1
|
Siljeström S, Neubeck A, Steele A. Detection of porphyrins in vertebrate fossils from the Messel and implications for organic preservation in the fossil record. PLoS One 2022; 17:e0269568. [PMID: 35767560 PMCID: PMC9242450 DOI: 10.1371/journal.pone.0269568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Organic molecules preserved in fossils provide a wealth of new information about ancient life. The discovery of almost unaltered complex organic molecules in well-preserved fossils raise the question of how common such occurrences are in the fossil record, how to differentiate between endogenous and exogenous sources for the organic matter and what promotes such preservation. The aim of this study was the in-situ analysis of a well-preserved vertebrate fossil from 48 Ma Eocene sediments in the Messel pit, Germany for preservation of complex biomolecules. The fossil was characterized using a variety of techniques including time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDX), x-ray diffraction (XRD) and Raman spectroscopy. A suite of organic molecules was detected, including porphyrins, which given the context of the detected signal are most probably diagenetically altered heme originating from the fossil though a microbial contribution cannot be completely ruled out. Diagenetic changes to the porphyrin structure were observed that included the exchange of the central iron by nickel. Further analyses on the geochemistry of the fossil and surrounding sediments showed presence of pyrite and aluminosilicates, most likely clay. In addition, a carbonate and calcium phosphate dominated crust has formed around the fossil. This suggests that several different processes are involved in the preservation of the fossil and the organic molecules associated with it. Similar processes seem to have also been involved in preservation of heme in fossils from other localities.
Collapse
Affiliation(s)
- Sandra Siljeström
- Department of Methodology, Textiles and Medical Technology, RISE Research Institutes of Sweden, Stockholm, Sweden
- * E-mail:
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Andrew Steele
- Carnegie Institution for Science, Earth and Planetary Laboratory, Washington, DC, United States of America
| |
Collapse
|
2
|
Georgiou R, Sahle CJ, Sokaras D, Bernard S, Bergmann U, Rueff JP, Bertrand L. X-ray Raman Scattering: A Hard X-ray Probe of Complex Organic Systems. Chem Rev 2022; 122:12977-13005. [PMID: 35737888 DOI: 10.1021/acs.chemrev.1c00953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper provides a review of the characterization of organic systems via X-ray Raman scattering (XRS) and a step-by-step guidance for its application. We present the fundamentals of XRS required to use the technique and discuss the main parameters of the experimental set-ups to optimize spectral and spatial resolution while maximizing signal-to-background ratio. We review applications that target the analysis of mixtures of organic compounds, the identification of minor spectral features, and the spatial discrimination in heterogeneous systems. We discuss the recent development of the direct tomography technique, which utilizes the XRS process as a contrast mechanism for assessing the three-dimensional spatially resolved carbon chemistry of complex organic materials. We conclude by exposing the current limitations and provide an outlook on how to overcome some of the existing challenges and advance future developments and applications of this powerful technique for complex organic systems.
Collapse
Affiliation(s)
- Rafaella Georgiou
- Université Paris-Saclay, CNRS, Ministère de la Culture, UVSQ, MNHN, IPANEMA, F-91192 Saint-Aubin, France.,Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France
| | | | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Sylvain Bernard
- Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, UMR 7590, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, 75005 Paris, France
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jean-Pascal Rueff
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France.,Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université, CNRS, 75005 Paris, France
| | - Loïc Bertrand
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Technical steps towards enhanced localization of proteins in cultural heritage samples by immunofluorescence microscopy and micro-reflectance imaging spectroscopy. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Bouvier C, Van Nuffel S, Walter P, Brunelle A. Time-of-flight secondary ion mass spectrometry imaging in cultural heritage: A focus on old paintings. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4803. [PMID: 34997666 DOI: 10.1002/jms.4803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging is a surface analysis technique that identifies and spatially resolves the chemical composition of a sample with a lateral resolution of less than 1 μm. Depth analyses can also be performed over thicknesses of several microns. In the case of a painting cross section, for example, TOF-SIMS can identify the organic composition, by detecting molecular ions and fragments of binders, as well as the mineral composition of most of the pigments. Importantly, the technique is almost not destructive and is therefore increasingly used in cultural heritage research such as the analysis of painting samples, especially old paintings. In this review, state of the art of TOF-SIMS analysis methods will be described with a particular focus on tuning the instruments for the analysis of painting cross sections and with several examples from the literature showing the added value of this technique when studying cultural heritage samples.
