC-MS/MS. The results from 268 serum samples were compared to an intact PTH immunoassay. The assay's linear range was 5.0-1000.0 pg/mL. The intra-assay coefficients of variation (CVs) ranged from 3.2 % to 6.8 %, and the inter-assay CVs ranged from 4.6 % to 9.5 %. The extraction efficiencies were 98.0 %-100.5 %, with no significant matrix effects observed after internal standard correction. The correlation coefficient between LC-MS/MS and immunoassay was 0.989, but the bias between the methods was substantial. Nevertheless, the immunocapture purification coupled LC-MS/MS method offers a promising approach for accurate PTH measurement.
Collapse
Affiliation(s)
- Haiwei Cao
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuting Jin
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Yingwu Wang
- School of Life Science, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yijia Qin
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Xinhua Guo
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Suyan Tian
- Division of clinical research, The First Hospital of Jilin University, Changchun 130021, China
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yanyan Li
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Cavalier E, Farré-Segura J, Lukas P, Gendebien AS, Peeters S, Massonnet P, Le Goff C, Bouquegneau A, Souberbielle JC, Delatour V, Delanaye P. Unveiling a new era with liquid chromatography coupled with mass spectrometry to enhance parathyroid hormone measurement in patients with chronic kidney disease. Kidney Int 2024; 105:338-346. [PMID: 37918791 DOI: 10.1016/j.kint.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023]
Abstract
Precise determination of circulating parathyroid hormone (PTH) concentration is crucial to diagnose and manage various disease conditions, including the chronic kidney disease-mineral and bone disorder. However, the lack of standardization in PTH assays is challenging for clinicians, potentially leading to medical errors because the different assays do not provide equivalent results and use different reference ranges. Here, we aimed to evaluate the impact of recalibrating PTH immunoassays by means of a recently developed LC-MS/MS method as the reference. Utilizing a large panel of pooled plasma samples with PTH concentrations determined by the LC-MS/MS method calibrated with the World Health Organization (WHO) 95/646 International Standard, five PTH immunoassays were recalibrated. The robustness of this standardization was evaluated over time using different sets of samples. The recalibration successfully reduced inter-assay variability with harmonization of PTH measurements across different assays. By recalibrating the assays based on the WHO 95/646 International Standard, we demonstrated the feasibility for standardizing PTH measurement results and adopting common reference ranges for PTH assays, facilitating a more consistent interpretation of PTH values. The recalibration process aligns PTH results obtained from various immunoassays with the LC-MS/MS method, providing more consistent and reliable measurements. Thus, establishing true standardization across all PTH assays is crucial to ensure consistent interpretation and clinical decision-making.
Collapse
Affiliation(s)
- Etienne Cavalier
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium.
| | - Jordi Farré-Segura
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Pierre Lukas
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Anne-Sophie Gendebien
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Stéphanie Peeters
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Philippe Massonnet
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Caroline Le Goff
- Department of Clinical Chemistry, University of Liège, CIRM, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Antoine Bouquegneau
- Department of Nephrology, Dialysis and Transplantation, CHU de Liège, Liège, Belgium
| | | | - Vincent Delatour
- Department of Biomedical and Organic Chemistry, Laboratoire National de Métrologie et d'Essais (LNE), Paris, France
| | - Pierre Delanaye
- Department of Nephrology, Dialysis and Transplantation, CHU de Liège, Liège, Belgium; Department of Nephrology-Dialysis-Apheresis, Hôpital Universitaire Carémeau, Nîmes, France
| |
Collapse
|
3
|
Chrone VG, Lorentzen A, Højrup P. Characterization of Synthetic Peptides by Mass Spectrometry. Methods Mol Biol 2024; 2821:83-89. [PMID: 38997482 DOI: 10.1007/978-1-0716-3914-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
In the quality control of synthetic peptides, mass spectroscopy (MS) serves as an optimal method for evaluating authenticity and integrity. Typically, the sequence of a synthetic peptide is already established, thereby directing the focus of analysis towards validating its identity and purity. This chapter outlines straightforward methodologies for conducting MS analyses specifically tailored for synthetic peptides.
Collapse
Affiliation(s)
- Victor G Chrone
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Andrea Lorentzen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
Zhang Y, Han Y, Zhu W, Yuan J, Liu X. Negative enrichment strategy combined with site-specific derivatization for the C-terminomics. J Proteomics 2023; 287:104978. [PMID: 37507008 DOI: 10.1016/j.jprot.2023.104978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Protein C-termini containing valuable biological information plays a vital role in various physiological processes, such as protein localization, protein recognition, and signal transduction in organisms. However, C-terminal peptide identification is still challenging due to their low abundance and similar physicochemical properties to other digested peptides. Herein, we developed a simple and mild strategy for the enrichment of C-terminal peptides that incorporates selectively 2-pyridinecarbaldehyde (2-PCA) derivatization of α-amine with negative enrichment by NHS resin. Two synthesized peptides were utilized to evaluate the efficiency of 2-PCA derivatization and optimize the coupling conditions of NHS resin. The feasibility of the method was further validated by enriching the C-terminus of the bovine serum albumin (BSA). Finally, this method was successfully applied to the C-terminus analysis of mouse brain tissue, identifying 404 protein C-termini with physicochemical properties unbiasedly. Additionally, the GO and KEGG analyses revealed that these identified proteins are crucial for proper brain function. In summary, our proposed method is effective and has the potential to facilitate comprehensive C-terminal analysis of proteins. SIGNIFICANCE: Effective enrichment methods are essential for the identification of the proteins C-terminus. In this study, a mild and simple method for negative C-terminal enrichment combined with site-specific derivatization was developed. The enrichment process was simplified and minimized sample loss simultaneously, using 2-PCA derivatization which has high α-amino specificity. Up to 346C-terminal proteins were identified in mouse brain tissue unbiasedly and reliably. This approach has the potential to facilitate comprehensive analysis of protein C-termini in a variety of biological contexts.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yutong Han
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenjie Zhu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China..
