1
|
Sreedasyam R, Wilson BG, Ferrandez PR, Botvinick EL, Venugopalan V. An optical system for cellular mechanostimulation in 3D hydrogels. Acta Biomater 2024:S1742-7061(24)00578-6. [PMID: 39368720 DOI: 10.1016/j.actbio.2024.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
We introduce a method utilizing single laser-generated cavitation bubbles to stimulate cellular mechanotransduction in dermal fibroblasts embedded within 3D hydrogels. We demonstrate that fibroblasts embedded in either amorphous or fibrillar hydrogels engage in Ca2+ signaling following exposure to an impulsive mechanical stimulus provided by a single 250 µm diameter laser-generated cavitation bubble. We find that the spatial extent of the cellular signaling is larger for cells embedded within a fibrous collagen hydrogel as compared to those embedded within an amorphous polyvinyl alcohol polymer (SLO-PVA) hydrogel. Additionally, for fibroblasts embedded in collagen, we find an increased range of cellular mechanosensitivity for cells that are polarized relative to the radial axis as compared to the circumferential axis. By contrast, fibroblasts embedded within SLO-PVA did not display orientation-dependent mechanosensitivity. Fibroblasts embedded in hydrogels and cultured in calcium-free media did not show cavitation-induced mechanotransduction; implicating calcium signaling based on transmembrane Ca2+ transport. This study demonstrates the utility of single laser-generated cavitation bubbles to provide local non-invasive impulsive mechanical stimuli within 3D hydrogel tissue models with concurrent imaging using optical microscopy. STATEMENT OF SIGNIFICANCE: Currently, there are limited methods for the non-invasive real-time assessment of cellular sensitivity to mechanical stimuli within 3D tissue scaffolds. We describe an original approach that utilizes a pulsed laser microbeam within a standard laser scanning microscope system to generate single cavitation bubbles to provide impulsive mechanostimulation to cells within 3D fibrillar and amorphous hydrogels. Using this technique, we measure the cellular mechanosensitivity of primary human dermal fibroblasts embedded in amorphous and fibrillar hydrogels, thereby providing a useful method to examine cellular mechanotransduction in 3D biomaterials. Moreover, the implementation of our method within a standard optical microscope makes it suitable for broad adoption by cellular mechanotransduction researchers and opens the possibility of high-throughput evaluation of biomaterials with respect to cellular mechanosignaling.
Collapse
Affiliation(s)
- Rahul Sreedasyam
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States
| | - Bryce G Wilson
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697-2580, United States
| | - Patricia R Ferrandez
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States; Beckman Laser Institute, University of California Irvine, Irvine, CA 92697-3010, United States.
| | - Vasan Venugopalan
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States; Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697-2580, United States; Beckman Laser Institute, University of California Irvine, Irvine, CA 92697-3010, United States.
| |
Collapse
|
2
|
Xu H, Wang Z, Wei W, Li T, Duan X. Microfluidic confined acoustic streaming vortex for liposome synthesis. LAB ON A CHIP 2024; 24:2802-2810. [PMID: 38693825 DOI: 10.1039/d4lc00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Liposomes have garnered significant attention owing to their favorable characteristics as promising carriers. Microfluidic based hydrodynamic flow focusing, or micro-mixing approaches enable precise control of liposome size during their synthesis due to the comparable size scale. However, current microfluidic approaches still have issues such as high flow rate dependency, complex chip structures, and ease of clogging. Herein, we present a novel microfluidic platform for size-tunable liposome synthesis based on an ultra-high-frequency acoustic resonator. By designing the shape and orientation of the acoustic resonator in the three-phase laminar flow, it combined the features of both hydrodynamic flow focusing and rapid micro-mixing. The distribution of lipid precursor solution in laminar flow and the mixing conditions could be regulated by the confined acoustic streaming vortex. We successfully synthesize liposomes with adjustable sizes and narrow size distributions. Notably, this platform regulates the product size by adjusting only the input power, which is less dependent on the flow rate. Furthermore, the vortex-like fluid flow generated along the device edge effectively prevents precipitation due to excessive lipid concentration or contact with the wall.
Collapse
Affiliation(s)
- Huihui Xu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Zhaoxun Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Wei Wei
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Fu L, Wang J, Wang S, Zhang Z, Vogel A, Liang XX, Yao C. Secondary cavitation bubble dynamics during laser-induced bubble formation in a small container. OPTICS EXPRESS 2024; 32:9747-9766. [PMID: 38571201 DOI: 10.1364/oe.516264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
We investigated secondary cavitation bubble dynamics during laser-induced bubble formation in a small container with a partially confined free surface and elastic thin walls. We employed high-speed photography to record the dynamics of sub-mm-sized laser-induced bubbles and small secondary bubble clouds. Simultaneous light scattering and acoustic measurements were used to detect the oscillation times of laser-induced bubbles. We observed that the appearance of secondary bubbles coincides with a prolonged collapse phase and with re-oscillations of the laser-induced bubble. We observed an asymmetric distribution of secondary bubbles with a preference for the upstream side of the focus, an absence of secondary bubbles in the immediate vicinity of the laser focus, and a migration of laser-induced bubble toward secondary bubbles at large pulse energies. We found that secondary bubbles are created through heating of impurities to form initial nanobubble nuclei, which are further expanded by rarefaction waves. The rarefaction waves originate from the vibration of the elastic thin walls, which are excited either directly by laser-induced bubble or by bubble-excited liquid-mass oscillations. The oscillation period of thin walls and liquid-mass were Twall = 116 µs and Tlm ≈ 160 µs, respectively. While the amplitude of the wall vibrations increases monotonically with the size of laser-induced bubbles, the amplitude of liquid-mass oscillation undulates with increasing bubble size. This can be attributed to a phase shift between the laser-induced bubble oscillation and the liquid-mass oscillator. Mutual interactions between the laser-induced bubble and secondary bubbles reveal a fast-changing pressure gradient in the liquid. Our study provides a better understanding of laser-induced bubble dynamics in a partially confined environment, which is of practical importance for microfluidics and intraluminal laser surgery.
Collapse
|
4
|
Fu L, Liang XX, Wang S, Wang S, Wang P, Zhang Z, Wang J, Vogel A, Yao C. Laser induced spherical bubble dynamics in partially confined geometry with acoustic feedback from container walls. ULTRASONICS SONOCHEMISTRY 2023; 101:106664. [PMID: 37931344 PMCID: PMC10633529 DOI: 10.1016/j.ultsonch.2023.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
We investigated laser-induced cavitation dynamics in a small container with elastic thin walls and free or partially confined surface both experimentally and by numerical investigations. The cuvette was only 8-25 times larger than the bubble in its center. The liquid surface was either free, or two thirds were confined by a piston-shaped pressure transducer. Different degrees of confinement were realized by filling the liquid up to the transducer surface or to the top of the cuvette. For reference, some experiments were performed in free liquid. We recorded the bubble dynamics simultaneously by high-speed photography, acoustic measurements, and detection of probe beam scattering. Simultaneous single-shot recording of radius-time curves and oscillation times enabled to perform detailed investigations of the bubble dynamics as a function of bubble size, acoustic feedback from the elastic walls, and degree of surface confinement. The bubble dynamics was numerically simulated using a Rayleigh-Plesset model extended by terms describing the acoustically mediated feedback from the bubble's environment. Bubble oscillations were approximately spherical as long as no secondary cavitation by tensile stress occurred. Bubble expansion was always similar to the dynamics in free liquid, and the environment influenced mainly the collapse phase and subsequent oscillations. For large bubbles, strong confinement led to a slight reduction of maximum bubble size and to a pronounced reduction of the oscillation time, and both effects increased with bubble size. The joint action of breakdown-induced shock wave and bubble expansion excites cuvette wall vibrations, which produce alternating pressure waves that are focused onto the bubble. This results in a prolongation of the collapse phase and an enlargement of the second oscillation, or in time-delayed re-oscillations. The details of the bubble dynamics depend in a complex manner on the degree of surface confinement and on bubble size. Numerical simulations of the first bubble oscillation agreed well with experimental data. They suggest that the alternating rarefaction/compression waves from breakdown-induced wall vibrations cause a prolongation of the first oscillation. By contrast, liquid mass movement in the cuvette corners result in wall vibrations causing late re-oscillations. The strong and rich interaction between the bubble and its surroundings may be relevant for a variety of applications such as intraluminal laser surgery and laser-induced cavitation in microfluidics.