Collapse
Affiliation(s)
- Caroline Bouvier
- Sorbonne Université, CNRS, Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), Paris, France
| | - Sebastiaan Van Nuffel
- M4I, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands
| | - Philippe Walter
- Sorbonne Université, CNRS, Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), Paris, France
| | - Alain Brunelle
- Sorbonne Université, CNRS, Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), Paris, France
| |
Collapse
|
5
|
Granzotto C, Sutherland K, Goo YA, Aksamija A. Characterization of surface materials on African sculptures: new insights from a multi-analytical study including proteomics. Analyst 2021; 146:3305-3316. [PMID: 33999085 DOI: 10.1039/d1an00228g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Multiple analytical techniques were used to characterize materials from the surfaces of two African sculptures in the collection of the Art Institute of Chicago: a Bamana power object (boli), and a Yoruba wooden sculpture of a female figure. Surface accretions on objects such as these have received relatively little scientific attention to elucidate their composition and function, in part because they are made with complex mixtures of natural materials, which are often unfamiliar and poorly represented in the scientific literature on artists' materials. For this reason, a complement of techniques including Fourier transform infrared spectroscopy and pyrolysis gas chromatography mass spectrometry were applied, along with shotgun proteomics to better understand the nature and biological origin, down to the species level, of the proteinaceous materials. The results highlighted the presence of diverse materials including plant resins, oils, polysaccharides, and inorganic (clay or earth) compounds. In particular, mass spectrometry-based proteomics provided new insights on proteinaceous components, allowing us to identify the presence of sacrificial blood, and more specifically, blood from chicken, goat, sheep and dog. This new scientific evidence supports and supplements knowledge derived from curatorial and field work studies, and opens new doors to understanding the objects' significance and history of use.
Collapse
Affiliation(s)
| | | | - Young Ah Goo
- Proteomics Center of Excellence, Northwestern University, Chicago, IL, USA
| | - Amra Aksamija
- The Art Institute of Chicago, Chicago, IL, USA. and Center for Scientific Studies in the Arts, Northwestern University, Evanston, IL, USA
| |
Collapse
|
6
|
Ménez B, Pisapia C, Andreani M, Jamme F, Vanbellingen QP, Brunelle A, Richard L, Dumas P, Réfrégiers M. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 2018; 564:59-63. [PMID: 30405236 DOI: 10.1038/s41586-018-0684-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/12/2018] [Indexed: 11/09/2022]
Abstract
Abiotic hydrocarbons and carboxylic acids are known to be formed on Earth, notably during the hydrothermal alteration of mantle rocks. Although the abiotic formation of amino acids has been predicted both from experimental studies and thermodynamic calculations, its occurrence has not been demonstrated in terrestrial settings. Here, using a multimodal approach that combines high-resolution imaging techniques, we obtain evidence for the occurrence of aromatic amino acids formed abiotically and subsequently preserved at depth beneath the Atlantis Massif (Mid-Atlantic Ridge). These aromatic amino acids may have been formed through Friedel-Crafts reactions catalysed by an iron-rich saponite clay during a late alteration stage of the massif serpentinites. Demonstrating the potential of fluid-rock interactions in the oceanic lithosphere to generate amino acids abiotically gives credence to the hydrothermal theory for the origin of life, and may shed light on ancient metabolisms and the functioning of the present-day deep biosphere.