| | - Xin Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
5
|
Mannstadt M, Cianferotti L, Gafni RI, Giusti F, Kemp EH, Koch CA, Roszko KL, Yao L, Guyatt GH, Thakker RV, Xia W, Brandi ML. Hypoparathyroidism: Genetics and Diagnosis. J Bone Miner Res 2022; 37:2615-2629. [PMID: 36375809 DOI: 10.1002/jbmr.4667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 01/05/2023]
Abstract
This narrative report summarizes diagnostic criteria for hypoparathyroidism and describes the clinical presentation and underlying genetic causes of the nonsurgical forms. We conducted a comprehensive literature search from January 2000 to January 2021 and included landmark articles before 2000, presenting a comprehensive update of these topics and suggesting a research agenda to improve diagnosis and, eventually, the prognosis of the disease. Hypoparathyroidism, which is characterized by insufficient secretion of parathyroid hormone (PTH) leading to hypocalcemia, is diagnosed on biochemical grounds. Low albumin-adjusted calcium or ionized calcium with concurrent inappropriately low serum PTH concentration are the hallmarks of the disease. In this review, we discuss the characteristics and pitfalls in measuring calcium and PTH. We also undertook a systematic review addressing the utility of measuring calcium and PTH within 24 hours after total thyroidectomy to predict long-term hypoparathyroidism. A summary of the findings is presented here; results of the detailed systematic review are published separately in this issue of JBMR. Several genetic disorders can present with hypoparathyroidism, either as an isolated disease or as part of a syndrome. A positive family history and, in the case of complex diseases, characteristic comorbidities raise the clinical suspicion of a genetic disorder. In addition to these disorders' phenotypic characteristics, which include autoimmune diseases, we discuss approaches for the genetic diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Luisella Cianferotti
- Bone Metabolic Diseases Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Rachel I Gafni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Christian A Koch
- Department of Medicine/Endocrinology, Fox Chase Cancer Center, Philadelphia, PA, USA.,Department of Medicine/Endocrinology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kelly L Roszko
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Liam Yao
- Department of Health Research Methods, Evidence, and Impact, and Department of Medicine, McMaster University, Hamilton, Canada
| | - Gordon H Guyatt
- Department of Health Research Methods, Evidence, and Impact, and Department of Medicine, McMaster University, Hamilton, Canada
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK.,Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Weibo Xia
- Department of Endocrinology, Peking Union Medical Collage Hospital, Beijing, China
| | - Maria-Luisa Brandi
- Fondazione Italiana sulla Ricerca sulle Malattie dell'Osso (F.I.R.M.O. Foundation), Florence, Italy
| |
Collapse
|
6
|
Juang RS, Wang KS, Cheng YW, Wu WE, Lin YH, Jeng RJ, Huang LY, Yang MC, Liu SH, Liu TY. Intelligent and thermo-responsive Au-pluronic® F127 nanocapsules for Raman-enhancing detection of biomolecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121475. [PMID: 35696969 DOI: 10.1016/j.saa.2022.121475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Thermo-responsive Raman-enhanced nanocapsules were successfully fabricated by Pluronic® F127 (F127) decorated with gold nanoparticles (AuNPs) for surface-enhanced Raman scattering (SERS) detection of biomolecules. F127 nanocapsules changes from hydrophilicity (swelling) to hydrophobicity (de-swelling) when the temperature increases from 15 °C to 37 °C, owing to the lower critical solution temperature (LCST) of F127 is about 26.5 °C. The size of nanocapsules would be enormous shrinking from 160 nm to 20 nm, resulting in a significant decrease in the distance between AuNPs to enhance hot spot effect, which increases the sensitivity of SERS detection. Based on the thermo-sensitive behavior, the ratio of AuNPs and F127 would be manipulated to find the optimal SERS enhancement effect. SERS nanocapsules can rapidly detect biomolecules (adenine and R6G) with limit of detection (LOD) lower than 10-6 M. In addition, the relatively difficult to detect clinical samples, carboxyl-terminal parathyroid hormone fragments (C-PTH), can also be measured by the thermo-responsive SERS nanocapsules developed in this work. It is expected the biomolecules can be adsorbed at low temperature (15 °C), as well as collected and concentrated at high temperature (37 °C) for SERS detection, to increase the sensitivity and stability of SERS detection.
Collapse
Affiliation(s)
- Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Kuan-Syun Wang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Wei Cheng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Wei-En Wu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Yu-Hsuan Lin
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Ru-Jong Jeng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Ying Huang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Shou-Hsuan Liu
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
7
|
Quantification of Parathyroid Hormone and its Fragments in Serum by Liquid Chromatography-High-Resolution Mass Spectrometry. Methods Mol Biol 2022; 2546:365-373. [PMID: 36127604 DOI: 10.1007/978-1-0716-2565-1_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Parathyroid hormone (PTH), an 84-amino acid peptide hormone, is a major regulator of calcium homeostasis. Quantification of PTH in serum is used clinically to investigate calcium imbalances and for monitoring osteodystrophy in patients with renal failure. In addition to intact PTH, several PTH fragments are found in circulation. Recent studies have shown that accurate quantification of PTH fragments may provide valuable clinical information in certain scenarios. In this chapter, a high-resolution mass spectrometry-based method for quantification of PTH (1-84) and its fragments is described. This method involves immunoaffinity capture of intact PTH and PTH-fragments followed by liquid chromatography-high-resolution mass spectrometry (LC-HRMS).
Collapse
|
8
|
Ulmer CZ, Kritmetapak K, Singh RJ, Vesper HW, Kumar R. High-Resolution Mass Spectrometry for the Measurement of PTH and PTH Fragments: Insights into PTH Physiology and Bioactivity. J Am Soc Nephrol 2022; 33:1448-1458. [PMID: 35396262 PMCID: PMC9342634 DOI: 10.1681/asn.2022010036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Full-length parathyroid hormone (PTH 1-84) is crucial for the regulation of calcium and phosphate homeostasis and bone remodeling. PTH 1-84 is metabolized into various PTH fragments, which are measured with varying levels of efficiency by PTH immunoassays. These PTH fragments, which increase in serum as CKD progresses, could potentially modulate the effects of PTH 1-84 and contribute to CKD-associated bone disorders. To obtain a true biologic representation of total PTH bioactivity, it is necessary to measure not only PTH 1-84 but also PTH fragments that are present in circulation. Traditional second-generation PTH immunoassays collectively measure PTH 1-84, PTH fragments, and post-translationally modified PTH 1-84, making it difficult to accurately predict the character of underlying renal osteodystrophy. This review highlights current advances in methods available for PTH measurement and the clinical relevance of PTH fragments in CKD. We emphasize the usefulness of mass spectrometry as a potential reference method for PTH measurement.
Collapse
Affiliation(s)
- Candice Z. Ulmer
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kittrawee Kritmetapak
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ravinder J. Singh
- Immunochemical Core Laboratory, Mayo Clinic, Rochester, Minnesota,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Hubert W. Vesper
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Forgrave LM, Wang M, Yang D, DeMarco ML. Proteoforms and their expanding role in laboratory medicine. Pract Lab Med 2022; 28:e00260. [PMID: 34950758 PMCID: PMC8672040 DOI: 10.1016/j.plabm.2021.e00260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
The term “proteoforms” describes the range of different structures of a protein product of a single gene, including variations in amino acid sequence and post-translational modifications. This diversity in protein structure contributes to the biological complexity observed in living organisms. As the concentration of a particular proteoform may increase or decrease in abnormal physiological states, proteoforms have long been used in medicine as biomarkers of health and disease. Notably, the analytical approaches used to analyze proteoforms have evolved considerably over the years. While ligand binding methods continue to play a large role in proteoform measurement in the clinical laboratory, unanticipated or unknown post-translational modifications and sequence variants can upend even extensively tested and vetted assays that have successfully made it through the medical regulatory process. As an alternate approach, mass spectrometry—with its high molecular selectivity—has become an essential tool in detection, characterization, and quantification of proteoforms in biological fluids and tissues. This review explores the analytical techniques used for proteoform detection and quantification, with an emphasis on mass spectrometry and its various applications in clinical research and patient care including, revealing new biomarker targets, helping improve the design of contemporary ligand binding in vitro diagnostics, and as mass spectrometric laboratory developed tests used in routine patient care.
Collapse
Affiliation(s)
- Lauren M. Forgrave
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Meng Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - David Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, 1081 Burrard St, Vancouver, V6Z 1Y6, Canada
- Corresponding author. Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
10
|
Novel sequential immunocapture microflow LC/MS/MS approach to measuring PTH-Fc protein in human serum. Bioanalysis 2021; 14:137-149. [PMID: 34894717 DOI: 10.4155/bio-2021-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The quantitation of PTH-Fc in circulation by ligand binding assay presented a significant challenge due to the extremely low doses of administration, interference from the endogenous. A robust LC-MS/MS method to quantify the extremely low concentration of PTH-Fc in human serum utilized sequential immunoaffinity enrichment at PTH and Fc domains in conjunction with microflow LC-MS/MS technology significantly improved the sensitivity and selectivity. The assay displayed a quantitation range of 0.025-5.0 ng/ml and acceptable intraday and interday precision (%CV ≤ 15%) and accuracy (%bias ≤ ±15%) and can be routinely used for pharmacokinetic measurement of the drug. The novel sequential immunocapture workflow described herein can be applied to the quantitation of other recombinant therapeutic proteins to support clinical studies.