Collapse
Affiliation(s)
- Lei Fu
- Institute of Biomedical Photonics and Sensing, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi' an 710049, China; Institute of Biomedical Optics, University of Luebeck, 23562 Luebeck, Germany
| | - Xiao-Xuan Liang
- Institute of Biomedical Optics, University of Luebeck, 23562 Luebeck, Germany
| | - Sijia Wang
- Institute of Biomedical Photonics and Sensing, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi' an 710049, China
| | - Siqi Wang
- Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China
| | - Ping Wang
- Institute of Biomedical Photonics and Sensing, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi' an 710049, China; State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences, Xi'an 710119, Shaanxi, China
| | - Zhenxi Zhang
- Institute of Biomedical Photonics and Sensing, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi' an 710049, China
| | - Jing Wang
- Institute of Biomedical Photonics and Sensing, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi' an 710049, China
| | - Alfred Vogel
- Institute of Biomedical Optics, University of Luebeck, 23562 Luebeck, Germany.
| | - Cuiping Yao
- Institute of Biomedical Photonics and Sensing, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi' an 710049, China.
| |
Collapse
|
5
|
Torino S, Dhurandhar M, Stroobants A, Claessens R, Efremov RG. Time-resolved cryo-EM using a combination of droplet microfluidics with on-demand jetting. Nat Methods 2023; 20:1400-1408. [PMID: 37592181 DOI: 10.1038/s41592-023-01967-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/27/2023] [Indexed: 08/19/2023]
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) allows reconstruction of high-resolution structures of proteins in different conformations. Protein function often involves transient functional conformations, which can be resolved using time-resolved cryo-EM (trEM). In trEM, reactions are arrested after a defined delay time by rapid vitrification of protein solution on the EM grid. Despite the increasing interest in trEM among the cryo-EM community, making trEM samples with a time resolution below 100 ms remains challenging. Here we report the design and the realization of a time-resolved cryo-plunger that combines a droplet-based microfluidic mixer with a laser-induced generator of microjets that allows rapid reaction initiation and plunge-freezing of cryo-EM grids. Using this approach, a time resolution of 5 ms was achieved and the protein density map was reconstructed to a resolution of 2.1 Å. trEM experiments on GroEL:GroES chaperonin complex resolved the kinetics of the complex formation and visualized putative short-lived conformations of GroEL-ATP complex.
Collapse
Affiliation(s)
- Stefania Torino
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mugdha Dhurandhar
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annelore Stroobants
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raf Claessens
- Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
6
|
Liu Y, Yin Q, Luo Y, Huang Z, Cheng Q, Zhang W, Zhou B, Zhou Y, Ma Z. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves. ULTRASONICS SONOCHEMISTRY 2023; 96:106441. [PMID: 37216791 PMCID: PMC10213378 DOI: 10.1016/j.ultsonch.2023.106441] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Qiu Yin
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China
| | - Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China.
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Nagalingam N, Raghunathan A, Korede V, Overmars EF, Hung ST, Hartkamp R, Padding JT, Smith CS, Eral HB. Low-cost fluorescence microscope with microfluidic device fabrication for optofluidic applications. HARDWAREX 2023; 14:e00415. [PMID: 37078005 PMCID: PMC10106555 DOI: 10.1016/j.ohx.2023.e00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Optofluidic devices have revolutionized the manipulation and transportation of fluid at smaller length scales ranging from micrometers to millimeters. We describe a dedicated optical setup for studying laser-induced cavitation inside a microchannel. In a typical experiment, we use a tightly focused laser beam to locally evaporate the solution laced with a dye resulting in the formation of a microbubble. The evolving bubble interface is tracked using high-speed microscopy and digital image analysis. Furthermore, we extend this system to analyze fluid flow through fluorescence-Particle Image Velocimetry (PIV) technique with minimal adaptations. In addition, we demonstrate the protocols for the in-house fabrication of a microchannel tailored to function as a sample holder in this optical setup. In essence, we present a complete guide for constructing a fluorescence microscope from scratch using standard optical components with flexibility in the design and at a lower cost compared to its commercial analogues.
Collapse
Affiliation(s)
- Nagaraj Nagalingam
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Aswin Raghunathan
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Vikram Korede
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Edwin F.J. Overmars
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Shih-Te Hung
- Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Remco Hartkamp
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Johan T. Padding
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Carlas S. Smith
- Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Huseyin Burak Eral
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
8
|
Feng Y, Jia D, Yue H, Wang J, Song W, Li L, Zhang AM, Li S, Chang X, Zhou D. Breaking through Barriers: Ultrafast Microbullet Based on Cavitation Bubble. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207565. [PMID: 36732889 DOI: 10.1002/smll.202207565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/12/2023] [Indexed: 05/04/2023]
Abstract
Micromotors hold great promise for extensive practical applications such as those in biomedical domains and reservoir exploration. However, insufficient propulsion of the micromotor limits its application in crossing biological barriers and breaking reservoir boundaries. In this study, an ultrafast microbullet based on laser cavitation that can utilize the energy of a cavitation bubble and realize its own hurtling motion is reported. The experiments are performed using high-speed photography. A boundary integral method is adopted to reveal the motion mechanism of a polystyrene (PS)/magnetic nanoparticle (MNP) microbullet under the action of laser cavitation. Furthermore, the influence of certain factors (including laser intensity, microbullet size, and ambient temperature) on the motion of the microbullet was explored. For the PS/MNP microbullet driven by laser cavitation, the instantaneous velocity obtained can reach 5.23 m s-1 . This strategy of driving the PS/MNP microbullet provides strong penetration ability and targeted motion. It is believed that the reported propulsion mechanism opens up new possibilities for micromotors in a wide range of engineering applications.
Collapse
Affiliation(s)
- Yiwen Feng
- Key Laboratory of Microsystems and Microstructures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin, 150001, China
| | - Deli Jia
- Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Beijing, 100083, China
| | - Honger Yue
- Key Laboratory of Microsystems and Microstructures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin, 150001, China
| | - Jie Wang
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Wenping Song
- Key Laboratory of Microsystems and Microstructures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin, 150001, China
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing, 401151, China
| | - Longqiu Li
- Key Laboratory of Microsystems and Microstructures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin, 150001, China
| | - A-Man Zhang
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Shuai Li
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xiaocong Chang
- Key Laboratory of Microsystems and Microstructures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin, 150001, China
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing, 401151, China
| | - Dekai Zhou
- Key Laboratory of Microsystems and Microstructures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin, 150001, China
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing, 401151, China
| |
Collapse
|
9
|
Robles V, Gonzalez-Parra JC, Cuando-Espitia N, Aguilar G. The effect of scalable PDMS gas-entrapping microstructures on the dynamics of a single cavitation bubble. Sci Rep 2022; 12:20379. [DOI: 10.1038/s41598-022-24746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
AbstractThe effect of gas-entrapping polydimethylsiloxane (PDMS) microstructures on the dynamics of cavitation bubbles laser-induced next to the PDMS surface is investigated and compared against the cavitation dynamics next to a flat smooth boundary. Local pressure gradients produced by a cavitation bubble cause the air pockets entrapped in the PDMS microstructures to expand and oscillate, leading to a repulsion of the cavitation bubble. The microstructures were fabricated as boxed crevices via a simple and scalable laser ablation technique on cast acrylic, allowing for testing of variable structure sizes and reusable molds. The bubble dynamics were observed using high speed photography and the surrounding flows were visualized and quantified using particle tracking velocimetry. Smaller entrapped air pockets showed an enhanced ability to withstand deactivation at three stand-off distances and over 50 subsequent cavitation events. This investigation provides insight into the potential to direct the collapse of a cavitation bubble away from a surface to mitigate erosion or to enhance microfluidic mixing in low Reynolds number flows.
Collapse
|
10
|
Zablotsky DY, Mezulis A, Blums E, Maiorov MM. Optothermal grid activation of microflow with magnetic nanoparticle thermophoresis for microfluidics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200310. [PMID: 34974722 DOI: 10.1098/rsta.2020.0310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 06/14/2023]
Abstract
We report focused light-induced activation of intense magnetic microconvection mediated by suspended magnetic nanoparticles in microscale two-dimensional optothermal grids. Fully anisotropic control of microflow and mass transport fluxes is achieved by engaging the magnetic field along one or the other preferred directions. The effect is based on the recently described thermal diffusion-magnetomechanical coupling in synthetic magnetic nanofluids. We expect that the new phenomenon can be applied as an efficient all-optical mixing strategy in integrated microfluidic devices. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.
Collapse
Affiliation(s)
- D Y Zablotsky
- University of Latvia, Jelgavas 3, Riga 1004, Latvia
- Synthermion LLC, Deglava 126, Riga 1082, Latvia
| | - A Mezulis
- Institute of Solid State Physics, Kengaraga str. 8, Riga 1063, Latvia
| | - E Blums
- University of Latvia, Jelgavas 3, Riga 1004, Latvia
| | - M M Maiorov
- University of Latvia, Jelgavas 3, Riga 1004, Latvia
| |
Collapse
|
11
|
Ur Rehman A, Saleem MA, Liu T, Zhang K, Pitir F, Salamci MU. Influence of Silicon Carbide on Direct Powder Bed Selective Laser Process (Sintering/Melting) of Alumina. MATERIALS 2022; 15:ma15020637. [PMID: 35057354 PMCID: PMC8778824 DOI: 10.3390/ma15020637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023]
Abstract
The powder bed selective laser process (sintering/melting) has revolutionised many industries, including aerospace and biomedicine. However, PBSLP of ceramic remains a formidable challenge. Here, we present a unique slurry-based approach for fabricating high-strength ceramic components instead of traditional PBSLP. A special PBSLP platform capable of 1000 °C pre-heating was designed for this purpose. In this paper, PBSLP of Al2O3 was accomplished at different SiC loads up to 20 wt%. Several specimens on different laser powers (120 W to 225 W) were printed. When the SiC content was 10 wt% or more, the chemical interaction made it difficult to process. Severe melt pool disturbances led to poor sintering and melting. The structural analysis revealed that the micro-structure was significantly affected by the weight fraction of SiC. Interestingly, when the content was less than 2 wt%, it showed significant improvement in the microstructure during PBSLP and no effects of LPS or chemical interaction. Particularly, a crack pinning effect could be clearly seen at 0.5 wt%.