Collapse
Affiliation(s)
- Bénédicte Ménez
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France.
| | - Céline Pisapia
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France.,Synchrotron SOLEIL, Gif-sur-Yvette, France
| | - Muriel Andreani
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, UMR5276, ENS-Université Lyon I, Villeurbanne, France
| | | | - Quentin P Vanbellingen
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alain Brunelle
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Laurent Richard
- Nazarbayev University, School of Mining & Geosciences, Astana, Kazakhstan
| | - Paul Dumas
- Synchrotron SOLEIL, Gif-sur-Yvette, France
| | | |
Collapse
|
7
|
Analysis of the Myc-induced pancreatic β cell islet tumor microenvironment using imaging ToF-SIMS. Biointerphases 2018; 13:06D402. [PMID: 30153736 DOI: 10.1116/1.5038574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Solid tumors are a structurally complex system, composed of many different cell types. The tumor microenvironment includes nonmalignant cell types that participate in complex interactions with tumor cells. The cross talk between tumor and normal cells is implicated in regulating cell growth, metastatic potential, and chemotherapeutic drug resistance. A new approach is required to interrogate and quantitatively characterize cell to cell interactions in this complex environment. Here, the authors have applied time-of-flight secondary ion mass spectrometry (ToF-SIMS) to analyze Myc-induced pancreatic β cell islet tumors. The high mass resolution and micron spatial resolution of ToF-SIMS allows detection of metabolic intermediates such as lipids and amino acids. Employing multivariate analysis, specifically, principal component analysis, the authors show that it is possible to chemically distinguish cancerous islets from normal tissue, in addition to intratumor heterogeneity. These heterogeneities can then be imaged and investigated using another modality such as sum harmonic generation microscopy. Using these techniques with a specialized mouse model, the authors found significant metabolic changes occurring within β cell tumors and the surrounding tissues. Specific alterations of the lipid, amino acid, and nucleotide metabolism were observed, demonstrating that ToF-SIMS can be utilized to identify large-scale changes that occur in the tumor microenvironment and could thereby increase the understanding of tumor progression and the tumor microenvironment.
Collapse
|
8
|
Gueriau P, Rueff JP, Bernard S, Kaddissy JA, Goler S, Sahle CJ, Sokaras D, Wogelius RA, Manning PL, Bergmann U, Bertrand L. Noninvasive Synchrotron-Based X-ray Raman Scattering Discriminates Carbonaceous Compounds in Ancient and Historical Materials. Anal Chem 2017; 89:10819-10826. [DOI: 10.1021/acs.analchem.7b02202] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pierre Gueriau
- IPANEMA, CNRS, Ministère
de la Culture, UVSQ, Université Paris-Saclay, BP 48 Saint-Aubin, 91192 Gif-sur-Yvette, France
- Synchrotron SOLEIL, BP 48 Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Jean-Pascal Rueff
- Synchrotron SOLEIL, BP 48 Saint-Aubin, 91192 Gif-sur-Yvette, France
- Sorbonne Universités,
UPMC Université Paris 06, CNRS, UMR 7614, Laboratoire de Chimie
Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Sylvain Bernard
- IMPMC,
CNRS UMR
7590, Sorbonne Universités, MNHN, UPMC, IRD UMR 206, 61 rue Buffon, 75005 Paris, France
| | - Josiane A. Kaddissy
- IPANEMA, CNRS, Ministère
de la Culture, UVSQ, Université Paris-Saclay, BP 48 Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Sarah Goler
- Columbia
Nano Initiative, Columbia University, 530 West 120th Street, MC8903 1001
CEPSR, New York, New York 10027, United States
| | - Christoph J. Sahle
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Dimosthenis Sokaras
- Stanford PULSE Institute, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Roy A. Wogelius
- University of Manchester, School of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science & Interdisciplinary Centre for Ancient Life, Manchester M139PL, U.K
| | - Phillip L. Manning
- Department
of Geology and Environmental Geosciences, College of Charleston, 66 George Street, Charleston, South Carolina 29424, United States
- Department
of Earth and Environmental Sciences, University of Manchester, Oxford
Road, Manchester, M139PL, U.K
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Loïc Bertrand
- IPANEMA, CNRS, Ministère
de la Culture, UVSQ, Université Paris-Saclay, BP 48 Saint-Aubin, 91192 Gif-sur-Yvette, France
- Synchrotron SOLEIL, BP 48 Saint-Aubin, 91192 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Dallongeville S, Garnier N, Rolando C, Tokarski C. Proteins in Art, Archaeology, and Paleontology: From Detection to Identification. Chem Rev 2015; 116:2-79. [PMID: 26709533 DOI: 10.1021/acs.chemrev.5b00037] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sophie Dallongeville
