1
|
Miura D, Motohashi S, Goto A, Kimura H, Tsugawa W, Sode K, Ikebukuro K, Asano R. Rapid and Convenient Single-Chain Variable Fragment-Employed Electrochemical C-Reactive Protein Detection System. Int J Mol Sci 2024; 25:2859. [PMID: 38474105 DOI: 10.3390/ijms25052859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Although IgG-free immunosensors are in high demand owing to ethical concerns, the development of convenient immunosensors that alternatively integrate recombinantly produced antibody fragments, such as single-chain variable fragments (scFvs), remains challenging. The low affinity of antibody fragments, unlike IgG, caused by monovalent binding to targets often leads to decreased sensitivity. We improved the affinity owing to the bivalent effect by fabricating a bivalent antibody-enzyme complex (AEC) composed of two scFvs and a single glucose dehydrogenase, and developed a rapid and convenient scFv-employed electrochemical detection system for the C-reactive protein (CRP), which is a homopentameric protein biomarker of systemic inflammation. The development of a point-of-care testing (POCT) system is highly desirable; however, no scFv-based CRP-POCT immunosensors have been developed. As expected, the bivalent AEC showed higher affinity than the single scFv and contributed to the high sensitivity of CRP detection. The electrochemical CRP detection using scFv-immobilized magnetic beads and the bivalent AEC as capture and detection antibodies, respectively, was achieved in 20 min without washing steps in human serum and the linear range was 1-10 nM with the limit of detection of 2.9 nM, which has potential to meet the criteria required for POCT application in rapidity, convenience, and hand-held detection devices without employing IgGs.
Collapse
Affiliation(s)
- Daimei Miura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
| | - Saki Motohashi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
| | - Ayaka Goto
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
| | - Hayato Kimura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu 183-8509, Japan
| |
Collapse
|
2
|
Liang YF, Yang JY, Shen YD, Xu ZL, Wang H. A breakthrough of immunoassay format for hapten: recent insights into noncompetitive immunoassays to detect small molecules. Crit Rev Food Sci Nutr 2024:1-11. [PMID: 38356229 DOI: 10.1080/10408398.2024.2315473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Immunoassay based on the antibodies specific for targets has advantages of high sensitivity, simplicity and low cost, therefore it has received more attention in recent years, especially for the rapid detection of small molecule chemicals present in foods, diagnostics and environments. However, limited by low molecular weight and only one antigenic determinant existed, immunoassays for these small molecule chemicals, namely hapten substances, were commonly performed in a competitive immunoassay format, whose sensitivities were obviously lower than the sandwich enzyme-linked immunosorbent assay generally adaptable for the protein targets. In order to break through the bottleneck of detection format, researchers have designed and established several novel noncompetitive immunoassays for the haptens in the past few years. In this review, we focused on the four representative types of noncompetitive immunoassay formats and described their characteristics and applications in rapid detection of small molecules. Meanwhile, a systematic discussion on the current technologies challenges and the possible solutions were also summarized. This review aims to provide an updated overview of the current state-of-the-art in noncompetitive immunoassay for small molecules, and inspire the development of novel designs for small molecule detection.
Collapse
Affiliation(s)
- Yi-Fan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jin-Yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Leonard E, Aller Pellitero M, Juelg B, Spangler JB, Arroyo-Currás N. Antibody-Invertase Fusion Protein Enables Quantitative Detection of SARS-CoV-2 Antibodies Using Widely Available Glucometers. J Am Chem Soc 2022; 144:11226-11237. [PMID: 35675509 PMCID: PMC9199438 DOI: 10.1021/jacs.2c02537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 01/02/2023]
Abstract
Rapid diagnostics that can accurately inform patients of disease risk and protection are critical to mitigating the spread of the current COVID-19 pandemic and future infectious disease outbreaks. To be effective, such diagnostics must rely on simple, cost-effective, and widely available equipment and should be compatible with existing telehealth infrastructure to facilitate data access and remote care. Commercial glucometers are an established detection technology that can overcome the cost, time, and trained personnel requirements of current benchtop-based antibody serology assays when paired with reporter molecules that catalyze glucose conversion. To this end, we developed an enzymatic reporter that, when bound to disease-specific patient antibodies, produces glucose in proportion to the level of antibodies present in the patient sample. Although a straightforward concept, the coupling of enzymatic reporters to secondary antibodies or antigens often results in low yields, indeterminant stoichiometry, reduced target binding, and poor catalytic efficiency. Our enzymatic reporter is a novel fusion protein that comprises an antihuman immunoglobulin G (IgG) antibody genetically fused to two invertase molecules. The resulting fusion protein retains the binding affinity and catalytic activity of the constituent proteins and serves as an accurate reporter for immunoassays. Using this fusion, we demonstrate quantitative glucometer-based measurement of anti-SARS-CoV-2 spike protein antibodies in blinded clinical sample training sets. Our results demonstrate the ability to detect SARS-CoV-2-specific IgGs in patient serum with precise agreement to benchmark commercial immunoassays. Because our fusion protein binds all human IgG isotypes, it represents a versatile tool for detection of disease-specific antibodies in a broad range of biomedical applications.
