1
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
2
|
Borotto NB. The path forward for protein footprinting, covalent labeling, and mass spectrometry-based protein conformational analyses. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5064. [PMID: 38873895 PMCID: PMC11210343 DOI: 10.1002/jms.5064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Mass spectrometry-based approaches to assess protein conformation have become widely utilized due to their sensitivity, low sample requirements, and broad applicability to proteins regardless of size and environment. Their wide applicability and sensitivity also make these techniques suitable for the analysis of complex mixtures of proteins, and thus, they have been applied at the cell and even the simple organism levels. These works are impressive, but they predominately employ "bottom-up" workflows and require proteolytic digestion prior to analysis. Once digested, it is not possible to distinguish the proteoform from which any single peptide is derived and therefore, one cannot associate distal-in primary structure-concurrent post-translational modifications (PTMs) or covalent labels, as they would be found on separate peptides. Thus, analyses via bottom-up proteomics report the average PTM status and higher-order structure (HOS) of all existing proteoforms. Second, these works predominately employ promiscuous reagents to probe protein HOS. While this does lead to improved conformational resolution, the formation of many products can divide the signal associated with low-copy number proteins below signal-to-noise thresholds and complicate the bioinformatic analysis of these already challenging systems. In this perspective, I further detail these limitations and discuss the positives and negatives of top-down proteomics as an alternative.
Collapse
|
3
|
Filandr F, Sarpe V, Raval S, Crowder DA, Khan MF, Douglas P, Coales S, Viner R, Syed A, Tainer JA, Lees-Miller SP, Schriemer DC. Automating data analysis for hydrogen/deuterium exchange mass spectrometry using data-independent acquisition methodology. Nat Commun 2024; 15:2200. [PMID: 38467655 PMCID: PMC10928179 DOI: 10.1038/s41467-024-46610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
We present a hydrogen/deuterium exchange workflow coupled to tandem mass spectrometry (HX-MS2) that supports the acquisition of peptide fragment ions alongside their peptide precursors. The approach enables true auto-curation of HX data by mining a rich set of deuterated fragments, generated by collisional-induced dissociation (CID), to simultaneously confirm the peptide ID and authenticate MS1-based deuteration calculations. The high redundancy provided by the fragments supports a confidence assessment of deuterium calculations using a combinatorial strategy. The approach requires data-independent acquisition (DIA) methods that are available on most MS platforms, making the switch to HX-MS2 straightforward. Importantly, we find that HX-DIA enables a proteomics-grade approach and wide-spread applications. Considerable time is saved through auto-curation and complex samples can now be characterized and at higher throughput. We illustrate these advantages in a drug binding analysis of the ultra-large protein kinase DNA-PKcs, isolated directly from mammalian cells.
Collapse
Affiliation(s)
- Frantisek Filandr
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Vladimir Sarpe
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shaunak Raval
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Chemistry, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - D Alex Crowder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Morgan F Khan
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Pauline Douglas
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Stephen Coales
- Trajan Scientific & Medical - Raleigh, Morrisville, NC, USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, USA
| | - Aleem Syed
- Division of Radiation and Genome Instability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Chemistry, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
4
|
Code C, Qiu D, Solov’yov IA, Lee JG, Shin HC, Roland C, Sagui C, Houde D, Rand KD, Jørgensen TJD. Conformationally Restricted Glycopeptide Backbone Inhibits Gas-Phase H/D Scrambling between Glycan and Peptide Moieties. J Am Chem Soc 2023; 145:23925-23938. [PMID: 37883679 PMCID: PMC10636759 DOI: 10.1021/jacs.3c04068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Protein glycosylation is a common post-translational modification on extracellular proteins. The conformational dynamics of several glycoproteins have been characterized by hydrogen/deuterium exchange mass spectrometry (HDX-MS). However, it is, in most cases, not possible to extract information about glycan conformation and dynamics due to the general difficulty of separating the deuterium content of the glycan from that of the peptide (in particular, for O-linked glycans). Here, we investigate whether the fragmentation of protonated glycopeptides by collision-induced dissociation (CID) can be used to determine the solution-specific deuterium content of the glycan. Central to this concept is that glycopeptides can undergo a facile loss of glycans upon CID, thereby allowing for the determination of their masses. However, an essential prerequisite is that hydrogen and deuterium (H/D) scrambling can be kept in check. Therefore, we have measured the degree of scrambling upon glycosidic bond cleavage in glycopeptides that differ in the conformational flexibility of their backbone and glycosylation pattern. Our results show that complete scrambling precedes the glycosidic bond cleavage in normal glycopeptides derived from a glycoprotein; i.e., all labile hydrogens have undergone positional randomization prior to loss of the glycan. In contrast, the glycosidic bond cleavage occurs without any scrambling in the glycopeptide antibiotic vancomycin, reflecting that the glycan cannot interact with the peptide moiety due to a conformationally restricted backbone as revealed by molecular dynamics simulations. Scrambling is also inhibited, albeit to a lesser degree, in the conformationally restricted glycopeptides ristocetin and its pseudoaglycone, demonstrating that scrambling depends on an intricate interplay between the flexibility and proximity of the glycan and the peptide backbone.