Collapse
|
11
|
Kritmetapak K, Singh RJ, Craig TA, Hines JM, Kumar R. Short carboxyl terminal parathyroid hormone peptides modulate human parathyroid hormone signaling in mouse osteoblasts. Biochem Biophys Res Commun 2021; 572:15-19. [PMID: 34332324 DOI: 10.1016/j.bbrc.2021.07.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Novel human parathyroid hormone (hPTH) peptides of unknown biological activity have recently been identified in the serum of subjects with normal renal function, chronic renal failure, and end-stage renal disease through the application of liquid chromatography-high resolution mass spectrometry. PURPOSE of experiments: To determine the bioactivity of these peptides, we synthesized hPTH28-84, hPTH38-84, and hPTH45-84 peptides by solid phase peptide synthesis and tested their bioactivity in MC3T3-E1 mouse osteoblasts, either individually or together with the native hormone, hPTH1-84, by assessing the accumulation of 3´,5´-cyclic adenosine monophosphate (cAMP) and the induction of alkaline phosphatase activity. RESULTS Increasing doses of hPTH1-84 (1-100 nM) increased the accumulation of cAMP and alkaline phosphatase activity in osteoblasts. hPTH28-84, hPTH38-84, and hPTH45-84 in concentrations of 1-100 nM were biologically inert. Surprisingly, 100 nM hPTH38-84 and hPTH45-84 increased the accumulation of cAMP in osteoblasts treated with increasing amounts of hPTH1-84. Human PTH28-84 had no effects on cAMP activity alone or in combination with hPTH1-84. Conversely, 100 nM hPTH38-84, hPTH45-84, and hPTH28-84 blocked the activation of alkaline phosphatase activity by hPTH1-84. CONCLUSIONS The data show that the short carboxyl-terminal hPTH peptides, hPTH38-84 and hPTH45-84, increase the amount of cellular cAMP generated in cultured osteoblasts in response to treatment with full-length hPTH1-84 when compared to full-length hPTH1-84 alone. Human PTH28-84 had no effect on cAMP activity alone or in combination with hPTH1-84. Human PTH28-84, hPTH38-84 and hPTH45-84 reduced the effects of hPTH1-84 in osteoblasts with respect to the induction of alkaline phosphatase activity compared to hPTH1-84 alone. Short carboxyl peptides of human PTH are biologically inert but when administered together with full-length hPTH1-84 modulate the bioactivity of hPTH1-84 in osteoblasts.
Collapse
Affiliation(s)
- Kittrawee Kritmetapak
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic Rochester, 200 First Street Southwest, Rochester, MN, 55905, USA; Division of Nephrology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Theodore A Craig
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic Rochester, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Jolaine M Hines
- Immunochemical Core Laboratory, Mayo Clinic Rochester, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic Rochester, 200 First Street Southwest, Rochester, MN, 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, 200 First Street Southwest, Rochester, MN, 55905, USA.
| |
Collapse
|
12
|
Kritmetapak K, Losbanos LA, Hines JM, O'Grady KL, Ulmer CZ, Vesper HW, Enders FT, Singh RJ, Kumar R. Chemical Characterization and Quantification of Circulating Intact PTH and PTH Fragments by High-Resolution Mass Spectrometry in Chronic Renal Failure. Clin Chem 2021; 67:843-853. [PMID: 33693557 PMCID: PMC8167341 DOI: 10.1093/clinchem/hvab013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/12/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND The precise concentrations of full-length parathyroid hormone (PTH1-84) and the identity and concentrations of PTH fragments in patients with various stages of chronic renal failure are unknown. METHODS We developed a liquid chromatography-high resolution mass spectrometry (LC-HRMS) method to characterize and quantify PTH1-84 and PTH fragments in serum of 221 patients with progressive renal dysfunction. Following capture by matrix-bound amino-terminal or carboxyl-terminal region-specific antibodies and elution from matrix, PTH1-84 and PTH fragments were identified and quantitated using LC-HRMS. PTH was simultaneously measured using an intact PTH (iPTH) immunoassay. RESULTS Full-length PTH1-84 and 8 PTH fragments (PTH28-84, 34-77, 34-84, 37-77, 37-84, 38-77, 38-84, and 45-84) were unequivocally identified and were shown to increase significantly when an eGFR declined to ≤17-23 mL/min/1.73m2. Serum concentrations of PTH1-84 were similar when measured by LC-HRMS following capture by amino-terminal or carboxyl-terminal immunocapture methods. In patients with an eGFR of <30 mL/min/1.73 m2, serum PTH concentrations measured using LC-HRMS were significantly lower than PTH measured using an iPTH immunoassay. PTH7-84 and oxidized forms of PTH1-84 were below the limit of detection (30 and 50 pg/mL, respectively). CONCLUSIONS LC-HRMS identifies circulating PTH1-84, carboxyl-terminal PTH fragments, and mid-region PTH fragments, in patients with progressive renal failure. Serum PTH1-84 and its fragments markedly rise when an eGFR decreases to ≤17-23 mL/min/1.73 m2. PTH concentrations measured using LC-HRMS tend to be lower than those measured using an iPTH immunoassay, particularly in severe chronic renal failure. Our data do not support the existence of circulating PTH7-84 and oxidized PTH1-84.
Collapse
Affiliation(s)
- Kittrawee Kritmetapak
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Louis A Losbanos
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jolaine M Hines
- Immunochemical Core Laboratory, Mayo Clinic, Rochester, MN, USA
| | | | - Candice Z Ulmer
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hubert W Vesper
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Felicity T Enders
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Physical Activity-Dependent Regulation of Parathyroid Hormone and Calcium-Phosphorous Metabolism. Int J Mol Sci 2020; 21:ijms21155388. [PMID: 32751307 PMCID: PMC7432834 DOI: 10.3390/ijms21155388] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Exercise perturbs homeostasis, alters the levels of circulating mediators and hormones, and increases the demand by skeletal muscles and other vital organs for energy substrates. Exercise also affects bone and mineral metabolism, particularly calcium and phosphate, both of which are essential for muscle contraction, neuromuscular signaling, biosynthesis of adenosine triphosphate (ATP), and other energy substrates. Parathyroid hormone (PTH) is involved in the regulation of calcium and phosphate homeostasis. Understanding the effects of exercise on PTH secretion is fundamental for appreciating how the body adapts to exercise. Altered PTH metabolism underlies hyperparathyroidism and hypoparathyroidism, the complications of which affect the organs involved in calcium and phosphorous metabolism (bone and kidney) and other body systems as well. Exercise affects PTH expression and secretion by altering the circulating levels of calcium and phosphate. In turn, PTH responds directly to exercise and exercise-induced myokines. Here, we review the main concepts of the regulation of PTH expression and secretion under physiological conditions, in acute and chronic exercise, and in relation to PTH-related disorders.