Collapse
Affiliation(s)
- Asif Ur Rehman
- ERMAKSAN, Bursa 16065, Turkey;
- Department of Mechanical Engineering, Gazi University, Ankara 06570, Turkey;
- Additive Manufacturing Technologies Research and Application Center-EKTAM, Gazi University, Ankara 06560, Turkey
- Correspondence: (A.U.R.); (T.L.); Tel.: +90-539-938-780-01 (A.U.R.); +86-138-130-848-95 (T.L.)
| | - Muhammad Ahsan Saleem
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (M.A.S.); (K.Z.)
| | - Tingting Liu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (M.A.S.); (K.Z.)
- Correspondence: (A.U.R.); (T.L.); Tel.: +90-539-938-780-01 (A.U.R.); +86-138-130-848-95 (T.L.)
| | - Kai Zhang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (M.A.S.); (K.Z.)
| | | | - Metin Uymaz Salamci
- Department of Mechanical Engineering, Gazi University, Ankara 06570, Turkey;
- Additive Manufacturing Technologies Research and Application Center-EKTAM, Gazi University, Ankara 06560, Turkey
- Manufacturing Technologies Center of Excellence-URTEMM A.S., Ankara 06560, Turkey
| |
Collapse
|
12
|
Bolze H, Riewe J, Bunjes H, Dietzel A, Burg TP. Continuous Production of Lipid Nanoparticles by Ultrasound‐Assisted Microfluidic Antisolvent Precipitation. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Holger Bolze
- Max-Planck Institute for Biophysical Chemisty Research Group Biological Micro- and Nanotechnology Am Fassberg 11 37077 Göttingen Germany
- Technische Universität Darmstadt Department of Electrical Engineering and Information Technology Merckstr. 25 64283 Darmstadt Germany
| | - Juliane Riewe
- Technische Universität Braunschweig Institut für Pharmazeutische Technologie und Biopharmazie Mendelssohnstr. 1 38106 Braunschweig Germany
- Technische Universität Braunschweig PVZ – Center of Pharmaceutical Engineering Franz-Liszt-Str. 35a 38106 Braunschweig Germany
| | - Heike Bunjes
- Technische Universität Braunschweig Institut für Pharmazeutische Technologie und Biopharmazie Mendelssohnstr. 1 38106 Braunschweig Germany
- Technische Universität Braunschweig PVZ – Center of Pharmaceutical Engineering Franz-Liszt-Str. 35a 38106 Braunschweig Germany
| | - Andreas Dietzel
- Technische Universität Braunschweig Institute of Microtechnology Alte Salzdahlumer Str. 203 38124 Braunschweig Germany
- Technische Universität Braunschweig PVZ – Center of Pharmaceutical Engineering Franz-Liszt-Str. 35a 38106 Braunschweig Germany
| | - Thomas P. Burg
- Max-Planck Institute for Biophysical Chemisty Research Group Biological Micro- and Nanotechnology Am Fassberg 11 37077 Göttingen Germany
- Technische Universität Darmstadt Department of Electrical Engineering and Information Technology Merckstr. 25 64283 Darmstadt Germany
- Technische Universität Darmstadt Centre for Synthetic Biology Rundeturmstraße 12 64283 Darmstadt Germany
| |
Collapse
|
13
|
Wang J, Li Y, Wang R, Han C, Xu S, You T, Li Y, Xia J, Xu X, Wang D, Tang H, Yang C, Chen X, Peng Z. A Fully Automated and Integrated Microfluidic System for Efficient CTC Detection and Its Application in Hepatocellular Carcinoma Screening and Prognosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30174-30186. [PMID: 34142547 DOI: 10.1021/acsami.1c06337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Analysis of circulating tumor cells (CTCs) is regarded as a useful diagnostic index to monitor tumor development and guide precision medicine. Although the immunoassay is a common strategy for CTC identification and heterogeneity characterization, it is challenged by poor reaction efficiency and laborious manipulations in microdevices, which hinder the sensitivity, throughput, simplification, and applicability. To meet the need for rapid, sensitive, and simple CTC analysis, we developed an efficient CTC detection system by integrating a 3D printed off-chip multisource reagent platform, a bubble retainer, and a single CTC capture microchip, which can achieve CTC capture and identification within 90 min. Compared with traditional CTC identification methods, this system decreases immunostaining time and antibody consumption by 90% and performs the on-chip immunoassay in a fully automated manner. Using this system, CTCs from the peripheral blood of 19 patients with various cancers were captured, detected, and compared with clinical data. The system shows great potential for early screening, real-time monitoring, and precision medicine for hepatocellular carcinoma (HCC). With the advantages of automation, stability, economy, and user-friendly operation, the proposed system is promising for clinical scenarios.
Collapse
Affiliation(s)
- Jie Wang
- Department of General Surgery, Department of Pathology, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Yang Li
- Department of General Surgery, Department of Pathology, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Rui Wang
- Department of General Surgery, Department of Pathology, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Chao Han
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20080, China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiquan Xu
- Department of General Surgery, Department of Pathology, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Tingting You
- Department of General Surgery, Department of Pathology, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Yuhuan Li
- Department of General Surgery, Department of Pathology, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongmei Wang
- Department of General Surgery, Department of Pathology, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Huamei Tang
- Department of General Surgery, Department of Pathology, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhihai Peng
- Department of General Surgery, Department of Pathology, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, School of Medicine, Xiamen University, Xiamen 361101, China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20080, China
| |
Collapse
|
14
|
Li Y, Liu X, Huang Q, Ohta AT, Arai T. Bubbles in microfluidics: an all-purpose tool for micromanipulation. LAB ON A CHIP 2021; 21:1016-1035. [PMID: 33538756 DOI: 10.1039/d0lc01173h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent decades, the integration of microfluidic devices and multiple actuation technologies at the microscale has greatly contributed to the progress of related fields. In particular, microbubbles are playing an increasingly important role in microfluidics because of their unique characteristics that lead to specific responses to different energy sources and gas-liquid interactions. Many effective and functional bubble-based micromanipulation strategies have been developed and improved, enabling various non-invasive, selective, and precise operations at the microscale. This review begins with a brief introduction of the morphological characteristics and formation of microbubbles. The theoretical foundations and working mechanisms of typical micromanipulations based on acoustic, thermodynamic, and chemical microbubbles in fluids are described. We critically review the extensive applications and the frontline advances of bubbles in microfluidics, including microflow patterns, position and orientation control, biomedical applications, and development of bubble-based microrobots. We lastly present an outlook to provide directions for the design and application of microbubble-based micromanipulation tools and attract the attention of relevant researchers to the enormous potential of microbubbles in microfluidics.
Collapse
Affiliation(s)
- Yuyang Li
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
15
|
WILSON BRYCEG, FAN ZHENKUN, SREEDASYAM RAHUL, BOTVINICK ELLIOT, VENUGOPALAN VASAN. Single-shot interferometric measurement of cavitation bubble dynamics. OPTICS LETTERS 2021; 46:1409-1412. [PMID: 33720199 PMCID: PMC9233925 DOI: 10.1364/ol.416923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/12/2021] [Indexed: 06/02/2023]
Abstract
We demonstrate an interferometric method to provide direct, single-shot measurements of cavitation bubble dynamics with nanoscale spatial and temporal resolution with results that closely match theoretical predictions. Implementation of this method reduces the need for expensive and complex ultra-high speed camera systems for the measurement of single cavitation events. This method can capture dynamics over large time intervals with sub-nanosecond temporal resolution and spatial precision surpassing the optical diffraction limit. We expect this method to have broad utility for examination of cavitation bubble dynamics, as well as for metrology applications such as optorheological materials characterization. This method provides an accurate approach for precise measurement of cavitation bubble dynamics suitable for metrology applications such as optorheological materials characterization.