Collapse
Affiliation(s)
- Elissa
K. Leonard
- Department
of Biomedical Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States
- Translational
Tissue Engineering Center, Johns Hopkins
University School of Medicine, Baltimore, Maryland 21231, United States
| | - Miguel Aller Pellitero
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Boris Juelg
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Jamie B. Spangler
- Department
of Biomedical Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Translational
Tissue Engineering Center, Johns Hopkins
University School of Medicine, Baltimore, Maryland 21231, United States
- Department
of Oncology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United
States
- Bloomberg−Kimmel
Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer
Center Johns Hopkins University School of
Medicine, Baltimore, Maryland 21231, United
States
- Department
of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Netzahualcóyotl Arroyo-Currás
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Mills C, Campbell K. A new chapter for anti-idiotypes in low molecular weight compound immunoassays. Trends Biotechnol 2022; 40:1102-1120. [DOI: 10.1016/j.tibtech.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
|
5
|
Oyama H, Kiguchi Y, Morita I, Miyashita T, Ichimura A, Miyaoka H, Izumi A, Terasawa S, Osumi N, Tanaka H, Niwa T, Kobayashi N. NanoLuc luciferase as a suitable fusion partner of recombinant antibody fragments for developing sensitive luminescent immunoassays. Anal Chim Acta 2021; 1161:238180. [PMID: 33896564 DOI: 10.1016/j.aca.2020.12.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/27/2022]
Abstract
Enzyme-linked immunosorbent assays (ELISAs) are essential for monitoring various biomarkers. Competitive and noncompetitive (sandwich) assay formats are used to determine hapten and macromolecule levels, respectively. Both formats require more sensitive detection of reporter enzymes for greater assay sensitivities. We previously reported the utility of wild-type Gaussia luciferase (wtGLuc) as a fusion partner with antibody single-chain Fv fragments (scFvs) for developing sensitive luminescent ELISAs. Here, we evaluated utility of NanoLuc luciferase (NLuc), a recently developed luciferase, as fusion partner with scFvs from the view of comparison with wtGLuc and a mutant of alkaline phosphatase (ALP'). Thyroxine (T4) and T4-labeled albumin were chosen as model haptenic and macromolecular antigens, respectively. An in-house-prepared anti-T4 scFv was fused with NLuc, wtGLuc, or ALP'. The scFv-NLuc fusion protein showed 47-fold and 29-fold lower limit of detection [LOD; 59 zmol (per assay)] than the wtGLuc- and ALP'-fusions, respectively. In a competitive T4 ELISA, the NLuc-fusion showed 9.3- and 6.3-fold lower LOD, (0.67 pg) than the wtGLuc- and ALP'-fusions, respectively, with a higher specificity in clinical applications. A typical colorimetric ELISA using a peroxidase-labeled second antibody showed 70-fold higher LOD than NLuc-based ELISA. Another advantage of the NLuc-fusion was shown in the sandwich assays; the LOD of T4-labeled albumin (5.0 fmol) was >6-fold lower than that of the other luminescent ELISAs. In an additional sandwich assay developed to count bacteriophage particles, NLuc enabled more sensitive determination than wtGLuc, whereas ALP' showed nearly equivalent performance. Its slowest alteration rate for light intensity after starting the enzyme reaction should enable robust batch-by-batch assay operations. Thus, we concluded that scFv-NLuc fusions serve as suitable probes in various types of immunoassays and may facilitate higher sensitivities with practical specificities.
Collapse
Affiliation(s)
- Hiroyuki Oyama
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yuki Kiguchi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Izumi Morita
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Takayuki Miyashita
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Akiyoshi Ichimura
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroko Miyaoka
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Aki Izumi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Sayaka Terasawa
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Natsumi Osumi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroki Tanaka
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Toshifumi Niwa
- Department of Medical Technology, School of Health Sciences, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan.
| |
Collapse
|
6
|
Leivo J, Vehniäinen M, Lamminmäki U. Phage Display Selection of an Anti-Idiotype-Antibody with Broad-Specificity to Deoxynivalenol Mycotoxins. Toxins (Basel) 2020; 13:toxins13010018. [PMID: 33379255 PMCID: PMC7823383 DOI: 10.3390/toxins13010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
The use of synthetic antibody libraries and phage displays provides an efficient and robust method for the generation of antibodies against a wide range of targets with highly specific binding properties. As the in vitro selection conditions can be easily controlled, these methods enable the rapid generation of binders against difficult targets such as toxins and haptens. In this study, we used deoxynivalenol mycotoxin as a target to generate anti-idiotype-antibodies with unique binding properties from synthetic antibody libraries. The binding of the selected anti-idiotype antibodies can be efficiently inhibited with the addition of free isoforms of deoxynivalenol. The antibody was consecutively used to develop deoxynivalenol-specific ELISA and TRF-immunoassays, which can detect deoxynivalenol and two of the most common metabolic isoforms in the range of 78-115 ng/mL.
Collapse
Affiliation(s)
- Janne Leivo
- Department of Biochemistry, University of Turku, 20520 Turku, Finland;
- Correspondence: ; Tel.: +358-44-0555738
| | | | - Urpo Lamminmäki
- Department of Biochemistry, University of Turku, 20520 Turku, Finland;
| |
Collapse
|
7
|
Cheikhi A, Barchowsky A, Sahu A, Shinde SN, Pius A, Clemens ZJ, Li H, Kennedy CA, Hoeck JD, Franti M, Ambrosio F. Klotho: An Elephant in Aging Research. J Gerontol A Biol Sci Med Sci 2020; 74:1031-1042. [PMID: 30843026 DOI: 10.1093/gerona/glz061] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
The year 2017 marked the 20th anniversary of the first publication describing Klotho. This single protein was and is remarkable in that its absence in mice conferred an accelerated aging, or progeroid, phenotype with a dramatically shortened life span. On the other hand, genetic overexpression extended both health span and life span by an impressive 30%. Not only has Klotho deficiency been linked to a number of debilitating age-related illnesses but many subsequent reports have lent credence to the idea that Klotho can compress the period of morbidity and extend the life span of both model organisms and humans. This suggests that Klotho functions as an integrator of organ systems, making it both a promising tool for advancing our understanding of the biology of aging and an intriguing target for interventional studies. In this review, we highlight advances in our understanding of Klotho as well as key challenges that have somewhat limited our view, and thus translational potential, of this potent protein.