Collapse
|
14
|
Abstract
Parathyroid hormone is an essential regulator of extracellular calcium and phosphate. PTH enhances calcium reabsorption while inhibiting phosphate reabsorption in the kidneys, increases the synthesis of 1,25-dihydroxyvitamin D, which then increases gastrointestinal absorption of calcium, and increases bone resorption to increase calcium and phosphate. Parathyroid disease can be an isolated endocrine disorder or part of a complex syndrome. Genetic mutations can account for diseases of parathyroid gland formulation, dysregulation of parathyroid hormone synthesis or secretion, and destruction of the parathyroid glands. Over the years, a number of different options are available for the treatment of different types of parathyroid disease. Therapeutic options include surgical removal of hypersecreting parathyroid tissue, administration of parathyroid hormone, vitamin D, activated vitamin D, calcium, phosphate binders, calcium-sensing receptor, and vitamin D receptor activators to name a few. The accurate assessment of parathyroid hormone also provides essential biochemical information to properly diagnose parathyroid disease. Currently available immunoassays may overestimate or underestimate bioactive parathyroid hormone because of interferences from truncated parathyroid hormone fragments, phosphorylation of parathyroid hormone, and oxidation of amino acids of parathyroid hormone.
Collapse
Affiliation(s)
- Edward Ki Yun Leung
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
15
|
Smit MA, van Kinschot CMJ, van der Linden J, van Noord C, Kos S. Clinical Guidelines and PTH Measurement: Does Assay Generation Matter? Endocr Rev 2019; 40:1468-1480. [PMID: 31081903 DOI: 10.1210/er.2018-00220] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/08/2019] [Indexed: 11/19/2022]
Abstract
PTH is an important regulator of calcium and phosphate homeostasis and bone remodeling. It is metabolized into PTH fragments, which are measured to a different extent by PTH assays of different generations because of differences in fragments recognized and lack of assay standardization. PTH is measured in the workup of several conditions, and clinical guidelines provide recommendations concerning these measurements. This review provides an overview of the impact of differences between PTH assays, applying distinct clinical guidelines for primary and secondary hyperparathyroidism and perioperative use of PTH measurements. Guidelines deal with PTH measurement in different ways, recommending either trend monitoring, the use of a fold increase of the upper reference limit, or an absolute PTH cutoff value. For classic primary hyperparathyroidism (PHPT), the type of PTH assay used will not affect diagnosis or management because the precise concentration of PTH is less relevant. In chronic kidney disease, the guideline recommends treating secondary hyperparathyroidism above a twofold to ninefold PTH increase, which will result in different clinical decisions depending on the assay used. For patients after bariatric surgery, guidelines state absolute cutoff values for PTH, but the impact of different generation assays is unknown because direct comparison of PTH assays has never been performed. During parathyroid surgery, PTH measurements with a third-generation assay reflect treatment success more rapidly than second-generation assays. Increased awareness among clinicians regarding the complexity of PTH measurements is warranted because it can affect clinical decisions.
Collapse
Affiliation(s)
- Marjon A Smit
- Department of Clinical Chemistry, Maasstad Hospital, Rotterdam, Netherlands
| | | | | | | | - Snježana Kos
- Department of Clinical Chemistry, Maasstad Hospital, Rotterdam, Netherlands
| |
Collapse
|
16
|
Hu H, Zhao W, Zhu M, Zhao L, Zhai L, Xu JY, Liu P, Tan M. LysargiNase and Chemical Derivatization Based Strategy for Facilitating In-Depth Profiling of C-Terminome. Anal Chem 2019; 91:14522-14529. [PMID: 31634432 DOI: 10.1021/acs.analchem.9b03543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Global identification of protein C-termini is highly challenging due to their low abundance in conventional shotgun proteomics. Several enrichment strategies have been developed to facilitate the detection of C-terminal peptides. One major issue of previous approaches is the limited C-terminome coverage. Herein, we integrated LysargiNase digestion, chemical acetylation on neo-N-terminus, and a-ion-aided peptide matching into poly(allylamine)-based C-terminomics (termed as LAACTer). In this strategy, we leveraged LysargiNase, a protease with cleavage specificity N-terminal to Lys and Arg residues, to cover previously unidentifiable C-terminome and employed chemical acetylation and a-ion-aided peptide matching to efficiently boost peptide identifications. Triplicates of LAACTer identified a total of 834 C-termini from proteome of 293T cell, which expanded the coverage by 164% (643 more unique C-termini) compared with the parallel experiments using the original workflow. Compared with the largest human C-terminome data sets (containing 800-900 C-termini), LAACTer not only achieved comparable profiling depth but also yielded 465 previously unidentified C-termini. In a SILAC (stable isotope labeling with amino acids in cell culture)-based quantitative study for identification of GluC-cleaved products, LAACTer quantified 300% more C-terminal peptides than the original workflow. Using LAACTer and the original workflow, we performed global analysis for the C-terminal sequences of 293T cell. The original and processed C-termini displayed distinct sequence patterns, implying the "C-end rules" that regulates protein stability could be more complex than just amino acid motifs. In conclusion, we reason LAACTer could be a powerful proteomic tool for in-depth C-terminomics and would benefit better functional understanding of protein C-termini.
Collapse
Affiliation(s)
- Hao Hu
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai , 201203 , China
| | - Wensi Zhao
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai , 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Mengdi Zhu
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai , 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lei Zhao
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai , 201203 , China
| | - Linhui Zhai
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai , 201203 , China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai , 201203 , China
| | - Ping Liu
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai , 201203 , China
| | - Minjia Tan
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai , 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
17
|
Kritmetapak K, Pongchaiyakul C. Parathyroid Hormone Measurement in Chronic Kidney Disease: From Basics to Clinical Implications. Int J Nephrol 2019; 2019:5496710. [PMID: 31637056 PMCID: PMC6766083 DOI: 10.1155/2019/5496710] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/04/2019] [Indexed: 11/18/2022] Open
Abstract
Accurate measurement of parathyroid hormone (PTH) is crucial for therapeutic decision-making in patients with chronic kidney disease-mineral and bone disorder (CKD-MBD). The second-generation PTH assays, often referred to as "intact PTH" assays, are the current standard and most available assays in clinical practice. However, intact PTH assays measure both full-length biologically active PTH and heterogeneous PTH fragments in the circulation, providing the equivocal value of PTH measurement in patients with CKD-MBD. Due to the variability of PTH assays, preanalytical sample errors, and the phenomenon of end-organ PTH hyporesponsiveness, current CKD-MBD guidelines recommend a wide range for serum PTH targets (2-9 the upper normal limit of the intact PTH assay) in dialysis patients to diminish the risk of developing adynamic bone disease. Nevertheless, a sizeable proportion of CKD patients still experience renal osteodystrophy despite having serum PTH levels within the recommended range. The primary cause of this inconsistency is the analytical interference of various PTH fragments and oxidized PTH forms that considerably accumulate in CKD patients. Therefore, a new mass spectrometry-based assay, which is capable of specifically measuring the whole spectra of PTH fragments, can potentially improve diagnostic accuracy for renal osteodystrophy. However, the effects of different PTH fragments on bone metabolism, vascular calcification, and mortality in CKD patients warrant further research.