Collapse
Affiliation(s)
- BRYCE G. WILSON
- Department of Chemical and Biomolecular Engineering,
University of California, Irvine, CA 92697-2580
| | - ZHENKUN FAN
- Department of Chemical and Biomolecular Engineering,
University of California, Irvine, CA 92697-2580
| | - RAHUL SREEDASYAM
- Department of Biomedical Engineering University of
California, Irvine, CA 92697-2715
| | - ELLIOT BOTVINICK
- Department of Biomedical Engineering University of
California, Irvine, CA 92697-2715
- Beckman Laser Institute and Medical Clinic, 1002 Health
Sciences Rd E, University of California, Irvine, CA 92697-3010
| | - VASAN VENUGOPALAN
- Department of Chemical and Biomolecular Engineering,
University of California, Irvine, CA 92697-2580
- Department of Biomedical Engineering University of
California, Irvine, CA 92697-2715
- Beckman Laser Institute and Medical Clinic, 1002 Health
Sciences Rd E, University of California, Irvine, CA 92697-3010
| |
Collapse
|
16
|
Gao Y, Wu M, Lin Y, Xu J. Trapping and control of bubbles in various microfluidic applications. LAB ON A CHIP 2020; 20:4512-4527. [PMID: 33232419 DOI: 10.1039/d0lc00906g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As a simple, clean and effective tool, micro bubbles have enabled advances in various lab on a chip (LOC) applications recently. In bubble-based microfluidic applications, techniques for capturing and controlling the bubbles play an important role. Here we review active and passive techniques for bubble trapping and control in microfluidic applications. The active techniques are categorized based on various types of external forces from optical, electric, acoustic, mechanical and thermal fields. The passive approaches depend on surface tension, focusing on optimization of microgeometry and modification of surface properties. We discuss control techniques of size, location and stability of microbubbles and show how these bubbles are employed in various applications. To finalize, by highlighting the advantages of these approaches along with the current challenges, we discuss the future prospects of bubble trapping and control in microfluidic applications.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, USA.
| | - Mengren Wu
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, USA.
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, USA
| | - Jie Xu
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
17
|
Plehiers PP, Coley CW, Gao H, Vermeire FH, Dobbelaere MR, Stevens CV, Van Geem KM, Green WH. Artificial Intelligence for Computer-Aided Synthesis In Flow: Analysis and Selection of Reaction Components. FRONTIERS IN CHEMICAL ENGINEERING 2020. [DOI: 10.3389/fceng.2020.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
18
|
Sun H, Ren Y, Tao Y, Jiang T, Jiang H. Three-Fluid Sequential Micromixing-Assisted Nanoparticle Synthesis Utilizing Alternating Current Electrothermal Flow. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Haizhen Sun
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| |
Collapse
|
19
|
Bachman H, Chen C, Rufo J, Zhao S, Yang S, Tian Z, Nama N, Huang PH, Huang TJ. An acoustofluidic device for efficient mixing over a wide range of flow rates. LAB ON A CHIP 2020; 20:1238-1248. [PMID: 32104816 PMCID: PMC7252412 DOI: 10.1039/c9lc01171d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Whether reagents and samples need to be combined to achieve a desired reaction, or precise concentrations of solutions need to be mixed and delivered downstream, thorough mixing remains a critical step in many microfluidics-based biological and chemical assays and analyses. To achieve complete mixing of fluids in microfluidic devices, researchers have utilized novel channel designs or active intervention to facilitate mass transport and exchange of fluids. However, many of these solutions have a major limitation: their design inherently limits their operational throughput; that is, different designs work at specific flow rates, whether that be low or high ranges, but have difficulties outside of their tailored design regimes. In this work, we present an acoustofluidic mixer that is capable of achieving efficient, thorough mixing across a broad range of flow rates (20-2000 μL min-1) using a single device. Our mixer combines active acoustofluidic mixing, which is responsible for mixing fluids at lower flow rates, with passive hydrodynamic mixing, which accounts for mixing fluids at higher flow rates. The mechanism, functionality, and performance of our acoustofluidic device are both numerically and experimentally validated. Additionally, the real-world potential of our device is demonstrated by synthesizing polymeric nanoparticles with comparable sizes over a two-order-of-magnitude wide range of flow rates. This device can be valuable in many biochemical, biological, and biomedical applications. For example, using our platform, one may synthesize nanoparticles/nanomaterials at lower flow rates to first identify optimal synthesis conditions without having to waste significant amounts of reagents, and then increase the flow rate to perform high-throughput synthesis using the optimal conditions, all using the same single device and maintaining performance.
Collapse
Affiliation(s)
- Hunter Bachman
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang T, Meng J, Li S, Yu C, Li J, Wei C, Dai S. A Microfluidic Concentration Gradient Maker with Tunable Concentration Profiles by Changing Feed Flow Rate Ratios. MICROMACHINES 2020; 11:E284. [PMID: 32164167 PMCID: PMC7142998 DOI: 10.3390/mi11030284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 01/14/2023]
Abstract
Microfluidic chips-in which chemical or biological fluid samples are mixed into linear or nonlinear concentration distribution profiles-have generated enormous enthusiasm of their ability to develop patterns for drug release and their potential toxicology applications. These microfluidic devices have untapped potential for varying concentration patterns by the use of one single device or by easy-to-operate procedures. To address this challenge, we developed a soft-lithography-fabricated microfluidic platform that enabled one single device to be used as a concentration maker, which could generate linear, bell-type, or even S-type concentration profiles by tuning the feed flow rate ratios of each independent inlet. Here, we present an FFRR (feed flow rate ratio) adjustment approach to generate tens of types of concentration gradient profiles with one single device. To demonstrate the advantages of this approach, we used a Christmas-tree-like microfluidic chip as the demo. Its performance was analyzed using numerical simulation models and experimental investigations, and it showed an excellent time response (~10 s). With on-demand flow rate ratios, the FFRR microfluidic device could be used for many lab-on-a-chip applications where flexible concentration profiles are required for analysis.
Collapse
Affiliation(s)
- Tao Zhang
- Hebei Key Laboratory of Robotic Sensing and Human-robot interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (T.Z.); (J.M.); (C.Y.); (C.W.)
| | - Jiyu Meng
- Hebei Key Laboratory of Robotic Sensing and Human-robot interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (T.Z.); (J.M.); (C.Y.); (C.W.)
| | - Shanshan Li
- Hebei Key Laboratory of Robotic Sensing and Human-robot interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (T.Z.); (J.M.); (C.Y.); (C.W.)
- National Key Laboratory of Reliability and Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Chengzhuang Yu
- Hebei Key Laboratory of Robotic Sensing and Human-robot interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (T.Z.); (J.M.); (C.Y.); (C.W.)
| | - Junwei Li
- Department of Computer Science and Electrical Engineering, Hebei University of Technology, Langfang 065000, China;
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Chunyang Wei
- Hebei Key Laboratory of Robotic Sensing and Human-robot interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (T.Z.); (J.M.); (C.Y.); (C.W.)
| | - Shijie Dai
- Hebei Key Laboratory of Robotic Sensing and Human-robot interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (T.Z.); (J.M.); (C.Y.); (C.W.)
| |
Collapse
|
21
|
Huyke DA, Ramachandran A, Oyarzun DI, Kroll T, DePonte DP, Santiago JG. On the competition between mixing rate and uniformity in a coaxial hydrodynamic focusing mixer. Anal Chim Acta 2020; 1103:1-10. [PMID: 32081173 DOI: 10.1016/j.aca.2020.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Fast microfluidic mixers for use with line-of-sight integrating detection schemes pose unique challenges. Such detectors typically cannot discriminate signal from slow moving (e.g. near internal walls) and fast-moving portions of the fluid stream. This convolves reaction rate dynamics with fluid flow residence time dynamics. Further, the small cross sections of typical three-dimensional hydrodynamic focusing devices lead to lower detection signals. The current study focuses on achieving both small time scales of mixing and homogenous residence times. This is achieved by injecting sample through a center capillary and hydrodynamically focusing using a sheath flow within a tapered second capillary. The current design also features a third, larger coaxial capillary. The mixed stream flows into the large cross-section of this third capillary to decelerate and expand the stream by up to 14-fold to improve line-of-sight signal strength of reaction products. Hydrodynamic focusing, mixing, and expansion are studied using analytical and numerical models and also studied experimentally using a fluorescein-iodide quenching reaction. The experimentally validated models are used to explore trade-offs between mixing rate and uniformity. For the first time, this work presents detailed analysis of the Lagrangian time history of species transport during mixing inside coaxial capillaries to measure mixing nonuniformity. The mixing region enables order 100 μs mixing times and residence time widths of the same order (140 μs).
Collapse
Affiliation(s)
- Diego A Huyke
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ashwin Ramachandran
- Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, 94305, USA
| | - Diego I Oyarzun
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Thomas Kroll
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Daniel P DePonte
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
22
|
Lim H, Back SM, Choi H, Nam J. Acoustic mixing in a dome-shaped chamber-based SAW (DC-SAW) device. LAB ON A CHIP 2020; 20:120-125. [PMID: 31723954 DOI: 10.1039/c9lc00820a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The use of an open droplet system for surface acoustic wave (SAW)-based applications has been limited by droplet instability at high input power. This study introduces a dome-shaped chamber-based SAW (DC-SAW) device for the first time, which can be fabricated simply using a single adhesive tape and a drop of ultraviolet-curable material without soft lithography processes. The dome-shaped chamber device with a contact angle of 68° enables the maximizing of the effect of SAW transmitted at a refraction angle of roughly 22°, negating the droplet instability. The DC-SAW device was applied to acoustic mixing to estimate its capability. Acoustic mixing of two different fluids (i.e., deionized water and fluorescent particle suspension) was demonstrated in the dome-shaped chamber device. Moreover, the effect of flow rate and applied voltage on mixing performance was estimated. With the decreasing flow rate and increasing applied voltage, mixing performance was enhanced. At an applied voltage of 20 V, mixing indices were higher than 0.9 at a total flow rate of 300 μl min-1.