Collapse
Affiliation(s)
- Amin Cheikhi
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh.,Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh.,Department of Pharmacology and Chemical Biology, University of Pittsburgh
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh.,Department of Environmental and Occupational Health, University of Pittsburgh
| | - Sunita N Shinde
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Abish Pius
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Zachary J Clemens
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Hua Li
- Department of Biotherapeutics Discovery, Research Division, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, Connecticut
| | - Charles A Kennedy
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, Connecticut
| | - Joerg D Hoeck
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, Connecticut
| | - Michael Franti
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, Connecticut
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh.,Department of Environmental and Occupational Health, University of Pittsburgh.,Department of Bioengineering, University of Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Kale OE, Awodele O, Akindele AJ. Protective Effects of Acridocarpus smeathmannii (DC.) Guill. & Perr. Root Extract against Phenylhydrazine-Induced Haematotoxicity, Biochemical Changes, and Oxidative Stress in Rats. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419883243. [PMID: 35237044 PMCID: PMC8842322 DOI: 10.1177/1178626419883243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/24/2019] [Indexed: 11/18/2022]
Abstract
Several strategies for discovering drugs from unexplored natural products continue to strengthen research and development with current commercial evidence supporting their applications. We assessed the effects of the hydroethanolic extract of Acridocarpus smeathmannii root (HEASR) against phenylhydrazine (PHZ)-induced haematotoxicity, biochemical changes, and oxidative stress in male Wistar rats. Groups 1 and 2 controls received normal saline (10 mL/kg/day) and PHZ (60 mg/kg, day 4 and 5), respectively, via oral gavage. Groups 3, 4, and 5 were administered dexamethasone (DXM, 0.014 mg/kg/day, p.o.), HEASR1 (50 mg/kg/day, p.o.) and HEASR2 (200 mg/kg/day, p.o.), respectively. Groups 6, 7, and 8 received HEASR2 (200 mg/kg/day), DXM (0.014 mg/kg/day), or their combination, respectively, and further received PHZ (60 mg/kg/day) intervention on day 4 and 5 only. Treatments lasted for 7 days. Phenylhydrazine toxicity manifested as lowered haemoglobin, white blood cells, lymphocytes, red blood cells, and platelet levels by 45.86%, 53.47%, 75.69%, 46.89%, and 30.29%, respectively, in rats. This was accompanied by an increase in serum alanine (ALT; 108.25%) and aspartate (AST; 78.79%) aminotransferases, urea (84.36%), total cholesterol (81.55%), and triglycerides (123.42%) levels. Similarly, malondialdehyde levels and serum cyclooxygenase-2 activity were elevated (P < 0.05) in the rats liver and spleen, respectively. Just HEASR alone, or in combination with DXM, preserved haematological and biochemical parameters, cyclooxygenase-2 activity, and corticosterone levels during PHZ intoxication and restored renal histopathological alterations in rats. The HEASR was found to contain high flavonoid and phenolic phytochemicals and demonstrated better in vitro antioxidants inhibitory action.
Collapse
Affiliation(s)
- Oluwafemi Ezekiel Kale
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Pharmacology, Benjamin Carson School of Medicine, Babcock University, Ilishan-Remo, Nigeria
| | - Olufunsho Awodele
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abidemi James Akindele
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
9
|
Li Y, Zhang G, Mao X, Yang S, De Ruyck K, Wu Y. High sensitivity immunoassays for small molecule compounds detection – Novel noncompetitive immunoassay designs. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Morita I, Oyama H, Yasuo M, Matsuda K, Katagi K, Ito A, Tatsuda H, Tanaka H, Morimoto S, Kobayashi N. Antibody Fragments for On-Site Testing of Cannabinoids Generated via in Vitro Affinity Maturation. Biol Pharm Bull 2017; 40:174-181. [PMID: 28154257 DOI: 10.1248/bpb.b16-00669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Law enforcement against illicit use of cannabis and related substances requires rapid, feasible, and reliable tools for on-site testing of cannabinoids. Notably, methods based on cannabinoid-specific antibodies enable efficient screening of multiple specimens. Antibody engineering may accelerate development of modern and robust testing systems. Here, we used in vitro affinity maturation to generate a single-chain Fv fragment (scFv) that recognizes with high affinity the psychoactive cannabinoid, Δ9-tetrahydrocannabinol (THC). A mouse monoclonal antibody against THC, Ab-THC#33, with Ka 6.2×107 M-1 (as Fab fragment) was established by the hybridoma technique. Then, a "wild-type" scFv (wt-scFv) with Ka, 1.1×107 M-1 was prepared by bacterial expression of a fusion gene combining the VH and VL genes for Ab-THC#33. Subsequently, random point mutations in VH and VL were generated separately, and the resulting products were assembled into mutant scFv genes, which were then phage-displayed. Repeated panning identified a mutant scFv (scFv#m1-36) with 10-fold enhanced affinity (Ka 1.1×108 M-1) for THC, in which only a single conservative substitution (Ser50Thr) was present at the N-terminus of the VH-complementarity-determining region 2 (CDR2) sequence. In competitive enzyme-linked immunosorbent assay (ELISA), the mutant scFv generated dose-response curves with midpoint 0.27 ng/assay THC, which was 3-fold lower than that of wt-scFv. Even higher reactivity with a major THC metabolite, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol, indicated that the mutant scFv will be useful for testing not only THC in confiscated materials, but also the metabolite in urine. Indeed, the antibody fragment is potentially suitable for use in advanced on-site testing platforms for cannabinoids.