Collapse
Affiliation(s)
- Kittrawee Kritmetapak
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chatlert Pongchaiyakul
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
18
|
Eugster PJ, Chtioui H, Herren A, Dunand M, Cappelle D, Bourquin J, Buclin T, Grouzmann E. Sub-picomolar quantification of PTH 1-34 in plasma by UHPLC-MS/MS after subcutaneous injection of teriparatide and identification of PTH 1-33, its degradation product. J Pharm Biomed Anal 2019; 166:205-212. [PMID: 30660035 DOI: 10.1016/j.jpba.2019.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
Abstract
Teriparatide (PTH 1-34, Forsteo®) is a bioactive N-terminal fragment of the native endogenous parathyroid hormone (PTH 1-84) recommended for the treatment of osteoporosis in patients with high risk of fracture. Since PTH 1-34 may undergo proteolysis we have validated an ultra-high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for unambiguously measuring intact PTH 1-34 with the same sensitivity as ELISA, at subpicomolar level (LLOQ at 0.4 pM). The full chromatographic run was achieved in 16.5 min. The method validation showed satisfactory intra- and inter-assay precision (CV < 13%) and excellent trueness (<5%), and almost no matrix effect (recoveries 78-92%). We found that after subcutaneous injection in two volunteers, PTH 1-34 half-life was shorter with UHPLC-MS/MS and that ELISA was overestimating PTH 1-34 late concentrations in both volunteers. Qualitative mass spectrometry was performed and led to the discovery of PTH 1-33, a fragment of PTH 1-34 with unknown function. This study emphasized the importance of switching from immunoassays to mass spectrometry when measuring bioactive peptides prompt to proteolysis into fragments that may exhibit altered bioactivity and duration of action.
Collapse
Affiliation(s)
- Philippe J Eugster
- Service of Clinical Pharmacology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Haithem Chtioui
- Service of Clinical Pharmacology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Adeline Herren
- Service of Clinical Pharmacology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Marielle Dunand
- Service of Clinical Pharmacology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Delphine Cappelle
- Service of Clinical Pharmacology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Julien Bourquin
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, United Kingdom
| | - Thierry Buclin
- Service of Clinical Pharmacology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Eric Grouzmann
- Service of Clinical Pharmacology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
19
|
Abstract
Parathyroid hormone (PTH) is the major secretory product of the parathyroid glands, and in hypocalcemic conditions, can enhance renal calcium reabsorption, increase active vitamin D production to increase intestinal calcium absorption, and mobilize calcium from bone by increasing turnover, mainly but not exclusively in cortical bone. PTH has therefore found clinical use as replacement therapy in hypoparathyroidism. PTH also may have a physiologic role in augmenting bone formation, particularly in trabecular and to some extent in cortical bone. This action has been applied to the clinic to provide anabolic therapy for osteoporosis.
Collapse
Affiliation(s)
- David Goltzman
- Department of Medicine and Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada; Departments of Medicine and of Physiology, McGill University, 845 Sherbrooke St West, Montreal, Quebec H3A 0B9, Canada.
| |
Collapse
|
20
|
Marcucci G, Cianferotti L, Brandi ML. Clinical presentation and management of hypoparathyroidism. Best Pract Res Clin Endocrinol Metab 2018; 32:927-939. [PMID: 30665553 DOI: 10.1016/j.beem.2018.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical manifestations of hypoparathyroidism are variable and can involve almost any organ system. The main clinical features of the hypoparathyroidism are typically signs or symptoms due to neuromuscular irritability owing to low serum calcium level. In addition to hypocalcemia, hyperphosphatemia can contribute to long-term complications, including extra-skeletal calcifications. Bone turnover markers are generally decreased, and bone mass density is usually normal-increased compared to age- and gender-matched controls. It is still unclear whether or not these bone features could have an impact on the risk of fracture. Impaired renal function is a common complication described in patients treated for hypoparathyroidism. Other complications include premature cataracts, seizures, basal ganglia calcifications, and cardiac arrhythmias. Lastly, some clinical studies have also reported a reduced quality of life of patients with hypoparathyroidism. Increased awareness of the clinical manifestations of this disease is important to improve its clinical management.
Collapse
Affiliation(s)
- Gemma Marcucci
- Department of Surgery and Translational Medicine, University of Florence, Bone Metabolic Diseases Unit, University Hospital of Florence, Italy.
| | - Luisella Cianferotti
- Department of Surgery and Translational Medicine, University of Florence, Bone Metabolic Diseases Unit, University Hospital of Florence, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Bone Metabolic Diseases Unit, University Hospital of Florence, Italy.
| |
Collapse
|
21
|
Zhang Y, Li Q, Huang J, Wu Z, Huang J, Huang L, Li Y, Ye J, Zhang X. An Approach to Incorporate Multi-Enzyme Digestion into C-TAILS for C-Terminomics Studies. Proteomics 2017; 18. [PMID: 29152854 DOI: 10.1002/pmic.201700034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 10/18/2017] [Indexed: 11/07/2022]
Abstract
Protein C-termini study is still a challenging task and far behind its counterpart, N-termini study. MS based C-terminomics study is often hampered by the low ionization efficiency of C-terminal peptides and the lack of efficient enrichment methods. We previously optimized the C-terminal amine-based isotope labeling of substrates (C-TAILS) method and identified 369 genuine protein C-termini in Escherichia coli. A key limitation of C-TAILS is that the prior protection of amines and carboxylic groups at protein level makes Arg-C as the only specific enzyme in practice. Herein, we report an approach combining multi-enzyme digestion and C-TAILS, which significantly increases the identification rate of C-terminal peptides and consequently improves the applicability of C-TAILS in biological studies. We carry out a systematic study and confirm that the omission of the prior amine protection at protein level has a negligible influence and allows the application of multi-enzyme digestion. We successfully apply five different enzyme digestions to C-TAILS, including trypsin, Arg-C, Lys-C, Lys-N, and Lysarginase. As a result, we identify a total of 722 protein C-termini in E. coli, which is at least 66% more than the results using any single enzyme. Moreover, the favored enzyme and enzyme combination are discovered. Data are available via ProteomeXchange with identifier PXD004275.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingqing Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingnan Huang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Jichang Huang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin Huang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanhong Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Juanying Ye
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Abstract
Hypoparathyroidism is a disease characterized by inadequately low circulating concentrations of parathyroid hormone (PTH) resulting in low calcium levels and increased phosphate levels in the blood. Symptoms of the disease result from increased neuromuscular irritability caused by hypocalcaemia and include tingling, muscle cramps and seizures. The most common cause of the disease is inadvertent removal of, or injury to, the parathyroid glands during neck surgery, followed by genetic, idiopathic and autoimmune aetiologies. Conventional treatment includes activated vitamin D and/or calcium supplements, but this treatment does not fully replace the functions of PTH and can lead to short-term problems (such as hypocalcaemia, hypercalcaemia and increased urinary calcium excretion) and long-term complications (which include nephrocalcinosis, kidney stones and brain calcifications). PTH replacement has emerged as a new treatment option. Clinical trials using human PTH(1-34) and PTH(1-84) showed that this treatment was safe and effective in studies lasting up to 6 years. Recombinant human PTH(1-84) has been approved in the United States and Europe for the management of hypoparathyroidism; however, its effect on long-term complications is still being evaluated. Clinical practice guidelines, which describe the consensus of experts in the field, have been published and recognize the need for more research to optimize care. In this Primer, we summarize current knowledge of the prevalence, pathophysiology, clinical presentation and management of hypoparathyroidism.