Collapse
Affiliation(s)
- Hyunjung Lim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.
| | - Seung Min Back
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Korea.
| | - Jeonghun Nam
- Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Korea University, Seoul, Korea. and Department of Emergency Medicine, College of Medicine, Korea University Guro Hospital, Korea University, Seoul, Korea
| |
Collapse
|
23
|
Guan Y, Sun B. Versatile Microfluidic Mixing Platform for High- and Low-Viscosity Liquids via Acoustic and Chemical Microbubbles. MICROMACHINES 2019; 10:mi10120854. [PMID: 31817508 PMCID: PMC6952768 DOI: 10.3390/mi10120854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 01/07/2023]
Abstract
Microfluidic mixers have been extensively studied due to their wide application in various fields, including clinical diagnosis and chemical research. In this paper, we demonstrate a mixing platform that can be used for low- and high-viscosity liquid mixing by integrating passive (utilizing the special circulating crossflow characteristics of a zigzag microstructure and cavitation surfaces at the zigzag corners) and active (adding an acoustic field to produce oscillating microbubbles) mixing methods. By exploring the relationship between the active and passive mixing methods, it was found that the microbubbles were more likely generated at the corners of the zigzag microchannel and achieved the best mixing efficiency with the acoustically generated microbubbles (compared with the straight channel). In addition, a higher mixing effect was achieved when the microchannel corner angle and frequency were 60° and 75 kHz, respectively. Meanwhile, the device also achieved an excellent mixing effect for high-viscosity fluids, such as glycerol (its viscosity was approximately 1000 times that of deionized (DI) water at 25 °C). The mixing time was less than 1 s, and the mixing efficiency was 0.95 in the experiment. Furthermore, a new microbubble generation method was demonstrated based on chemical reactions. A higher mixing efficiency (0.97) was achieved by combining the chemical and acoustic microbubble methods, which provides a new direction for future applications and is suitable for the needs of lab-on-a-chip (LOC) systems and point-of-care testing (POCT).
Collapse
|
24
|
Molefe L, Peters IR. Jet direction in bubble collapse within rectangular and triangular channels. Phys Rev E 2019; 100:063105. [PMID: 31962541 DOI: 10.1103/physreve.100.063105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 06/10/2023]
Abstract
A vapor bubble collapsing near a solid boundary in a liquid produces a liquid jet that points toward the boundary. The direction of this jet has been studied for boundaries such as flat planes and parallel walls enclosing a channel. Extending these investigations to enclosed polygonal boundaries, we experimentally measure jet direction for collapsing bubbles inside a square and an equilateral triangular channel. Following the method of Tagawa and Peters [Phys. Rev. Fluids 3, 081601 (2018)10.1103/PhysRevFluids.3.081601] for predicting the jet direction in corners, we model the bubble as a sink in a potential flow and demonstrate by experiment that analytical solutions accurately predict jet direction within an equilateral triangle and square. We further use the method to develop predictions for several other polygons, specifically, a rectangle, an isosceles right triangle, and a 30^{∘}-60^{∘}-90^{∘} right triangle.
Collapse
Affiliation(s)
- Lebo Molefe
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- The University of Chicago, Chicago, Illinois 60637, USA
| | - Ivo R Peters
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
25
|
Chu P, Finch J, Bournival G, Ata S, Hamlett C, Pugh RJ. A review of bubble break-up. Adv Colloid Interface Sci 2019; 270:108-122. [PMID: 31202129 DOI: 10.1016/j.cis.2019.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 02/05/2023]
Abstract
The coalescence and break-up of bubbles are important steps in many industrial processes. To date, most of the literature has been focussed on the coalescence process which has been studied using high speed cinematographic techniques. However, bubble break-up is equally important and requires further research. This review essentially details the break-up process and initially summarizes the different types of bubble deformation processes which lead to break-up. Break-up is considered in high and low turbulent (pseudo-static) conditions and the effect of fluctuations and shear forces on the break-up is reviewed. Different mechanisms of break-up are discussed including shearing-off, coalescence induced pitching and impact pinching following air entrapment. Also, the influence of bubble size, interfacial stability, and surfactant on break-up are reviewed and a summary of recent experimental techniques presented. Finally, the break-up process which occurs in micro-fluidics is summarized.
Collapse
Affiliation(s)
- Pengbo Chu
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec, Canada
| | - James Finch
- Department of Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec, Canada
| | - Ghislain Bournival
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Seher Ata
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Christopher Hamlett
- Department of Physics and Mathematics, Nottingham Trent University, Nottingham, UK
| | - Robert J Pugh
- Department of Physics and Mathematics, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
26
|
Pereiro I, Fomitcheva Khartchenko A, Petrini L, Kaigala GV. Nip the bubble in the bud: a guide to avoid gas nucleation in microfluidics. LAB ON A CHIP 2019; 19:2296-2314. [PMID: 31168556 DOI: 10.1039/c9lc00211a] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gas bubbles are almost a routine occurrence encountered by researchers working in the field of microfluidics. The spontaneous and unexpected nature of gas bubbles represents a major challenge for experimentalists and a stumbling block for the translation of microfluidic concepts to commercial products. This is a startling example of successful scientific results in the field overshadowing the practical hurdles of day-to-day usage. We however believe such hurdles can be overcome with a sound understanding of the underlying conditions that lead to bubble formation. In this tutorial, we focus on the two main conditions that result in bubble nucleation: surface nuclei and gas supersaturation in liquids. Key theoretical concepts such as Henry's law, Laplace pressure, the role of surface properties, nanobubbles and surfactants are presented along with a view of practical implementations that serve as preventive and curative measures. These considerations include not only microfluidic chip design and bubble traps but also often-overlooked conditions that regulate bubble formation, such as gas saturation under pressure or temperature gradients. Scenarios involving electrolysis, laser and acoustic cavitation or T-junction/co-flow geometries are also explored to provide the reader with a broader understanding on the topic. Interestingly, despite their often-disruptive nature, gas bubbles have also been cleverly utilized for certain practical applications, which we briefly review. We hope this tutorial will provide a reference guide in helping to deal with a familiar foe, the "bubble".
Collapse
Affiliation(s)
- Iago Pereiro
- IBM Research - Zurich, Säumerstrasse 4, Rüschlikon, CH-8803, Switzerland.
| | | | | | | |
Collapse
|
27
|
Wu JLY, Tellkamp F, Khajehpour M, Robertson WD, Miller RJD. Rapid mixing of colliding picoliter liquid droplets delivered through-space from piezoelectric-actuated pipettes characterized by time-resolved fluorescence monitoring. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:055109. [PMID: 31153275 DOI: 10.1063/1.5050270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Rapid mixing of aqueous solutions is a crucial first step to study the kinetics of fast biochemical reactions with high temporal resolution. Remarkable progress toward this goal has been made through the development of advanced stopped-flow mixing techniques resulting in reduced dead times, and thereby extending reaction monitoring capabilities to numerous biochemical systems. Concurrently, piezoelectric actuators for through-space liquid droplet sample delivery have also been applied in several experimental systems, providing discrete picoliter sample volume delivery and precision sample deposition onto a surface, free of confinement within microfluidic devices, tubing, or other physical constraints. Here, we characterize the inertial mixing kinetics of two aqueous droplets (130 pl) produced by piezoelectric-actuated pipettes, following droplet collision in free space and deposition on a surface in a proof of principle experiment. A time-resolved fluorescence system was developed to monitor the mixing and fluorescence quenching of 5-carboxytetramethylrhodamine (5-Tamra) and N-Bromosuccinimide, which we show to occur in less than 10 ms. In this respect, this methodology is unique in that it offers millisecond mixing capabilities for very small quantities of discrete sample volumes. Furthermore, the use of discrete droplets for sample delivery and mixing in free space provides potential advantages, including the elimination of the requirement for a physical construction as with microfluidic systems, and thereby makes possible and extends the experimental capabilities of many systems.