Collapse
|
11
|
Oyama H, Morita I, Kiguchi Y, Miyake S, Moriuchi A, Akisada T, Niwa T, Kobayashi N. Gaussia Luciferase as a Genetic Fusion Partner with Antibody Fragments for Sensitive Immunoassay Monitoring of Clinical Biomarkers. Anal Chem 2015; 87:12387-95. [DOI: 10.1021/acs.analchem.5b04015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hiroyuki Oyama
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku,
Kobe 658-8558, Japan
| | - Izumi Morita
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku,
Kobe 658-8558, Japan
| | - Yuki Kiguchi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku,
Kobe 658-8558, Japan
| | - Sayaka Miyake
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku,
Kobe 658-8558, Japan
| | - Ayaka Moriuchi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku,
Kobe 658-8558, Japan
| | - Tatsuki Akisada
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku,
Kobe 658-8558, Japan
| | - Toshifumi Niwa
- Department
of Medical Technology, School of Health Sciences, Tohoku University, 2-1,
Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku,
Kobe 658-8558, Japan
| |
Collapse
|
12
|
Yang S, Shang Y, Yin S, Wang D, Cai J, Gong Z, Serge M, Liu X. A phage-displayed single domain antibody fused to alkaline phosphatase for detection of porcine circovirus type 2. J Virol Methods 2015; 213:84-92. [DOI: 10.1016/j.jviromet.2014.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
|
13
|
Créminon C, Taran F. Enzyme immunoassays as screening tools for catalysts and reaction discovery. Chem Commun (Camb) 2015; 51:7996-8009. [DOI: 10.1039/c5cc00599j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article summarizes the development and use of immunoassay techniques (ELISA) as screening tools for fast identification of efficient catalysts in libraries and for the discovery of new chemical reactions.
Collapse
Affiliation(s)
| | - Frédéric Taran
- CEA
- iBiTecS
- Service de Chimie Bioorganique et de Marquage
- Gif sur Yvette
- France
| |
Collapse
|
14
|
Oyama H, Tanaka E, Kawanaka T, Morita I, Niwa T, Kobayashi N. Anti-Idiotype scFv–Enzyme Fusion Proteins: A Clonable Analyte-Mimicking Probe for Standardized Immunoassays Targeting Small Biomarkers. Anal Chem 2013; 85:11553-9. [DOI: 10.1021/ac402868f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroyuki Oyama
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Eri Tanaka
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Tomoyo Kawanaka
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Izumi Morita
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toshifumi Niwa
- Department
of Medical Technology, School of Health Sciences, Tohoku University, 2-1,
Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
15
|
Han D, Kim KB, Kim YR, Kim S, Kim HC, Lee J, Kim J, Chung TD. Electrokinetic concentration on a microfluidic chip using polyelectrolytic gel plugs for small molecule immunoassay. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Xue S, Li HP, Zhang JB, Liu JL, Hu ZQ, Gong AD, Huang T, Liao YC. Chicken single-chain antibody fused to alkaline phosphatase detects Aspergillus pathogens and their presence in natural samples by direct sandwich enzyme-linked immunosorbent assay. Anal Chem 2013; 85:10992-9. [PMID: 24128348 DOI: 10.1021/ac402608e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A sensitive and specific analytical method to detect ubiquitous aflatoxigenic Aspergillus pathogens is essential for monitoring and controlling aflatoxins. Four highly reactive chicken single-chain variable fragments (scFvs) against soluble cell wall proteins (SCWPs) from Aspergillus flavus were isolated by phage display. The scFv antibody AfSA4 displayed the highest activity toward both A. flavus and A. parasiticus and specifically recognized a surface target of their cell walls as revealed by immunofluorescence localization. Molecular modeling revealed a unique compact motif on the antibody surface mainly involving L-CDR2 and H-CDR3. As measured by surface plasmon resonance, AfSA4 fused to alkaline phosphatase had a higher binding capability and 6-fold higher affinity compared with AfSA4 alone. Immunoblot analyses showed that the fusion had good binding capacity to SCWP components from the two fungal species. Direct sandwich enzyme-linked immunosorbent assays with mouse antiaspergillus monoclonal antibody mAb2A8 generated in parallel as a capture antibody revealed that the detection limit of the two fungi was as low as 10(-3) μg/mL, 1000-fold more sensitive than that reported previously (1 μg/mL). The fusion protein was able to detect fungal concentrations below 1 μg/g of maize and peanut grains in both artificially and naturally contaminated samples, with at least 10-fold more sensitivity than that reported (10 μg/g) thus far. Thus, the fusion can be applied in rapid, simple, and specific diagnosis of Aspergillus contamination in field and stored food/feed commodities.