Collapse
|
23
|
Nedelkov D. Human proteoforms as new targets for clinical mass spectrometry protein tests. Expert Rev Proteomics 2017; 14:691-699. [DOI: 10.1080/14789450.2017.1362337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Clarke BL, Brown EM, Collins MT, Jüppner H, Lakatos P, Levine MA, Mannstadt MM, Bilezikian JP, Romanischen AF, Thakker RV. Epidemiology and Diagnosis of Hypoparathyroidism. J Clin Endocrinol Metab 2016; 101:2284-99. [PMID: 26943720 PMCID: PMC5393595 DOI: 10.1210/jc.2015-3908] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CONTEXT Hypoparathyroidism is a disorder characterized by hypocalcemia due to insufficient secretion of PTH. Pseudohypoparathyroidism is a less common disorder due to target organ resistance to PTH. This report summarizes the results of the findings and recommendations of the Working Group on Epidemiology and Diagnosis of Hypoparathyroidism. EVIDENCE ACQUISITION Each contributing author reviewed the recent published literature regarding epidemiology and diagnosis of hypoparathyroidism using PubMed and other medical literature search engines. EVIDENCE SYNTHESIS The prevalence of hypoparathyroidism is an estimated 37 per 100 000 person-years in the United States and 22 per 100 000 person-years in Denmark. The incidence in Denmark is approximately 0.8 per 100 000 person-years. Estimates of prevalence and incidence of hypoparathyroidism are currently lacking in most other countries. Hypoparathyroidism increases the risk of renal insufficiency, kidney stones, posterior subcapsular cataracts, and intracerebral calcifications, but it does not appear to increase overall mortality, cardiovascular disease, fractures, or malignancy. The diagnosis depends upon accurate measurement of PTH by second- and third-generation assays. The most common etiology is postsurgical hypoparathyroidism, followed by autoimmune disorders and rarely genetic disorders. Even more rare are etiologies including parathyroid gland infiltration, external radiation treatment, and radioactive iodine therapy for thyroid disease. Differentiation between these different etiologies is aided by the clinical presentation, serum biochemistries, and in some cases, genetic testing. CONCLUSIONS Hypoparathyroidism is often associated with complications and comorbidities. It is important for endocrinologists and other physicians who care for these patients to be aware of recent advances in the epidemiology, diagnosis, and genetics of this disorder.
Collapse
Affiliation(s)
- Bart L Clarke
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Edward M Brown
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Michael T Collins
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Harald Jüppner
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Peter Lakatos
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Michael A Levine
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Michael M Mannstadt
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - John P Bilezikian
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Anatoly F Romanischen
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | - Rajesh V Thakker
- Mayo Clinic (B.L.C.), Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, Minnesota 55905; Harvard Medical School (E.M.B.), Division of Endocrinology, Diabetes and Hypertension, Boston, Massachusetts 02115; Skeletal Clinical Studies Unit (M.T.C.), Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892; Endocrine Unit and Pediatric Nephrology Unit (H.J.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; First Department of Medicine (P.L.), Semmelweis University Medical School, Budapest 1085, Hungary; Division of Endocrinology and Diabetes (M.A.L.), Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; Massachusetts General Hospital (M.M.M.), Boston, Massachusetts 02114; Columbia University College of Physicians & Surgeons (J.P.B.), New York, New York 10032; Department of Hospital Surgery and Oncology of St Petersburg State Pediatric Medical Academy (A.F.R.), St. Petersburg 194100, Russia; and Academic Endocrine Unit (R.V.T.), Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| |
Collapse
|
25
|
Ketha H, Singh RJ. Quantitation of Parathyroid Hormone in Serum or Plasma by Liquid Chromatography-Tandem Mass Spectrometry. Methods Mol Biol 2015; 1378:211-7. [PMID: 26602132 DOI: 10.1007/978-1-4939-3182-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Parathyroid hormone (PTH), an 84 amino acid peptide hormone, is an important regulator of calcium homeostasis. Quantitation of PTH in serum is useful for the diagnosis of primary hyperparathyroidism, hypoparathyroidism, and for monitoring osteodystrophy in patients with renal failure. The biological activity of PTH arises from binding of PTH (N terminus) to its target receptor (D'Amour et al., Kidney Int 68: 998-1007, 2005). Several C-terminal and N-terminal fragments circulate in normal subjects. Recent studies have demonstrated that accurate quantitation of PTH fragments may be of clinical value. In this chapter a mass spectrometry based method for quantitation of PTH(1-84) is described. This method involves immunoaffinity capture of PTH followed by trypsinization and quantitation of PTH-specific tryptic peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The N-terminal tryptic peptide, PTH(1-13) as surrogate of 1-84 PTH, is used for quantitation.
Collapse
Affiliation(s)
- Hemamalini Ketha
- Departement of Pathology, University of Michigan Health System, Ann Arbor, MN, 48109-5054, USA
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 2nd Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
26
|
Liu M, Fang C, Pan X, Jiang H, Zhang L, Zhang L, Zhang Y, Yang P, Lu H. Positive Enrichment of C-Terminal Peptides Using Oxazolone Chemistry and Biotinylation. Anal Chem 2015; 87:9916-22. [DOI: 10.1021/acs.analchem.5b02437] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Minbo Liu
- Shanghai
Cancer
Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Caiyun Fang
- Department
of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Xiuwen Pan
- Shanghai
Cancer
Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Hucong Jiang
- Department
of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Lijuan Zhang
- Department
of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Lei Zhang
- Shanghai
Cancer
Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Ying Zhang
- Shanghai
Cancer
Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
| | - Pengyuan Yang
- Shanghai
Cancer
Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
- Department
of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Haojie Lu
- Shanghai
Cancer
Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People’s Republic of China
- Department
of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
27
|
LC–MS-based quantification of intact proteins: perspective for clinical and bioanalytical applications. Bioanalysis 2015; 7:1943-58. [DOI: 10.4155/bio.15.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bioanalytical LC–MS for protein quantification is traditionally based on enzymatic digestion of the target protein followed by absolute quantification of a specific signature peptide relative to a stable-isotope labeled analog. The enzymatic digestion, nonetheless, limits rapid method development, sample throughput and turnaround time, and, moreover, makes that essential information regarding the biological function of the intact protein is lost. The recent advancements in high-resolution MS instrumentation and improved sample preparation techniques dedicated to protein clean-up raise the question to what extent LC–MS can be applied for quantitative bioanalysis of intact proteins. This review provides an overview of current and potential applications of LC–MS for intact protein quantification as well as the main limitations and challenges for broad application.
Collapse
|
28
|
Ezan E, Becher F, Fenaille F. Assessment of the metabolism of therapeutic proteins and antibodies. Expert Opin Drug Metab Toxicol 2014; 10:1079-91. [PMID: 24897152 DOI: 10.1517/17425255.2014.925878] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION In the last decade, our increased knowledge of factors governing the pharmacokinetics and metabolism of biologics (recombinant therapeutic proteins) has driven, and will continue to support, biological engineering and the design of delivery systems for more efficient biologics. Further research in analytical methods for assessing their in vitro and/or in vivo metabolism will also support these developments. AREAS COVERED In this review we will discuss the main components affecting the metabolism of biologics, and try to demonstrate how novel analytical evaluations will facilitate their future development. We will focus on the use of radiolabeled drugs, ligand-binding assays and mass spectrometry. EXPERT OPINION Future marketed biologics will be complex structures, such as glycoengineered, fused, or chemically modified proteins. Their in vivo efficiencies will be strongly dependent on their metabolic stabilities. Similarly to small molecular drugs, for which in vitro and in vivo biochemical platforms and analytical techniques have helped to rationalize preclinical and clinical developments, we would expect this also to translate to effective approaches to study the metabolism of biologics in the near future. Mass spectrometry should emerge as a standard technique for in vivo characterization of the biotransformation products of biologics.