Collapse
Affiliation(s)
- Jamie L Y Wu
- Division of Engineering Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Friedjof Tellkamp
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 27761, Germany
| | - Mazdak Khajehpour
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Wesley D Robertson
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 27761, Germany
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 27761, Germany
| |
Collapse
|
28
|
Gold-implanted plasmonic quartz plate as a launch pad for laser-driven photoacoustic microfluidic pumps. Proc Natl Acad Sci U S A 2019; 116:6580-6585. [PMID: 30872482 PMCID: PMC6452654 DOI: 10.1073/pnas.1818911116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A revolutionary microfluidic pump is demonstrated; it has no moving parts and no electrical contacts. It consists of a quartz plate implanted by Au particles where every point on the plate can function as a micropump. The pump is driven by a laser beam and is based on the discovered principle of photoacoustic laser streaming. When a pulsed laser hits the plate, it is absorbed by Au nanoparticles that generate an ultrasound wave, which then drives the fluid via acoustic streaming. Because laser beams can be arbitrarily patterned and timed, the fluid can be controlled by laser in a fashion similar to musical water fountains. Such a laser-driven photoacoustic micropump will find wide applications in microfluidics and optofluidics. Enabled initially by the development of microelectromechanical systems, current microfluidic pumps still require advanced microfabrication techniques to create a variety of fluid-driving mechanisms. Here we report a generation of micropumps that involve no moving parts and microstructures. This micropump is based on a principle of photoacoustic laser streaming and is simply made of an Au-implanted plasmonic quartz plate. Under a pulsed laser excitation, any point on the plate can generate a directional long-lasting ultrasound wave which drives the fluid via acoustic streaming. Manipulating and programming laser beams can easily create a single pump, a moving pump, and multiple pumps. The underlying pumping mechanism of photoacoustic streaming is verified by high-speed imaging of the fluid motion after a single laser pulse. As many light-absorbing materials have been identified for efficient photoacoustic generation, photoacoustic micropumps can have diversity in their implementation. These laser-driven fabrication-free micropumps open up a generation of pumping technology and opportunities for easy integration and versatile microfluidic applications.
Collapse
|
29
|
Kauer M, Belova-Magri V, Cairós C, Linka G, Mettin R. High-speed imaging of ultrasound driven cavitation bubbles in blind and through holes. ULTRASONICS SONOCHEMISTRY 2018; 48:39-50. [PMID: 30080564 DOI: 10.1016/j.ultsonch.2018.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
The interest in application of ultrasonic cavitation for cleaning and surface treatment processes has increased greatly in the last decades. However, not much is known about the behavior of cavitation bubbles inside the microstructural features of the solid substrates. Here we report on an experimental study on dynamics of acoustically driven (38.5 kHz) cavitation bubbles inside the blind and through holes of PMMA plates by using high-speed imaging. Various diameters of blind (150, 200, 250 and 1000 µm) and through holes (200 and 1000 µm) were investigated. Gas bubbles are usually trapped in the holes during substrate immersion in the liquid thus preventing their complete wetting. We demonstrate that trapped gas can be successfully removed from the holes under ultrasound agitation. Besides the primary Bjerknes force and acoustic streaming, the shape oscillations of the trapped gas bubble seem to be a driving force for bubble removal out of the holes. We further discuss the bubble dynamics inside microholes for water and Cu2+ salt solution. It is found that the hole diameter and partly the type of liquid media influences the number, size and dynamics of the cavitation bubbles. The experiments also showed that a large amount of the liquid volume inside the holes can be displaced within one acoustic cycle by the expansion of the cavitation bubbles. This confirmed that ultrasound is a very effective tool to intensify liquid exchange processes, and it might significantly improve micro mixing in small structures. The investigation of the effect of ultrasound power on the bubble density distribution revealed the possibility to control the cavitation bubble distribution inside the microholes. At a high ultrasound power (31.5 W) we observed the highest bubble density at the hole entrances, while reducing the ultrasound power by a factor of ten shifted the bubble locations to the inner end of the blind holes or to the middle of the through holes.
Collapse
Affiliation(s)
- Markus Kauer
- Atotech Deutschland GmbH, Erasmusstraße 20, 10553 Berlin, Germany; Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | | | - Carlos Cairós
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Gerd Linka
- Atotech Deutschland GmbH, Erasmusstraße 20, 10553 Berlin, Germany
| | - Robert Mettin
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
30
|
Fu L, Wang S, Xin J, Wang S, Yao C, Zhang Z, Wang J. Experimental investigation on multiple breakdown in water induced by focused nanosecond laser. OPTICS EXPRESS 2018; 26:28560-28575. [PMID: 30470031 DOI: 10.1364/oe.26.028560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Multiple breakdowns in liquids still remains obscure for its complex, non-equilibrium and transient dynamic process. We introduced three methods, namely, plasma imaging, light-scattering technique, and acoustic detection, to measure the multiple breakdown in water induced by focused nanosecond laser pulses simultaneously. Our results showed that linear dependence existed among the cavitation-bubble lifetime, the far-field peak pressure of the initial shock wave, and the corresponding plasma volume. Such a relationship can be used to evaluate the ideal size and energy of each bubble during multiple breakdown. The major bubble lifetime was hardly affected by the inevitable coalescence of cavitation bubbles, thereby confirming the availability of light-scattering technique on the estimation of bubble size during multiple breakdown. Whereas, the strength of collapse-shock-wave and the subsequent rebound of bubbles was strongly influenced, i.e., the occurrence of multiple breakdown suppressed the cavitation-bubble energy being converted into collapse-shock-wave energy but enhanced conversion into rebound-bubble energy. This study is a valuable contribution to research on the rapid mixing of microfluidics, damage control of microsurgery, and photoacoustic applications.
Collapse
|
31
|
He X, Xu Q, Chen R, Zhu X, Liao Q, Ye D, Zhang B, Jiao L, Li W. IR laser induced phase change behaviors of the NaCl solution in the microchannel. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Li J, Zhao F, Deng Y, Liu D, Chen CH, Shih WC. Photothermal generation of programmable microbubble array on nanoporous gold disks. OPTICS EXPRESS 2018; 26:16893-16902. [PMID: 30119508 DOI: 10.1364/oe.26.016893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/04/2018] [Indexed: 05/25/2023]
Abstract
We present a novel technique to generate microbubbles photothermally by continuous-wave laser irradiation of nanoporous gold disk (NPGD) array covered microfluidic channels. When a single laser spot is focused on the NPGDs, a microbubble can be generated with controlled size by adjusting the laser power. The dynamics of both bubble growth and shrinkage are studied. Using computer-generated holography on a spatial light modulator (SLM), simultaneous generation of multiple microbubbles at arbitrary locations with independent control is demonstrated. A potential application of flow manipulation is demonstrated using a microfluidic X-shaped junction. The advantages of this technique are flexible bubble generation locations, long bubble lifetimes, no need for light-adsorbing dyes, high controllability over bubble size, and relatively lower power consumption.
Collapse
|
33
|
Sharbatian A, Abedini A, Qi Z, Sinton D. Full Characterization of CO2–Oil Properties On-Chip: Solubility, Diffusivity, Extraction Pressure, Miscibility, and Contact Angle. Anal Chem 2018; 90:2461-2467. [DOI: 10.1021/acs.analchem.7b05358] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atena Sharbatian
- Department of Mechanical
and Industrial Engineering and Institute for Sustainable Energy, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Ali Abedini
- Department of Mechanical
and Industrial Engineering and Institute for Sustainable Energy, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - ZhenBang Qi
- Department of Mechanical
and Industrial Engineering and Institute for Sustainable Energy, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - David Sinton
- Department of Mechanical
and Industrial Engineering and Institute for Sustainable Energy, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
34
|
Bachman H, Huang PH, Zhao S, Yang S, Zhang P, Fu H, Huang TJ. Acoustofluidic devices controlled by cell phones. LAB ON A CHIP 2018; 18:433-441. [PMID: 29302660 PMCID: PMC5989538 DOI: 10.1039/c7lc01222e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Acoustofluidic devices have continuously demonstrated their potential to impact medical diagnostics and lab-on-a-chip applications. To bring these technologies to real-world applications, they must be made more accessible to end users. Herein, we report on the effort to provide an easy-to-use and portable system for controlling sharp-edge-based acoustofluidic devices. With the use of a cell phone and a modified Bluetooth® speaker, on-demand and hands-free pumping and mixing are achieved. Additionally, a novel design for a sharp-edge-based acoustofluidic device is proposed that combines both pumping and mixing functions into a single device, thus removing the need for external equipment typically needed to accomplish these two tasks. These applications serve to demonstrate the potential function that acoustofluidic devices can provide in point-of-care platforms. To further this point-of-care goal, we also design a portable microscope that combines with the cell phone and Bluetooth® power supply, providing a completely transportable acoustofluidic testing station. This work serves to bolster the promising position that acoustofluidic devices have within the rapidly changing research and diagnostics fields.