Collapse
Affiliation(s)
- Sheng Xue
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University , Wuhan 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Tang LJ, Jiang JH. Surface-Enhanced Raman Spectroscopy-Based, Homogeneous, Multiplexed Immunoassay with Antibody-Fragments-Decorated Gold Nanoparticles. Anal Chem 2013; 85:9213-20. [DOI: 10.1021/ac4019439] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
18
|
Oyama H, Yamaguchi S, Nakata S, Niwa T, Kobayashi N. “Breeding” Diagnostic Antibodies for Higher Assay Performance: A 250-Fold Affinity-Matured Antibody Mutant Targeting a Small Biomarker. Anal Chem 2013; 85:4930-7. [DOI: 10.1021/ac3037602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroyuki Oyama
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Shuko Yamaguchi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Shigetoshi Nakata
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toshifumi Niwa
- Department of Medical Technology, School of Health Sciences, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
19
|
Dai Z, Liu H, Shen Y, Su X, Xu Z, Sun Y, Zou X. Attomolar determination of coumaphos by electrochemical displacement immunoassay coupled with oligonucleotide sensing. Anal Chem 2012; 84:8157-63. [PMID: 22934793 DOI: 10.1021/ac301217s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Coumaphos, an organophosphorus pesticide (OP) used worldwide, has raised serious public concerns due to its positive association with major types of cancer. Herein, a novel method for attomolar coumaphos detection was developed on the basis of an electrochemical displacement immunoassay coupled with oligonucleotide sensing. An optimized displacement immunoassay was constructed to improve the binding efficiency of an antigen-antibody pair, and a guanine-rich single-strand DNA label, in combination with oligonucleotide sensing, was used to amplify the detection signal with "direct" relationship to the analyte. As a result, coumaphos was sensitively determined from the enhanced catalytic cycle of guanine-Ru(bpy)(3)(2+) by chronoamperometry. The limit of detection (LOD) was down to 0.18 ng L(-1) (S/N = 3), which is equal to 49.6 amol in a sample solution of 100 μL. In comparison with conventional methods, the proposed method has the lowest LOD and better accessibility to high-throughput sensing systems. Besides, it can complete the whole analysis process in under 50 min and exhibits good performance of excellent selectivity to the OPs. With regard to the advantages of rapidity, convenience, low cost, and ease of operation, the proposed method has provided a promising platform capable of fast and in-field OP detection, which may make the system promising for potential applications in the detection of other small molecules.
Collapse
Affiliation(s)
- Zong Dai
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | | | | | | | | | | | | |
Collapse
|
20
|
Kobayashi N, Odaka K, Uehara T, Imanaka-Yoshida K, Kato Y, Oyama H, Tadokoro H, Akizawa H, Tanada S, Hiroe M, Fukumura T, Komuro I, Arano Y, Yoshida T, Irie T. Toward in vivo imaging of heart disease using a radiolabeled single-chain Fv fragment targeting tenascin-C. Anal Chem 2011; 83:9123-30. [PMID: 22074352 DOI: 10.1021/ac202159p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibodies specific to a particular target molecule can be used as analytical reagents, not only for in vitro immunoassays but also for noninvasive in vivo imaging, e.g., immunoscintigraphies. In the latter case, it is important to reduce the size of antibody molecules in order to achieve suitable in vivo "diagnostic kinetics" and generate higher-resolution images. For these purposes, single-chain Fv fragments (scFvs; M(r) < 30 kDa) have greater potential than intact immunoglobulins (~150 kDa) or Fab (or Fab') fragments (~50 kDa). Our recent observation of enhanced tenascin-C (Tnc) expression at sites of cardiac repair after myocardial infarction prompted us to develop a radiolabeled scFv against Tnc for in vivo imaging of heart disease. We cloned the genes encoding the heavy and light chain variable domains of the mouse anti-Tnc monoclonal antibody 4F10, and combined them to create a single gene. The resulting scFv-4F10 gene was expressed in E. coli cells to produce soluble scFv proteins. scFv-4F10 has an affinity for Tnc (K(a) = 3.5 × 10(7) M(-1)), similar to the Fab fragment of antibody 4F10 (K(a) = 1.3 × 10(7) M(-1)) and high enough to be of practical use. A cysteine residue was then added to the C-terminus to achieve site-specific (111)In labeling via a chelating group. The resulting (111)In-labeled scFv was administered to a rat model of acute myocardial infarction. Biodistribution and quantitative autoradiographic studies indicated higher uptake of the radioactivity at the infarcted myocardium than the noninfarcted one. Single photon emission computed tomography (SPECT) provided in vivo cardiac images that coincided with the ex vivo observations. Our results will promote advances in diagnostic strategies for heart disease.