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| | - Nicolas Garnier
- SARL Laboratoire Nicolas Garnier , 63270 Vic le Comte, France
| | - Christian Rolando
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| | - Caroline Tokarski
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
10
|
Vanbellingen QP, Elie N, Eller MJ, Della-Negra S, Touboul D, Brunelle A. Time-of-flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1187-95. [PMID: 26395603 PMCID: PMC5033000 DOI: 10.1002/rcm.7210] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 05/10/2023]
Abstract
RATIONALE In Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), pulsed and focused primary ion beams enable mass spectrometry imaging, a method which is particularly useful to map various small molecules such as lipids at the surface of biological samples. When using TOF-SIMS instruments, the focusing modes of the primary ion beam delivered by liquid metal ion guns can provide either a mass resolution of several thousand or a sub-µm lateral resolution, but the combination of both is generally not possible. METHODS With a TOF-SIMS setup, a delayed extraction applied to secondary ions has been studied extensively on rat cerebellum sections in order to compensate for the effect of long primary ion bunches. RESULTS The use of a delayed extraction has been proven to be an efficient solution leading to unique features, i.e. a mass resolution up to 10000 at m/z 385.4 combined with a lateral resolution of about 400 nm. Simulations of ion trajectories confirm the experimental determination of optimal delayed extraction and allow understanding of the behavior of ions as a function of their mass-to-charge ratio. CONCLUSIONS Although the use of a delayed extraction has been well known for many years and is very popular in MALDI, it is much less used in TOF-SIMS. Its full characterization now enables secondary ion images to be recorded in a single run with a submicron spatial resolution and with a mass resolution of several thousand. This improvement is very useful when analyzing lipids on tissue sections, or rare, precious, or very small size samples.
Collapse
Affiliation(s)
- Quentin P Vanbellingen
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Nicolas Elie
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Michael J Eller
- Institut de Physique Nucléaire, UMR8608, IN2P3-CNRS, Université Paris-Sud, 91406, Orsay, France
| | - Serge Della-Negra
- Institut de Physique Nucléaire, UMR8608, IN2P3-CNRS, Université Paris-Sud, 91406, Orsay, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Alain Brunelle
- Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
11
|
|
12
|
|
13
|
Tortora L, de Notaristefani F, Ioele M. ToF-SIMS investigation of gilt and painted leather: identification of indigo, oil binder and gold varnish. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- L. Tortora
- Department of Physics and Mathematics, Surface Analysis Laboratory; University of Rome “Roma Tre”; Via della Vasca Navale 84 00146 Rome Italy
- Department of Industrial Engineering; University of Rome “Tor Vergata”; Via del Politecnico 1 00133 Rome Italy
| | - F. de Notaristefani
- Department of Physics and Mathematics, Surface Analysis Laboratory; University of Rome “Roma Tre”; Via della Vasca Navale 84 00146 Rome Italy
| | - M. Ioele
- Istituto Superiore per la Conservazione ed il Restauro; Via di San Michele 23 00153 Rome Italy
| |
Collapse
|
14
|
Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito. Proc Natl Acad Sci U S A 2013; 110:18496-500. [PMID: 24127577 DOI: 10.1073/pnas.1310885110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although hematophagy is found in ~14,000 species of extant insects, the fossil record of blood-feeding insects is extremely poor and largely confined to specimens identified as hematophagic based on their taxonomic affinities with extant hematophagic insects; direct evidence of hematophagy is limited to four insect fossils in which trypanosomes and the malarial protozoan Plasmodium have been found. Here, we describe a blood-engorged mosquito from the Middle Eocene Kishenehn Formation in Montana. This unique specimen provided the opportunity to ask whether or not hemoglobin, or biomolecules derived from hemoglobin, were preserved in the fossilized blood meal. The abdomen of the fossil mosquito was shown to contain very high levels of iron, and mass spectrometry data provided a convincing identification of porphyrin molecules derived from the oxygen-carrying heme moiety of hemoglobin. These data confirm the existence of taphonomic conditions conducive to the preservation of biomolecules through deep time and support previous reports of the existence of heme-derived porphyrins in terrestrial fossils.