Collapse
Affiliation(s)
- Hunter Bachman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Pradhan S, Keller KA, Sperduto JL, Slater JH. Fundamentals of Laser-Based Hydrogel Degradation and Applications in Cell and Tissue Engineering. Adv Healthc Mater 2017; 6:10.1002/adhm.201700681. [PMID: 29065249 PMCID: PMC5797692 DOI: 10.1002/adhm.201700681] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/13/2017] [Indexed: 12/24/2022]
Abstract
The cell and tissue engineering fields have profited immensely through the implementation of highly structured biomaterials. The development and implementation of advanced biofabrication techniques have established new avenues for generating biomimetic scaffolds for a multitude of cell and tissue engineering applications. Among these, laser-based degradation of biomaterials is implemented to achieve user-directed features and functionalities within biomimetic scaffolds. This review offers an overview of the physical mechanisms that govern laser-material interactions and specifically, laser-hydrogel interactions. The influences of both laser and material properties on efficient, high-resolution hydrogel degradation are discussed and the current application space in cell and tissue engineering is reviewed. This review aims to acquaint readers with the capability and uses of laser-based degradation of biomaterials, so that it may be easily and widely adopted.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
| | - Keely A. Keller
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| |
Collapse
|
36
|
Liu W, Ren Y, Tao Y, Yao B, Li Y. Simulation analysis of rectifying microfluidic mixing with field-effect-tunable electrothermal induced flow. Electrophoresis 2017; 39:779-793. [DOI: 10.1002/elps.201700234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Weiyu Liu
- School of Electronics and Control Engineering; Chang'an University; Xi'an P. R. China
| | - Yukun Ren
- School of Mechatronics Engineering; Harbin Institute of Technology; Harbin P. R. China
- State Key Laboratory of Robotics and System; Harbin Institute of Technology; Harbin P. R. China
| | - Ye Tao
- School of Mechatronics Engineering; Harbin Institute of Technology; Harbin P. R. China
| | - Bobin Yao
- School of Electronics and Control Engineering; Chang'an University; Xi'an P. R. China
| | - You Li
- School of Electronics and Control Engineering; Chang'an University; Xi'an P. R. China
| |
Collapse
|
37
|
Wang Y, Zhang Q, Zhu Z, Lin F, Deng J, Ku G, Dong S, Song S, Alam MK, Liu D, Wang Z, Bao J. Laser streaming: Turning a laser beam into a flow of liquid. SCIENCE ADVANCES 2017; 3:e1700555. [PMID: 28959726 PMCID: PMC5617372 DOI: 10.1126/sciadv.1700555] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/05/2017] [Indexed: 05/07/2023]
Abstract
Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Qiuhui Zhang
- Department of Electrical Information Engineering, Henan University of Engineering, Xinzheng, Henan 451191, China
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Zhuan Zhu
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Feng Lin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Jiangdong Deng
- Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138, USA
| | - Geng Ku
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Suchuan Dong
- Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
| | - Shuo Song
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Md Kamrul Alam
- Materials Science and Engineering, University of Houston, Houston, TX 77204, USA
| | - Dong Liu
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jiming Bao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
- Materials Science and Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
38
|
Dai L, Jiao N, Wang X, Liu L. A Micromanipulator and Transporter Based on Vibrating Bubbles in an Open Chip Environment. MICROMACHINES 2017. [PMCID: PMC6189831 DOI: 10.3390/mi8040130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel micromanipulation technique of multi-objectives based on vibrating bubbles in an open chip environment is described in this paper. Bubbles were created in an aqueous medium by the thermal energy converted from a laser. When the piezoelectric stack fixed under the chip vibrated the bubbles, micro-objects (microparticles, cells, etc.) rapidly moved towards the bubbles. Results from numerical simulation demonstrate that convective flow around the bubbles can provide forces to capture objects. Since bubbles can be generated at arbitrary destinations in the open chip environment, they can act as both micromanipulators and transporters. As a result, micro- and bio-objects could be collected and transported effectively as masses in the open chip environment. This makes it possible for scientific instruments, such as atomic force microscopy (AFM) and scanning ion conductive microscopy (SICM), to operate the micro-objects directly in an open chip environment.
Collapse
Affiliation(s)
- Liguo Dai
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 10016, China; (L.D.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 10016, China; (L.D.); (X.W.)
- Correspondence: (N.J.); (L.L.); Tel.: +86-24-2397-0540 (N.J.); +86-24-2397-0181 (L.L.)
| | - Xiaodong Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 10016, China; (L.D.); (X.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 10016, China; (L.D.); (X.W.)
- Correspondence: (N.J.); (L.L.); Tel.: +86-24-2397-0540 (N.J.); +86-24-2397-0181 (L.L.)
| |
Collapse
|
39
|
Song Y, Chen P, Chung MT, Nidetz R, Park Y, Liu Z, McHugh W, Cornell TT, Fu J, Kurabayashi K. AC Electroosmosis-Enhanced Nanoplasmofluidic Detection of Ultralow-Concentration Cytokine. NANO LETTERS 2017; 17:2374-2380. [PMID: 28296413 PMCID: PMC5487264 DOI: 10.1021/acs.nanolett.6b05313] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Label-free, nanoparticle-based plasmonic optical biosensing, combined with device miniaturization and microarray integration, has emerged as a promising approach for rapid, multiplexed biomolecular analysis. However, limited sensitivity prevents the wide use of such integrated label-free nanoplasmonic biosensors in clinical and life science applications where low-abundance biomolecule detection is needed. Here, we present a nanoplasmofluidic device integrated with microelectrodes for rapid, label-free analysis of a low-abundance cell signaling protein, detected by AC electroosmosis-enhanced localized surface plasmon resonance (ACE-LSPR) biofunctional nanoparticle imaging. The ACE-LSPR device is constructed using both bottom-up and top-down sensor fabrication methods, allowing the seamless integration of antibody-conjugated gold nanorod (AuNR) biosensor arrays with microelectrodes on the same microfluidic platform. Applying an AC voltage to microelectrodes while scanning the scattering light intensity variation of the AuNR biosensors results in significantly enhanced biosensing performance. The AC electroosmosis (ACEO) based enhancement of the biosensor performance enables rapid (5-15 min) quantification of IL-1β, a pro-inflammatory cytokine biomarker, with a sensitivity down to 158.5 fg/mL (9.1 fM) for spiked samples in PBS and 1 pg/mL (58 fM) for diluted human serum. Together with the optimized detection sensitivity and speed, our study presents the first critical step toward the application of nanoplasmonic biosensing technology to immune status monitoring guided by low-abundance cytokine measurement.
Collapse
Affiliation(s)
- Yujing Song
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, Alabama 36849, United States
| | - Meng Ting Chung
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert Nidetz
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Younggeun Park
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhenhui Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Walker McHugh
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy T. Cornell
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
- Corresponding Author:
| |
Collapse
|
40
|
Fluid Flow and Mixing Induced by AC Continuous Electrowetting of Liquid Metal Droplet. MICROMACHINES 2017. [PMCID: PMC6190310 DOI: 10.3390/mi8040119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, we proposed a novel design of a microfluidic mixer utilizing the amplified Marangoni chaotic advection induced by alternating current (AC) continuous electrowetting of a metal droplet situated in electrolyte solution, due to the linear and quadratic voltage-dependence of flow velocity at small or large voltages, respectively. Unlike previous researchers exploiting the unidirectional surface stress with direct current (DC) bias at droplet/medium interface for pumping of electrolytes where the resulting flow rate is linearly proportional to the field intensity, dominance of another kind of dipolar flow pattern caused by local Marangoni stress at the drop surface in a sufficiently intense AC electric field is demonstrated by both theoretical analysis and experimental observation, which exhibits a quadratic growth trend as a function of the applied voltage. The dipolar shear stress merely appears at larger voltages and greatly enhances the mixing performance by inducing chaotic advection between the neighboring laminar flow. The mixer design developed herein, on the basis of amplified Marangoni chaotic advection around a liquid metal droplet at larger AC voltages, has great potential for chemical reaction and microelectromechanical systems (MEMS) actuator applications because of generating high-throughput and excellent mixing performance at the same time.
Collapse
|
41
|
Lu M, Ozcelik A, Grigsby CL, Zhao Y, Guo F, Leong KW, Huang TJ. Microfluidic Hydrodynamic Focusing for Synthesis of Nanomaterials. NANO TODAY 2016; 11:778-792. [PMID: 30337950 PMCID: PMC6191180 DOI: 10.1016/j.nantod.2016.10.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microfluidics expands the synthetic space such as heat transfer, mass transport, and reagent consumption to conditions not easily achievable in conventional batch processes. Hydrodynamic focusing in particular enables the generation and study of complex engineered nanostructures and new materials systems. In this review, we present an overview of recent progress in the synthesis of nanostructures and microfibers using microfluidic hydrodynamic focusing techniques. Emphasis is placed on distinct designs of flow focusing methods and their associated mechanisms, as well as their applications in material synthesis, determination of reaction kinetics, and study of synthetic mechanisms.
Collapse
Affiliation(s)
- Mengqian Lu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Adem Ozcelik
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Christopher L Grigsby
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
- Departments of Biomedical Engineering, and Systems Biology, Columbia University, New York, New York, 10027, USA
| | - Yanhui Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
- Departments of Biomedical Engineering, and Systems Biology, Columbia University, New York, New York, 10027, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
42
|
Reuter F, Cairós C, Mettin R. Vortex dynamics of collapsing bubbles: Impact on the boundary layer measured by chronoamperometry. ULTRASONICS SONOCHEMISTRY 2016; 33:170-181. [PMID: 27245968 DOI: 10.1016/j.ultsonch.2016.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/22/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Cavitation bubbles collapsing in the vicinity to a solid substrate induce intense micro-convection at the solid. Here we study the transient near-wall flows generated by single collapsing bubbles by chronoamperometric measurements synchronously coupled with high-speed imaging. The individual bubbles are created at confined positions by a focused laser pulse. They reach a maximum expansion radius of approximately 425μm. Several stand-off distances to the flat solid boundary are investigated and all distances are chosen sufficiently large that no gas phase of the expanding and collapsing bubble touches the solid directly. With a microelectrode embedded into the substrate, the time-resolved perturbations in the liquid shear layer are probed by means of a chronoamperometric technique. The measurements of electric current are synchronized with high-speed imaging of the bubble dynamics. The perturbations of the near-wall layer are found to result mainly from ring vortices created by the jetting bubble. Other bubble induced flows, such as the jet and flows following the radial bubble oscillations are perceptible with this technique, but show a minor influence at the stand-off distances investigated.