Collapse
Affiliation(s)
- Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fei YH, Liu D, Wu ZS, Shen GL, Yu RQ. DNA-Encoded Signal Conversion for Sensitive Microgravimetric Detection of Small Molecule–Protein Interaction. Bioconjug Chem 2011; 22:2369-76. [DOI: 10.1021/bc200086c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yue-Hua Fei
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, Chemistry and Chemical Engineering College, Hunan University, Changsha 410082, P R China
- Science College of Hunan Agricultural University, Changsha 410128, PR
China
| | - Dengyou Liu
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, Chemistry and Chemical Engineering College, Hunan University, Changsha 410082, P R China
- Science College of Hunan Agricultural University, Changsha 410128, PR
China
| | - Zai-Sheng Wu
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, Chemistry and Chemical Engineering College, Hunan University, Changsha 410082, P R China
- Science College of Hunan Agricultural University, Changsha 410128, PR
China
| | - Guo-Li Shen
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, Chemistry and Chemical Engineering College, Hunan University, Changsha 410082, P R China
- Science College of Hunan Agricultural University, Changsha 410128, PR
China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, Chemistry and Chemical Engineering College, Hunan University, Changsha 410082, P R China
- Science College of Hunan Agricultural University, Changsha 410128, PR
China
| |
Collapse
|
22
|
Swain MD, Anderson GP, Serrano-González J, Liu JL, Zabetakis D, Goldman ER. Immunodiagnostic reagents using llama single domain antibody–alkaline phosphatase fusion proteins. Anal Biochem 2011; 417:188-94. [DOI: 10.1016/j.ab.2011.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/02/2011] [Accepted: 06/08/2011] [Indexed: 01/22/2023]
|
23
|
Fodey T, Leonard P, O’Mahony J, O’Kennedy R, Danaher M. Developments in the production of biological and synthetic binders for immunoassay and sensor-based detection of small molecules. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2010.10.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
HE J, LIANG Y, FAN MT, LIU XJ. Preparation of Anti-idiotype Antibodies of O,O-Dimethyl Organophosphorus Pesticides by Phage Display Technology. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2011. [DOI: 10.1016/s1872-2040(10)60415-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Kobayashi N, Oyama H. Antibody engineering toward high-sensitivity high-throughput immunosensing of small molecules. Analyst 2011; 136:642-51. [DOI: 10.1039/c0an00603c] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
HE J, FAN MT, LIANG Y, LIU XJ. Application of Anti-idiotype Antibody in Small Molecules Immunoassay. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60068-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Kobayashi N, Oyama H, Kato Y, Goto J, Söderlind E, Borrebaeck CAK. Two-step in vitro antibody affinity maturation enables estradiol-17beta assays with more than 10-fold higher sensitivity. Anal Chem 2010; 82:1027-38. [PMID: 20047279 DOI: 10.1021/ac902283n] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immunoassays for haptens depend on competitive hapten-anti-hapten reactions, and consequently their sensitivities are significantly influenced by the affinities of anti-hapten antibodies. Thus, genetically engineered antibodies, which have much higher affinities than native antibodies, should increase assay sensitivities. Here, we created a mutated single-chain Fv fragment (scFv) against estradiol-17beta (E(2)) that allowed immunoassays with a much improved sensitivity. Two steps of affinity maturation were performed on a "wild-type" scFv (scFv#E4-4) composed of V(H) and V(L) domains from a mouse anti-E(2) antibody (Ab#E4-4). First, we conducted complementarity-determining region (CDR)-targeted mutagenesis by "CDR-shuffling". Gene fragments encoding CDRs H2, H3, L1, and L3, each of which contained random point mutations, were combined by "shuffling" into the gene encoding the scFv#E4-4 scaffold. After phage display and repeated panning, we isolated a mutated scFv clone [scFv#m1-e7; Ile(L29)Val] that had 5-fold higher affinity (K(a) = 2.6 x 10(8) M(-1)) compared to the Ab#E4-4 Fab fragment (Fab#E4-4). Next, the entire V(H) and V(L) of this clone were randomly mutated by error-prone polymerase chain reaction (PCR). From this library, we found an improved clone, scFv#m2-c4 (K(a) = 6.3 x 10(8) M(-1); Lys(H19)Arg, Tyr(H56)Phe, Ser(H84)Pro, Glu(H85)Gly, Gln(L27)Arg, Leu(L36)Met, Ser(L63)Gly, and Ser(L77)Gly). ScFv#m2-c4 had more than 10-fold higher sensitivity (the midpoint of its dose-response curve was 0.56 ng) than Fab#E4-4 (midpoint 9.0 ng/assay) in a competitive E(2) radioimmunoassay, and even higher sensitivity [midpoint 21 pg/assay, and a limit of detection of 0.47 pg (1.7 fmol)/assay] in a competitive enzyme-linked immunosorbent assay. Cross-reactivity with selected E(2)-related endogenous steroids strongly suggested that scFv#m2-c4 has improved specificity compared to conventional antibodies.
Collapse
Affiliation(s)
- Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Kobayashi N, Oyama H, Suzuki I, Kato Y, Umemura T, Goto J. Oligosaccharide-Assisted Direct Immunosensing of Small Molecules. Anal Chem 2010; 82:4333-6. [DOI: 10.1021/ac100865p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60, Nakaorui-machi, Takasaki, 370-0033, Japan, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan, and Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroyuki Oyama
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60, Nakaorui-machi, Takasaki, 370-0033, Japan, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan, and Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Iwao Suzuki
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60, Nakaorui-machi, Takasaki, 370-0033, Japan, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan, and Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yoshinori Kato
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60, Nakaorui-machi, Takasaki, 370-0033, Japan, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan, and Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Takeo Umemura
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60, Nakaorui-machi, Takasaki, 370-0033, Japan, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan, and Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Junichi Goto
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60, Nakaorui-machi, Takasaki, 370-0033, Japan, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan, and Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
29
|
Quinton J, Charruault L, Nevers MC, Volland H, Dognon JP, Créminon C, Taran F. Toward the Limits of Sandwich Immunoassay of Very Low Molecular Weight Molecules. Anal Chem 2010; 82:2536-40. [DOI: 10.1021/ac100058f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Ihara M, Suzuki T, Kobayashi N, Goto J, Ueda H. Open-sandwich enzyme immunoassay for one-step noncompetitive detection of corticosteroid 11-deoxycortisol. Anal Chem 2010; 81:8298-304. [PMID: 19778030 DOI: 10.1021/ac900700a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A noncompetitive immunoassay has the potential for improved sensitivity and working range compared with corresponding competitive assays. However, monovalent antigens with less than 1000 in molecular weight are not susceptible to sandwich assays due to their small size. As a noncompetitive immunoassay that can be performed with a clone of an antibody, an open-sandwich immunoassay (OS-IA) based on the antigen-dependent stabilization of the antibody variable region (V(H) + V(L)) was applied to the quantification of 11-deoxycortisol (11-DC; M(r) 346.5), a corticosteroid serving as a diagnostic index for pituitary-adrenal function, as a model target hapten. By one step OS-IA detection of enzyme-labeled V(H) fragment bound to immobilized V(L) in the presence of sample in microplate wells, 11-DC was measured with a femtomolar detection limit and the working range was wider than that with corresponding competitive assay. In addition, the selectivity against analogues was found almost identical to that of conventional assays. The effect of the mutagenesis of a V(H) residue at the V(H)/V(L) interface to reduce background signal was also shown, implying the wider application of OS-IA in small molecule analyses.