Collapse
Affiliation(s)
- Eric Ezan
- CEA, iBEB (Institut de Biologie Environnementale et Biotechnologie) , Bagnols-sur-Cèze , France +33 04 66 79 19 04 ; +33 04 66 79 19 08 ;
| | | | | |
Collapse
|
29
|
Liu M, Zhang L, Zhang L, Yao J, Yang P, Lu H. Approach for Identification and Quantification of C-Terminal Peptides: Incorporation of Isotopic Arginine Labeling Based on Oxazolone Chemistry. Anal Chem 2013; 85:10745-53. [DOI: 10.1021/ac401647m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Minbo Liu
- Shanghai
Cancer Centre and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Lijuan Zhang
- Institutes
of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Lei Zhang
- Institutes
of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Jun Yao
- Institutes
of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Pengyuan Yang
- Shanghai
Cancer Centre and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Haojie Lu
- Shanghai
Cancer Centre and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
- Institutes
of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
30
|
D'Amour P. Acute and chronic regulation of circulating PTH: significance in health and in disease. Clin Biochem 2012; 45:964-9. [PMID: 22569597 DOI: 10.1016/j.clinbiochem.2012.04.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/16/2012] [Accepted: 04/26/2012] [Indexed: 11/26/2022]
Abstract
Circulating human parathyroid hormone (PTH) is immunoheterogenous. It is composed of 80% carboxyl-terminal (C) fragments and of 20% PTH(1-84). This composition contrasts with the biological activity of the hormone, which is only related to PTH(1-84), creating a paradox between circulating PTH composition and PTH bioactivity. PTH molecular forms are either secreted by the parathyroid glands or generated by the peripheral metabolism of PTH(1-84) in the liver. The kidney has a major role in the disposal of C-PTH fragments. Secretion of PTH molecular forms by the parathyroid glands is highly regulated under a variety of clinical conditions, suggesting that C-PTH fragments could exert some biological effects of their own. Recent data suggest that C-PTH fragments can exert biological actions opposite to those of PTH(1-84) by acting on a C-PTH receptor not yet cloned. They can decrease calcium concentration, phosphate excretion, bone resorption and 1,25(OH)₂ synthesis. The clinical implications of this new concept are reviewed.
Collapse
Affiliation(s)
- Pierre D'Amour
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal-CRCHUM, Hôpital Saint-Luc, Department of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
31
|
The coming of age of liquid chromatography coupled to tandem mass spectrometry in the endocrinology laboratory. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 883-884:50-8. [DOI: 10.1016/j.jchromb.2011.08.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/19/2011] [Indexed: 02/07/2023]
|
32
|
Abstract
Recombinant therapeutic protein drugs have now been in clinical use for nearly three decades and have advanced considerably in complexity over this time period. Regulatory approvals of some early pioneering protein drugs did not require characterization of metabolism, but more recently regulatory expectations and guidance have appropriately evolved. Sponsors may now be expected to investigate metabolism of newer biologics as the structural complexity of proteins has increased markedly, particularly with the introduction of conjugated and modified proteins. This review discusses the value and need for metabolite characterization of some therapeutic proteins by presenting select examples. Regulatory expectations will undoubtedly evolve further with the development of other novel macromolecular biologic therapeutics based on modified nucleic acids, novel conjugated lipids and polysaccharides.
Collapse
|
33
|
Katsila T, Siskos AP, Tamvakopoulos C. Peptide and protein drugs: the study of their metabolism and catabolism by mass spectrometry. MASS SPECTROMETRY REVIEWS 2012; 31:110-133. [PMID: 21698655 DOI: 10.1002/mas.20340] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Peptide and protein drugs have evolved in recent years into mainstream therapeutics, representing a significant portion of the pharmaceutical market. Peptides and proteins exhibit highly diverse structures, broad biological activities as hormones, neurotransmitters, structural proteins, metabolic modulators and therefore have a significant role as both therapeutics and biomarkers. Understanding the metabolism of synthetic or biotechnologically derived peptide and protein drugs is critical for pharmaceutical development as metabolism has a significant impact on drug efficacy and safety. Although the same principles of pharmacokinetics and metabolism of small molecule drugs apply to peptide and protein drugs, there are few notable differences. Moreover, the study of peptide and protein drug metabolism is a rather complicated process which requires sophisticated analytical techniques, and mass spectrometry based approaches have provided the capabilities for efficient and reliable quantification, characterization, and metabolite identification. This review article will focus on the current use of mass spectrometry for the study of the metabolism of peptide and protein drugs.
Collapse
Affiliation(s)
- Theodora Katsila
- Biomedical Research Foundation, Academy of Athens, Division of Pharmacology-Pharmacotechnology, Soranou Efesiou Street 4, Athens GR-11527, Greece
| | | | | |
Collapse
|
34
|
Sobhi HR, Vatansever B, Wortmann A, Grouzmann E, Rochat B. Generic approach for the sensitive absolute quantification of large undigested peptides in plasma using a particular liquid chromatography–mass spectrometry setup. J Chromatogr A 2011; 1218:8536-43. [DOI: 10.1016/j.chroma.2011.09.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 01/02/2023]
|
35
|
Vieira JGH, Kunii IS, Ohe MN, Carvalho AB. Heterogeneity of carboxyl-terminal parathyroid hormone circulating forms in patients with hyperparathyroidism due to end stage renal disease. ACTA ACUST UNITED AC 2010; 53:1074-8. [PMID: 20126864 DOI: 10.1590/s0004-27302009000900003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 08/03/2009] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To study carboxyl-terminal (COOH) parathyroid hormone (PTH) circulating forms in patients with hyperparathyroidism due to end stage renal disease (ESRD). METHODS An immunometric assay that recognizes both intact and COOH PTH forms was developed. The assay, in conjunction with an intact assay, was used to measure PTH in serum samples obtained from 25 patients with hyperparathyroidism due to ESRD. Samples were also submitted to gel filtration chromatography in a Superdex((R)) 30 1.6 x 60 cm column, and the PTH content in the elution tubes, measured using both assays. RESULTS Values from 39.000 to 232.300 ng/mL (mean +/- sd = 101.680 +/- 45.330 ng/mL) were found using the COOH assay (PTH 39-84 was used as standard). Values obtained by the intact PTH assay ranged from 318 to 3.307 ng/mL (1.769 +/- 693 ng/mL) with a correlation between assays of 0.462 (p = 0.02). The elution profile obtained using the COOH assay showed a preponderance of forms with MW ranging from 8.500 to 4.500 daltons. The profiles obtained from the 25 patients were very similar. CONCLUSIONS In patients with hyperparathyroidism due to ESRD circulating PTH levels contain a broad range of molecular forms including COOH with MW ranging from 8.500 to 4.500 daltons. These forms are not recognized by the standard intact PTH assays. The correlation of these findings to the clinical aspects of bone disease in ESRD patients remains to be studied.