Collapse
Affiliation(s)
- Fabian Reuter
- Christian Doppler Laboratory for Cavitation and Micro-Erosion, Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Carlos Cairós
- Christian Doppler Laboratory for Cavitation and Micro-Erosion, Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Robert Mettin
- Christian Doppler Laboratory for Cavitation and Micro-Erosion, Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
43
|
Chen R, He X, Zhu X, Liao Q, An L, Wang Z, Li S. Characteristics of the IR Laser Photothermally Induced Phase Change in Microchannels with Different Depths. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rong Chen
- Key
Laboratory of Low-Grade Energy Utilization Technologies and Systems,
Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute
of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Xuefeng He
- Key
Laboratory of Low-Grade Energy Utilization Technologies and Systems,
Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute
of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key
Laboratory of Low-Grade Energy Utilization Technologies and Systems,
Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute
of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key
Laboratory of Low-Grade Energy Utilization Technologies and Systems,
Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute
of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Liang An
- Department
of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhibin Wang
- Key
Laboratory of Low-Grade Energy Utilization Technologies and Systems,
Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute
of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Shuzhe Li
- Key
Laboratory of Low-Grade Energy Utilization Technologies and Systems,
Ministry of Education, Chongqing University, Chongqing 400030, China
- Institute
of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| |
Collapse
|
44
|
Radziuk D, Möhwald H. Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources. Chemphyschem 2016; 17:931-53. [DOI: 10.1002/cphc.201500960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Darya Radziuk
- Max-Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 D-14476 Potsdam, Science Park Golm Germany
| | - Helmuth Möhwald
- Max-Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 D-14476 Potsdam, Science Park Golm Germany
| |
Collapse
|
45
|
Xu Q, Chen R, Wang H, Zhu X, Liao Q, He X. IR laser induced meniscus evaporation from a microchannel. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Bezagu M, Arseniyadis S, Cossy J, Couture O, Tanter M, Monti F, Tabeling P. A fast and switchable microfluidic mixer based on ultrasound-induced vaporization of perfluorocarbon. LAB ON A CHIP 2015; 15:2025-2029. [PMID: 25778877 DOI: 10.1039/c5lc00247h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mixing two fluids together within a microfluidic device still remains a challenging operation today. In order to achieve this goal, a number of effective micromixers have been developed over the years based on the use of either passive or active systems. Typically, passive mixers require no external energy, are more robust, and are easy to manufacture albeit they are poorly flexible. Active mixers, on the other hand, rely on external disturbance and are thus more difficult to use but are proven to have greater efficacy. Here, we report a particularly effective, remotely induced and switchable microfluidic mixer, which relies on the concomitant use of ultrasound and a perfluorocarbon (PFC) phase, with the latter benefiting from its immiscibility with most fluids and its low boiling point. More specifically, our approach is based on localized vaporization of a PFC phase at the focal zone of a transducer leading to efficient mixing of two adjacent fluids. The results show that mixing occurs ~100 ms following the delivery of the acoustic pulse, while a laminar flow is re-established on roughly the same time scale. Overall, this method is simple and effective, does not require tailored channel geometries, is compatible with both hydrophilic and hydrophobic microfluidic systems, and is applicable to a wide range of Reynolds numbers (10(-4) < Re < 2.10(0)), and the PFC phase can be easily separated from the mixed phase at the end of the run.
Collapse
Affiliation(s)
- Marine Bezagu
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI) - ESPCI ParisTech/CNRS (UMR8231)/PSL* Research University, 10 rue Vauquelin, 75231 Paris Cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
47
|
A multi-functional bubble-based microfluidic system. Sci Rep 2015; 5:9942. [PMID: 25906043 PMCID: PMC4407724 DOI: 10.1038/srep09942] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/20/2015] [Indexed: 01/21/2023] Open
Abstract
Recently, the bubble-based systems have offered a new paradigm in microfluidics. Gas bubbles are highly flexible, controllable and barely mix with liquids, and thus can be used for the creation of reconfigurable microfluidic systems. In this work, a hydrodynamically actuated bubble-based microfluidic system is introduced. This system enables the precise movement of air bubbles via axillary feeder channels to alter the geometry of the main channel and consequently the flow characteristics of the system. Mixing of neighbouring streams is demonstrated by oscillating the bubble at desired displacements and frequencies. Flow control is achieved by pushing the bubble to partially or fully close the main channel. Patterning of suspended particles is also demonstrated by creating a large bubble along the sidewalls. Rigorous analytical and numerical calculations are presented to describe the operation of the system. The examples presented in this paper highlight the versatility of the developed bubble-based actuator for a variety of applications; thus providing a vision that can be expanded for future highly reconfigurable microfluidics.
Collapse
|
48
|
Nguyen P, Mohaddes D, Riordon J, Fadaei H, Lele P, Sinton D. Fast Fluorescence-Based Microfluidic Method for Measuring Minimum Miscibility Pressure of CO2 in Crude Oils. Anal Chem 2015; 87:3160-4. [DOI: 10.1021/ac5047856] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Phong Nguyen
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Danyal Mohaddes
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Jason Riordon
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Hossein Fadaei
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Pushan Lele
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - David Sinton
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
49
|
Ahmed D, Muddana HS, Lu M, French JB, Ozcelik A, Fang Y, Butler PJ, Benkovic SJ, Manz A, Huang TJ. Acoustofluidic chemical waveform generator and switch. Anal Chem 2014; 86:11803-10. [PMID: 25405550 PMCID: PMC4255676 DOI: 10.1021/ac5033676] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Eliciting a cellular response to a changing chemical microenvironment is central to many biological processes including gene expression, cell migration, differentiation, apoptosis, and intercellular signaling. The nature and scope of the response is highly dependent upon the spatiotemporal characteristics of the stimulus. To date, studies that investigate this phenomenon have been limited to digital (or step) chemical stimulation with little control over the temporal counterparts. Here, we demonstrate an acoustofluidic (i.e., fusion of acoustics and microfluidics) approach for generating programmable chemical waveforms that permits continuous modulation of the signal characteristics including the amplitude (i.e., sample concentration), shape, frequency, and duty cycle, with frequencies reaching up to 30 Hz. Furthermore, we show fast switching between multiple distinct stimuli, wherein the waveform of each stimulus is independently controlled. Using our device, we characterized the frequency-dependent activation and internalization of the β2-adrenergic receptor (β2-AR), a prototypic G-protein coupled receptor (GPCR), using epinephrine. The acoustofluidic-based programmable chemical waveform generation and switching method presented herein is expected to be a powerful tool for the investigation and characterization of the kinetics and other dynamic properties of many biological and biochemical processes.
Collapse
Affiliation(s)
- Daniel Ahmed
- Department of Engineering Science and Mechanics, ‡Biomedical Engineering, §Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim HT, Bae H, Zhang Z, Kusimo A, Yu M. Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater. BIOMICROFLUIDICS 2014; 8:054126. [PMID: 25538813 PMCID: PMC4224683 DOI: 10.1063/1.4900978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/22/2014] [Indexed: 05/20/2023]
Abstract
We present an optofluidic microvalve utilizing an embedded, surface plasmon-enhanced fiber optic microheater. The fiber optic microheater is formed by depositing a titanium thin film on the roughened end-face of a silica optical fiber that serves as a waveguide to deliver laser light to the titanium film. The nanoscale roughness at the titanium-silica interface enables strong light absorption enhancement in the titanium film through excitation of localized surface plasmons as well as facilitates bubble nucleation. Our experimental results show that due to the unique design of the fiber optic heater, the threshold laser power required to generate a bubble is greatly reduced and the bubble growth rate is significantly increased. By using the microvalve, stable vapor bubble generation in the microchannel is demonstrated, which does not require complex optical focusing and alignment. The generated vapor bubble is shown to successfully block a liquid flow channel with a size of 125 μm × 125 μm and a flow rate of ∼10 μl/min at ∼120 mW laser power.
Collapse
Affiliation(s)
- Hyun-Tae Kim
- Department of Mechanical Engineering, University of Maryland , College Park, Maryland 20742, USA
| | - Hyungdae Bae
- Department of Mechanical Engineering, University of Maryland , College Park, Maryland 20742, USA
| | - Zhijian Zhang
- Department of Mechanical Engineering, University of Maryland , College Park, Maryland 20742, USA
| | - Abisola Kusimo
- Department of Mechanical Engineering, University of Maryland , College Park, Maryland 20742, USA
| | - Miao Yu
- Department of Mechanical Engineering, University of Maryland , College Park, Maryland 20742, USA
| |
Collapse
|