Collapse
|
15
|
Hortolà P. Human bloodstains on biological materials: high-vacuum scanning electron microscope examination using specimens without previous preparation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:415-419. [PMID: 23375087 DOI: 10.1017/s1431927612014183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Studies of human bloodstains on nonbiological materials have been previously carried out using a high-vacuum scanning electron microscope (HV-SEM) in secondary-electron mode without any sample treatment. To assess whether biological substrates can affect the morphology of human erythrocytes in bloodstains, three fragments of different biological material (bone, shell, and wood) were smeared with peripheral human blood. Afterward, the bloodstains were directly examined in secondary-electron mode by an HV-SEM following a procedure initially standardized to be used in uncoated human bloodstains on stone. The obtained results suggest that HV-SEM is suitable for examining untreated bloodstains on biological substrate and that the morphology of erythrocytes in human bloodstains is not affected by the biological nature of the substrate. A cautionary issue regarding bloodstains on nondehydrated biological substrates is that the waiting time required for initiating the HV-SEM examination is by far higher than when using inorganic bloodstain substrates.
Collapse
Affiliation(s)
- Policarp Hortolà
- Àrea de Prehistòria, Universitat Rovira i Virgili, Avinguda de Catalunya 35, ES-43002 Tarragona, Catalonia, Spain.
| |
Collapse
|
16
|
Fraser D, DeRoo CS, Cody RB, Armitage RA. Characterization of blood in an encrustation on an African mask: spectroscopic and direct analysis in real time mass spectrometric identification of haem. Analyst 2013; 138:4470-4. [DOI: 10.1039/c3an00633f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Hortolà P. MRT letter: Human bloodstains on antique aboriginal weapons: a guiding low-vacuum SEM study of erythrocytes in experimental samples on ethnographically documented biological raw materials. Microsc Res Tech 2012; 75:1007-11. [PMID: 22648991 DOI: 10.1002/jemt.22084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/07/2012] [Indexed: 11/08/2022]
Abstract
The aboriginal use of reed and bone as raw materials for knives and daggers, respectively, has been well-documented ethnographically in some geographical areas of Melanesia. Because of the significant role that these weapons played in inter- and intra-ethnic aggression, they can potentially have retained smears from the contact with human blood. To carry out a guiding low-vacuum scanning electron microscopy (SEM) study of specific interest to ethnography, the outsides of a fragment of stalk of giant cane (Arundo donax) and tibial diaphysis of domestic sheep (Ovis aries) were smeared with peripheral human blood. No biological specimen preparation was applied to the samples. After just over 1 month, bloodstain boundaries and their neighboring inner areas were examined via secondary electrons by a variable-pressure SEM (VP-SEM) working in low-vacuum mode. On both substrates, bloodstains exhibited micro-scales. No janocyte (erythrocyte negative replica) was observed in the examined areas. However, erythrocytes were seen crowded together as grain-shaped corpuscles in the smear on reed, and several hecatocytes (moon-like shaped erythrocytes) were evidenced in the smear on bone. The results of this study suggest that a VP-SEM working in low-vacuum mode can be used fruitfully to detect blood remains in medium-sized reed and bone antique aboriginal artifacts. This procedure can prospectively help to ethnographic museum curators and aboriginal-art surveyors as an easy guiding test in the valuation of antique traditional weapons prior to acquisition, when the real use of a piece has been claimed by the supplier.