Collapse
Affiliation(s)
- Masaki Ihara
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | |
Collapse
|
31
|
Kobayashi N, Oyama H, Nakano M, Kanda T, Banzono E, Kato Y, Karibe T, Nishio T, Goto J. "Cleavable" hapten-biotin conjugates: preparation and use for the generation of anti-steroid single-domain antibody fragments. Anal Biochem 2009; 387:257-66. [PMID: 19454256 DOI: 10.1016/j.ab.2009.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 12/29/2008] [Accepted: 01/07/2009] [Indexed: 11/16/2022]
Abstract
Antibody engineering technology has the potential to provide artificial antibodies with higher performance than conventional antibodies. Filamentous phage particles are often used to express a vast diversity of mutated antibody fragments from which clones displaying improved fragments can be isolated. We recently showed that hapten-biotin conjugates, combined via a linker involving a reductively cleavable disulfide bond, are useful for isolating phage clones displaying high-affinity anti-hapten antibody fragments. Here we prepare cleavable hapten-biotin conjugates and use them to isolate anti-hapten antibody fragments with relatively low affinities. Three diagnostically important steroids (estradiol-17beta [E(2)], cortisol, and 17alpha-hydroxyprogesterone) were each coupled with a biotin derivative containing a disulfide bond. These conjugates could be bound simultaneously by their relevant anti-steroid antibody and NeutrAvidin, and their linkers were easily cleaved by dithiothreitol (DTT) treatment. The E(2)-biotin conjugate was used to generate anti-E(2) single-domain antibody fragments (sdAbs). Random point mutations were introduced by error-prone PCR into the gene fragment encoding the V(H) domain of a mouse anti-E(2) antibody, and these products were expressed as phagemid particles that were reacted with the E(2)-biotin conjugates that had already been immobilized on a solid-phase via NeutrAvidin. Thorough washing off of nonspecific phages and subsequent DTT treatment provided a phagemid clone that displayed a mutated sdAb with improved binding properties.
Collapse
|
32
|
Kobayashi N, Kato Y, Oyama H, Taga S, Niwa T, Sun P, Ohtoyo M, Goto J. Anti-estradiol-17beta single-chain Fv fragments: Generation, characterization, gene randomization, and optimized phage display. Steroids 2008; 73:1485-99. [PMID: 18824188 DOI: 10.1016/j.steroids.2008.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 11/29/2022]
Abstract
A single-chain Fv fragment (scFv) against estradiol-17beta (E(2)) was generated to begin the construction of a library of various mutated anti-steroid antibodies with an improved affinity and/or specificity. A hybridoma clone secreting a specific anti-E(2) antibody (Ab#E4-4) was established by the cell fusion using splenocytes from a mouse immunized with an immunogenic E(2)-carrier conjugate. DNA fragments encoding the variable heavy and light domains (V(H) and V(L)) of the Ab#E4-4 were cloned and combined to give the scFv gene fragment encoding the sequence 5'-V(H)-(GGGGS)(3)-V(L)-3'. Compared to the Ab#E4-4 Fab fragment, soluble scFv (scFv#E4-4) protein showed a similar affinity to E(2) (K(a)=8.6x10(7)M(-1)) and a similar cross-reaction profile. To further study the fundamentals for creating a comprehensive library of mutated scFvs, the scFvV(H) and V(L) genes were amplified using error-prone PCR conditions and the frequency and pattern of incorporated mutations were investigated. For this, regular Taq polymerase was used in the presence of unequal concentrations of dNTPs. At 1.0mM MnCl(2), the error frequency reached to 8.5% and 11% for the V(H) and V(L) respectively, although a significant transition/transversion bias was observed. ScFv#E4-4 and the mutated polyclonal scFvs were then displayed on filamentous phage under various packaging conditions. Cultivation of the transformed bacteria was more suitable at 25 degrees C than at higher temperatures for the packaging of scFv-bearing phagemid particles. Based on these experimental conditions, an scFv-displaying phage library, each scFv member in which has mutated complementarity-determining region (CDR) H2, H3, L1, and L3, was constructed. A soluble scFv clone (scFv#m1-e7) with a mutated amino acid (I-->V) in CDR L1, isolated from this library, showed threefold higher affinity (K(a)=2.6 x 10(8)M(-1)) than that of scFv#4-4.