Collapse
Affiliation(s)
- José Gilberto H Vieira
- Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.
| | | | | | | |
Collapse
|
36
|
Kumar V, Barnidge DR, Chen LS, Twentyman JM, Cradic KW, Grebe SK, Singh RJ. Quantification of Serum 1–84 Parathyroid Hormone in Patients with Hyperparathyroidism by Immunocapture In Situ Digestion Liquid Chromatography–Tandem Mass Spectrometry. Clin Chem 2010; 56:306-13. [DOI: 10.1373/clinchem.2009.134643] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Immunoassays specific for 1–84 parathyroid hormone (PTH) reportedly reflect the bioactivity of PTH; however, PTH immunoassays can be susceptible to interference by cross-reacting PTH fragments. In addition, these assays currently lack standardization. A methodology using immunocapture purification with liquid chromatography–tandem mass spectrometry (LC-MS/MS) detection, along with a stable isotope–labeled internal standard, may help address these issues.
Methods: We isolated 1–84 PTH from 1 mL serum by immunocapture on a 6.5-mm polystyrene bead. The immobilized PTH was digested in situ and analyzed by LC-MS/MS. For quantification, we used the selected reaction monitoring response from the N-terminal tryptic peptide 1–13 PTH (1SVSEIQLMHNLGK13).
Results: The linear range of the assay was 39.1–4560 ng/L, and the limit of detection and limit of quantification were 14.5 ng/L and 39.1 ng/L, respectively. The intraassay CVs ranged from 6% to 11%, and the interassay CVs ranged from 7% to 17%. Interference by PTH fragments 1–44 PTH, 7–84 PTH, 43–68 PTH, 52–84 PTH, 64–84 PTH, and PTH-related protein (PTHrP) was ≤1% to ≤0.001%. Method comparison of LC-MS/MS vs the Roche Cobas® immunoassay yielded Deming fit of LC-MS/MS = 1.01x immunoassay – 13.21. The mean bias by Bland–Altman plot was −9.4%.
Conclusions: In patients with hyperparathyroidism, the immunocapture in situ digestion LC-MS/MS method can provide accurate and precise PTH results compared with immunoassay.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - David R Barnidge
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Li-Sheng Chen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Kendall W Cradic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Stefan K Grebe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
37
|
Lopez MF, Rezai T, Sarracino DA, Prakash A, Krastins B, Athanas M, Singh RJ, Barnidge DR, Oran P, Borges C, Nelson RW. Selected reaction monitoring-mass spectrometric immunoassay responsive to parathyroid hormone and related variants. Clin Chem 2009; 56:281-90. [PMID: 20022981 DOI: 10.1373/clinchem.2009.137323] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Parathyroid hormone (PTH) assays able to distinguish between full-length PTH (PTH1-84) and N-terminally truncated PTH (PTH7-84) are of increasing significance in the accurate diagnosis of endocrine and osteological diseases. We describe the discovery of new N-terminal and C-terminal PTH variants and the development of selected reaction monitoring (SRM)-based immunoassays specifically designed for the detection of full-length PTH [amino acid (aa)1-84] and 2 N-terminal variants, aa7-84 and aa34-84. METHODS Preparation of mass spectrometric immunoassay pipettor tips and MALDI-TOF mass spectrometric analysis were carried out as previously described. We used novel software to develop SRM assays on a triple-quadrupole mass spectrometer. Heavy isotope-labeled versions of target peptides were used as internal standards. RESULTS Top-down analysis of samples from healthy individuals and renal failure patients revealed numerous PTH variants, including previously unidentified aa28-84, aa48-84, aa34-77, aa37-77, and aa38-77. Quantitative SRM assays were developed for PTH1-84, PTH7-84, and variant aa34-84. Peptides exhibited linear responses (R(2) = 0.90-0.99) relative to recombinant human PTH concentration limits of detection for intact PTH of 8 ng/L and limits of quantification of 16-31 ng/L depending on the peptide. Standard error of analysis for all triplicate measurements was 3%-12% for all peptides, with <5% chromatographic drift between replicates. The CVs of integrated areas under the curve for 54 separate measurements of heavy peptides were 5%-9%. CONCLUSIONS Mass spectrometric immunoassays identified new clinical variants of PTH and provided a quantitative assay for these and previously identified forms of PTH.
Collapse
Affiliation(s)
- Mary F Lopez
- ThermoFisher Scientific BRIMS, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1654-1665. [PMID: 17136768 DOI: 10.1002/jms.959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
39
|
Scott KR, Fox J. Comparison of hypotensive response following intravenous injection of parathyroid hormone 1-84 and 1-34 in conscious rats. Calcif Tissue Int 2006; 79:389-94. [PMID: 17160578 DOI: 10.1007/s00223-006-0175-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 08/18/2006] [Indexed: 11/24/2022]
Abstract
Activation of parathyroid hormone 1 (PTH-1) receptors on vascular smooth muscle cells causes relaxation and decreases blood pressure in rats and humans. However, when PTH(1-84) and PTH(1-34) were injected in anesthetized rats, PTH(1-34) produced a greater decrease in blood pressure. This study quantified the dose-response relationship of the hypotensive response to intravenously injected PTH(1-84) and PTH(1-34) in conscious rats and assessed the role that the C-terminal region of PTH(1-84) played in the differences. Mean arterial pressure (MAP) decreased rapidly following injection of both peptides (0-100 nmol/kg) and reached a nadir at 1-2 minutes before increasing at a rate that was dose- and time-dependent. PTH(1-34) produced a greater hypotensive effect than PTH(1-84) at most doses tested and was significantly different from PTH(1-84) at 1-10 nmol/kg. The greatest difference in MAP decrease between PTH(1-84) and PTH(1-34) (24 and 35 mm Hg, respectively) occurred at 10 nmol/kg. Median effective dose (ED50) values for PTH(1-84) and PTH(1-34) were significantly different (5.9 and 1.3 nmol/kg, respectively). The C-terminal PTH fragments PTH(7-84), PTH(39-84), and PTH(53-84) did not affect MAP when injected alone (10 nmol/kg), nor did they influence the hypotensive response when given at a 10-fold molar excess in combination with PTH(1-84) or PTH(1-34) (1.4 nmol/kg). In conclusion, PTH(1-84) is a less potent but, because it induced the same maximum response, not a less efficacious hypotensive agent than PTH(1-34) when administered by bolus intravenous injection in conscious rats. We found no evidence to support the concept that the C-terminal region of PTH is responsible for this difference in potency.
Collapse
Affiliation(s)
- K R Scott
- NPS Pharmaceuticals, 383 Colorow Drive, Salt Lake City, UT 84108, USA
| | | |
Collapse
|
40
|
Abstract
The parathyroid polyhormone hypothesis holds that peptides derived from the metabolism of parathyroid hormone (PTH) (so-called C-terminal fragments) are themselves biologically active and that their effects are mediated by a novel 'C-terminal receptor.' The evidence supporting these assertions is extensive but remains inconclusive. This Commentary focuses on in vivo pharmacology studies that provide information relevant to understanding the physiological significance of C-terminal fragments. The more recent studies of this sort provide compelling evidence that the bioactivity of C-terminal fragments is likely to become physiologically relevant in settings of secondary hyperparathyroidism. In this condition, circulating levels of C-terminal fragments greatly exceed those of PTH. There is convincing evidence that the hypocalcemic effect of C-terminal fragments results from direct actions on the skeleton that inhibit bone resorption. On the other hand, there are few if any results of in vivo studies suggesting a role for C-terminal fragments in more physiological settings, at least when parameters associated with systemic calcium homeostasis are assessed.
Collapse
Affiliation(s)
- E F Nemeth
- NPS Pharmaceuticals, Toronto, Ontario, Canada.
| |
Collapse
|