Collapse
|
18
|
Farre B, Brunelle A, Laprévote O, Cuif JP, Williams CT, Dauphin Y. Shell layers of the black-lip pearl oyster Pinctada margaritifera: Matching microstructure and composition. Comp Biochem Physiol B Biochem Mol Biol 2011; 159:131-9. [DOI: 10.1016/j.cbpb.2011.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
|
19
|
Mazel V, Richardin P, Touboul D, Brunelle A, Richard C, Laval E, Walter P, Laprévote O. Animal urine as painting materials in African rock art revealed by cluster ToF-SIMS mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:944-950. [PMID: 20665601 DOI: 10.1002/jms.1789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The rock art site at the village of Songo in Mali is a very important Dogon ritual place where, since the end of the nineteenth century until today, takes place the ceremony of circumcision. During these ceremonies, paintings are performed on the walls of the shelter with mainly three colors: red, black and white. Ethnological literature mentions the use of animal urine of different species such as birds, lizards or snakes as a white pigment. Urine of these animals is mainly composed of uric acid or urate salts. In this article, time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to compare uric acid, snake urine and a sample of a white pigment of a Dogon painting coming from the rock art site of Songo. ToF-SIMS measurements in both positive and negative ion modes on reference compounds and snake urine proved useful for the study of uric acid and urate salts. This method enables to identify unambiguously these compounds owing to the detection in negative ion mode of the ion corresponding to the deprotonated molecule ([M-H](-) at m/z 167.01) and its fragment ions. Moreover, the mass spectra obtained in positive ion mode permit to differentiate uric acid and urate salts on the basis of specific ions. Applying this method to the Dogon white pigments sample, we show that the sample is entirely composed of uric acid. This proves for the first time, that animal urine was used as a pigment by the Dogon. The presence of uric acid instead of urate salts as normally expected in animal urine could be explained by the preparation of the pigment for its application on the stone.
Collapse
Affiliation(s)
- Vincent Mazel
- Laboratoire du Centre de Recherche et de Restauration des Musées de France (LC2RMF), CNRS UMR 171, Palais du Louvre, Porte des Lions, 14 quai François Mitterrand, 75001 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cotte M, Susini J, Dik J, Janssens K. Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. Acc Chem Res 2010; 43:705-14. [PMID: 20058906 DOI: 10.1021/ar900199m] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of analytical techniques augmented by the use of synchrotron radiation (SR), such as X-ray fluorescence (SR-XRF) and X-ray diffraction (SR-XRD), are now readily available, and they differ little, conceptually, from their common laboratory counterparts. Because of numerous advantages afforded by SR-based techniques over benchtop versions, however, SR methods have become popular with archaeologists, art historians, curators, and other researchers in the field of cultural heritage (CH). Although the CH community now commonly uses both SR-XRF and SR-XRD, the use of synchrotron-based X-ray absorption spectroscopy (SR-XAS) techniques remains marginal, mostly because CH specialists rarely interact with SR physicists. In this Account, we examine the basic principles and capabilities of XAS techniques in art preservation. XAS techniques offer a combination of features particularly well-suited for the chemical analysis of works of art. The methods are noninvasive, have low detection limits, afford high lateral resolution, and provide exceptional chemical sensitivity. These characteristics are highly desirable for the chemical characterization of precious, heterogeneous, and complex materials. In particular, the chemical mapping capability, with high spatial resolution that provides information about local composition and chemical states, even for trace elements, is a unique asset. The chemistry involved in both the object's history (that is, during fabrication) and future (that is, during preservation and restoration treatments) can be addressed by XAS. On the one hand, many studies seek to explain optical effects occurring in historical glasses or ceramics by probing the molecular environment of relevant chromophores. Hence, XAS can provide insight into craft skills that were mastered years, decades, or centuries ago but were lost over the course of time. On the other hand, XAS can also be used to characterize unwanted reactions, which are then considered alteration phenomena and can dramatically alter the object's original visual properties. In such cases, the bulk elemental composition is usually unchanged. Hence, monitoring oxidation state (or, more generally, other chemical modifications) can be of great importance. Recent applications of XAS in art conservation are reviewed and new trends are discussed, highlighting the value (and future possibilities) of XAS, which remains, given its potential, underutilized in the CH community.