Collapse
Affiliation(s)
- Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yuan J, Oliver R, Aguilar MI, Wu Y. Surface Plasmon Resonance Assay for Chloramphenicol. Anal Chem 2008; 80:8329-33. [PMID: 18837517 DOI: 10.1021/ac801301p] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Yuan
- Biosensors and Biomeasurement, The Horticulture and Food Research Institute of New Zealand, HortResearch Ruakura, Private Bag 3123, Waikato Mail Centre, Hamilton, New Zealand, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Richard Oliver
- Biosensors and Biomeasurement, The Horticulture and Food Research Institute of New Zealand, HortResearch Ruakura, Private Bag 3123, Waikato Mail Centre, Hamilton, New Zealand, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Marie-Isabel Aguilar
- Biosensors and Biomeasurement, The Horticulture and Food Research Institute of New Zealand, HortResearch Ruakura, Private Bag 3123, Waikato Mail Centre, Hamilton, New Zealand, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Yinqiu Wu
- Biosensors and Biomeasurement, The Horticulture and Food Research Institute of New Zealand, HortResearch Ruakura, Private Bag 3123, Waikato Mail Centre, Hamilton, New Zealand, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
34
|
Huang Y, Nie XM, Gan SL, Jiang JH, Shen GL, Yu RQ. Electrochemical immunosensor of platelet-derived growth factor with aptamer-primed polymerase amplification. Anal Biochem 2008; 382:16-22. [PMID: 18675245 DOI: 10.1016/j.ab.2008.07.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/07/2008] [Accepted: 07/09/2008] [Indexed: 11/18/2022]
Abstract
A new method for the determination of platelet-derived growth factor BB (PDGF-BB) was developed using an electrochemical immunosensor with an aptamer-primed, long-strand circular detection probe. Rabbit anti-human PDGF-B polyclonal antibody was immobilized on the electrode to serve as the capture antibody. The detection probe was synthesized via polymerase extension along a single-stranded circular plasmid DNA template with a primer headed by the anti-PDGF-B aptamer. In the presence of the analyte, the aptamer-primed circular probe was captured on the electrode via the formation of an antibody/PDGF-BB/aptamer sandwiched complex. The electroactivity indicator methylene blue was adsorbed on the electrode surface via the analyte-sandwiched complex with long-strand circular DNA, thus yielding a strong electrochemical signal for the quantification of PDGF-BB. This strategy allowed electrochemical detection with enormous signal amplification arising from the long-strand localized circular probe. The oxidation peak current of methylene blue in square wave voltammetric measurements showed a linear dependence on the concentration of PDGF-BB in the range from 50 to 500 ng mL(-1), with a detection limit as low as 18 pg mL(-1).
Collapse
Affiliation(s)
- Yong Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | | | | | | | | | | |
Collapse
|
35
|
Lim SL, Ichinose H, Shinoda T, Ueda H. Noncompetitive Detection of Low Molecular Weight Peptides by Open Sandwich Immunoassay. Anal Chem 2007; 79:6193-200. [PMID: 17636882 DOI: 10.1021/ac070653z] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small peptides with less than 1000 in molecular weight are not considered amenable to sandwich immunoassays due to their difficulty of simultaneous recognition by two antibodies. As an alternative, we attempted noncompetitive detection of small peptides by open sandwich enzyme-linked immunosorbent assay (OS-ELISA) utilizing the antigen-induced enhancement of antibody VH/VL interaction. Taking fragments of human osteocalcin (BGP), a major non-collagen peptide produced in bone, as model peptides, OS immunoassay was performed using the cloned VH and VL cDNAs from two anti-BGP monoclonal antibodies either recognizing the N- or C-terminal fragment, respectively. When the clones were used for OS-ELISA with immobilized VL fragment and phage-displayed VH fragment, enhanced VH/VL interaction upon BGP addition was observed. Especially the clone for the C-terminal fragment showed a superior detection limit as well as a wider working range than those of competitive assay. The result was reproduced with purified VH-alkaline phosphatase and MBP-VL fusion proteins, where the latter was directly immobilized onto the microplate wells. The minimum detectable fragment was the hexamer including the C-terminus. This simple approach with a single monoclonal antibody with a short measurement time may prove a useful tool in immunodiagnostics as well as in proteomics research.
Collapse
Affiliation(s)
- Shean-Lee Lim
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
36
|
Kobayashi N, Kato Y, Oyama H, Goto J. Antibody Engineering-Based Approach for Hapten Immunometric Assays with High Sensitivity. YAKUGAKU ZASSHI 2007; 127:55-69. [PMID: 17202785 DOI: 10.1248/yakushi.127.55] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The trace characterization of physiologically active substances with low molecular weight (e.g., steroids, catecholamines, prostaglandins, and oligopeptides), which are classified as "haptens", is an important subject in clinical analysis, and competitive immunoassays have conventionally been used for this purpose. However, the subfemtomole-range determination of haptens is very difficult, as the sensitivity of competitive immunoassays is essentially limited by the affinity of the anti-hapten antibodies that barely reaches the range of 10(11) (l/mol) as the affinity constant (K(a)). Although a noncompetitive "immunometric assay" format, the two-site immunometric assay (sandwich immunoassay), enables even subattomole-range measurements of macromolecules such as proteins, this principle can not be directly applied to haptens, as their low molecular mass prohibits simultaneous binding by two antibody molecules. To overcome such limitations, we are required either to create artificial antibodies showing ultrahigh affinity to haptens by protein engineering of antibody molecules ("antibody engineering") or establishment of novel immunometric assay formats applicable to haptens. This review surveys the background and recent approach for subfemtomole-range determination of haptens using novel immunometric assay methods. Our studies for the development of hapten immunometric assays are also described.
Collapse
|
37
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|