Collapse
Affiliation(s)
- Marine Cotte
- Laboratoire du Centre de Recherche et de Restauration des Musées de France (LC2RMF), CNRS UMR 171, Palais du Louvre, Porte des Lions, 14, Quai François Mitterrand, F-75001 Paris, France
- European Synchrotron Radiation Facility, Polygone Scientifique Louis Néel, 6, rue Jules Horowitz, F-38000 Grenoble, France
| | - Jean Susini
- European Synchrotron Radiation Facility, Polygone Scientifique Louis Néel, 6, rue Jules Horowitz, F-38000 Grenoble, France
| | - Joris Dik
- Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, NL-2628CD Delft, The Netherlands
| | - Koen Janssens
- University of Antwerp, Department of Chemistry, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
21
|
Colombini MP, Andreotti A, Bonaduce I, Modugno F, Ribechini E. Analytical strategies for characterizing organic paint media using gas chromatography/mass spectrometry. Acc Chem Res 2010; 43:715-27. [PMID: 20180544 DOI: 10.1021/ar900185f] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Throughout history, artists have experimented with a variety of organic-based natural materials, using them as paint binders, varnishes, and ingredients for mordants in gildings. Artists often use many layers of paint to produce particular effects. How we see a painting is thus the final result of how this complex, highly heterogeneous, multimaterial, and multilayered structure interacts with light. The chemical characterization of the organic substances in paint materials is of great importance for artwork conservation because the organic components of the paint layers are particularly subject to degradation. In addition, understanding the organic content and makeup of paint materials allows us to differentiate between the painting techniques that have been used over history. Applying gas chromatography/mass spectrometry (GC/MS) analysis to microsamples of paint layers is widely recognized as the best approach for identifying organic materials, such as proteins, drying oils, waxes, terpenic resins, and polysaccharide gums. The method provides essential information for reconstructing artistic techniques, assessing the best conditions for long-term preservation, and planning restoration. In this Account, we summarize the more common approaches adopted in the study of the organic components of paint materials. Our progress in developing GC/MS analytical procedures in the field of cultural heritage is presented, focusing on problems that arise from (i) the presence of mixtures of many chemically complex and degraded materials, (ii) the interference of inorganic species, (iii) the small size of the samples, and (iv) the risk of contamination. We outline some critical aspects of the analytical strategy, such as the need to optimize specific wet-chemical sample pretreatments in order to separate the various components, hydrolyze macromolecular analytes, clean-up inorganic ions, and derivatize polar molecules for subsequent GC/MS separation and identification. We also discuss how to interpret the chromatographic data so as to be able to identify the materials. This identification is based on the presence of specific biomarkers (chemotaxonomy), on the evaluation of the overall chromatographic profile, or on the quantitative analysis of significant compounds. GC/MS-based analytical procedures have for 20 years provided important contributions to conservation science, but challenges and opportunities still coexist in the field of organic-based paint materials. We give selected examples and provide case studies showing how a better understanding of the chemical composition of organic paint materials and of their degradation pathways contribute to a better knowledge our cultural heritage, and to its preservation for future generations.
Collapse
Affiliation(s)
- Maria Perla Colombini
- Chemical Science for the Safeguard of the Cultural Heritage Group, Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Risorgimento 35, 56126 Pisa, Italy
| | - Alessia Andreotti
- Chemical Science for the Safeguard of the Cultural Heritage Group, Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Risorgimento 35, 56126 Pisa, Italy
| | - Ilaria Bonaduce
- Chemical Science for the Safeguard of the Cultural Heritage Group, Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Risorgimento 35, 56126 Pisa, Italy
| | - Francesca Modugno
- Chemical Science for the Safeguard of the Cultural Heritage Group, Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Risorgimento 35, 56126 Pisa, Italy
| | - Erika Ribechini
- Chemical Science for the Safeguard of the Cultural Heritage Group, Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Risorgimento 35, 56126 Pisa, Italy
| |
Collapse
|
22
|
Martin MC, Schade U, Lerch P, Dumas P. Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy. Trends Analyt Chem 2010. [DOI: 10.1016/j.trac.2010.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Affiliation(s)
- Kamila Chughtai
- FOM-Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ron M.A. Heeren
- FOM-Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
24
|
Szynkowska MI, Czerski K, Rogowski J, Paryjczak T, Parczewski A. Detection of exogenous contaminants of fingerprints using ToF-SIMS. SURF INTERFACE ANAL 2010. [DOI: 10.1002/sia.3193] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Performance evaluation of mapping and linear imaging FTIR microspectroscopy for the characterisation of paint cross sections. Anal Bioanal Chem 2009; 396:899-910. [DOI: 10.1007/s00216-009-3269-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/24/2009] [Accepted: 10/25/2009] [Indexed: 11/30/2022]
|
26
|
Mass spectrometry imaging of rat brain sections: nanomolar sensitivity with MALDI versus nanometer resolution by TOF–SIMS. Anal Bioanal Chem 2009; 396:151-62. [DOI: 10.1007/s00216-009-3031-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/29/2009] [Accepted: 07/30/2009] [Indexed: 11/25/2022]
|
27
|
Sugiura Y, Setou M. Imaging mass spectrometry for visualization of drug and endogenous metabolite distribution: toward in situ pharmacometabolomes. J Neuroimmune Pharmacol 2009; 5:31-43. [PMID: 19513855 DOI: 10.1007/s11481-009-9162-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/12/2009] [Indexed: 11/28/2022]
Abstract
It is important to determine how a candidate drug is distributed and metabolized within the body in early phase of drug discovery. Recently, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS; also referred to as mass spectrometry imaging) has attracted great interest for monitoring drug delivery and metabolism. Since this emerging technique enables simultaneous imaging of many types of metabolite molecules, MALDI-IMS can visualize and distinguish the parent drug and its metabolites. As another important advantage, changes in endogenous metabolites in response to drug administration can be mapped and evaluated in tissue sections. In this review, we discuss the capabilities of current IMS techniques for imaging metabolite molecules and summarize representative studies on imaging of both endogenous and exogenous metabolites. In addition, current limitations and problems with the technique are discussed, and reports of progress toward solving these problems are summarized. With this new tool, the pharmacological research community can begin to map the in situ pharmacometabolome.
Collapse
Affiliation(s)
- Yuki Sugiura
- Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | | |
Collapse
|
28
|
Affiliation(s)
- Yuki SUGIURA
- Department of Bioscience and Biotechnology, Tokyo Institute of Technology
- Mitsubishi Kagaku Institute of Life Sciences
| | - Mitsutoshi SETOU
- Mitsubishi Kagaku Institute of Life Sciences
- Hamamatsu University School of Medicine, Department of Molecular Anatomy
| |
Collapse
|
29
|
Lipid imaging with cluster time-of-flight secondary ion mass spectrometry. Anal Bioanal Chem 2008; 393:31-5. [DOI: 10.1007/s00216-008-2367-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/18/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
|
30
|
Mas S, Perez R, Martinez-Pinna R, Egido J, Vivanco F. Cluster TOF-SIMS imaging: A new light for in situ metabolomics? Proteomics 2008; 8:3735-45. [DOI: 10.1002/pmic.200800115] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|