Collapse
Affiliation(s)
- Christian Code
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Danwen Qiu
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ilia A. Solov’yov
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- Department
of Physics, Carl von Ossietzky University
Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Research
Centre for Neurosensory Science, Carl von
Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg Institut für Physik, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| | - Jung-Goo Lee
- Center for
Molecular Intelligence, The State University
of New York (SUNY), Korea,
119 Songdo Munwha-ro, Yeonsu-gu, 21985 Incheon, Korea
| | - Hyeon-Cheol Shin
- Center for
Molecular Intelligence, The State University
of New York (SUNY), Korea,
119 Songdo Munwha-ro, Yeonsu-gu, 21985 Incheon, Korea
| | - Christopher Roland
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Celeste Sagui
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Damian Houde
- Department
of Protein Pharmaceutical Development, Biogen, Cambridge, Massachusetts 02142, United States
| | - Kasper D. Rand
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
5
|
Jethva PN, Gross ML. Hydrogen Deuterium Exchange and other Mass Spectrometry-based Approaches for Epitope Mapping. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1118749. [PMID: 37746528 PMCID: PMC10512744 DOI: 10.3389/frans.2023.1118749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antigen-antibody interactions are a fundamental subset of protein-protein interactions responsible for the "survival of the fittest". Determining the interacting interface of the antigen, called an epitope, and that on the antibody, called a paratope, is crucial to antibody development. Because each antigen presents multiple epitopes (unique footprints), sophisticated approaches are required to determine the target region for a given antibody. Although X-ray crystallography, Cryo-EM, and nuclear magnetic resonance can provide atomic details of an epitope, they are often laborious, poor in throughput, and insensitive. Mass spectrometry-based approaches offer rapid turnaround, intermediate structural resolution, and virtually no size limit for the antigen, making them a vital approach for epitope mapping. In this review, we describe in detail the principles of hydrogen deuterium exchange mass spectrometry in application to epitope mapping. We also show that a combination of MS-based approaches can assist or complement epitope mapping and push the limit of structural resolution to the residue level. We describe in detail the MS methods used in epitope mapping, provide our perspective about the approaches, and focus on elucidating the role that HDX-MS is playing now and in the future by organizing a discussion centered around several improvements in prototype instrument/applications used for epitope mapping. At the end, we provide a tabular summary of the current literature on HDX-MS-based epitope mapping.
Collapse
Affiliation(s)
- Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
6
|
Uhrik L, Henek T, Planas-Iglesias J, Kucera J, Damborsky J, Marek M, Hernychova L. Study of Protein Conformational Dynamics Using Hydrogen/Deuterium Exchange Mass Spectrometry. Methods Mol Biol 2023; 2652:293-318. [PMID: 37093484 DOI: 10.1007/978-1-0716-3147-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Intrinsic protein dynamics contribute to their biological functions. Rational engineering of protein dynamics is extremely challenging with only a handful of successful examples. Hydrogen/deuterium exchange coupled to mass spectrometry (HDX-MS) represents a powerful technique for quantitative analysis of protein dynamics. Here we provide a detailed description of the preparation of protein samples, collection of high-quality data, and their in-depth analysis using various computational tools. We illustrate the application of HDX-MS for the study of protein dynamics in the rational engineering of flexible loops in the reconstructed ancestor of haloalkane dehalogenase and Renilla luciferase. These experiments provided unique and valuable data rigorously describing the modification of protein dynamics upon grafting of the loop-helix element. Tips and tricks are provided to stimulate the wider use of HDX-MS to study and engineer protein dynamics.
Collapse
Affiliation(s)
- Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Tomas Henek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Josef Kucera
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| |
Collapse
|
7
|
Chaturvedi R, Webb IK. Multiplexed Conformationally Selective, Localized Gas-Phase Hydrogen Deuterium Exchange of Protein Ions Enabled by Transmission-Mode Electron Capture Dissociation. Anal Chem 2022; 94:8975-8982. [PMID: 35708487 DOI: 10.1021/acs.analchem.2c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this article, we present an approach for conformationally multiplexed, localized hydrogen deuterium exchange (HDX) of gas-phase protein ions facilitated by ion mobility (IM) followed by electron capture dissociation (ECD). A quadrupole-IM-time of flight instrument previously modified to enable ECD in transmission mode (without ion trapping) immediately following a mobility separation was further modified to allow for deuterated ammonia (ND3) to be leaked in after m/z selection. Collisional activation was minimized to prevent deuterium scrambling from giving structurally irrelevant results. Gas-phase HDX with ECD fragmentation for exchange site localization was demonstrated with the extensively studied protein folding models ubiquitin and cytochrome c. Ubiquitin was ionized from conditions that stabilize the native state and conditions that stabilize the partially folded A-state. IM of deuterated ubiquitin 6+ ions allowed the separation of more compact conformers from more extended conformers. ECD of the separated subpopulations revealed that the more extended (later arriving) conformers had significant, localized differences in the amount of HDX observed. The 5+ charge state showed many regions with protection from HDX, and the 11+ charge state, ionized from conditions that stabilize the A-state, showed high levels of deuterium incorporation throughout most of the protein sequence. The 7+ ions of cytochrome c ionized from aqueous conditions showed greater HDX with unstructured regions of the protein relative to interior, structured regions, especially those involved in heme binding. With careful tuning and attention to deuterium scrambling, our approach holds promise for determining region-specific information on a conformer-selected basis for gas-phase protein structures, including localized characterizations of ligand, epitope, and protein-protein binding.
Collapse
Affiliation(s)
- Ritu Chaturvedi
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Ian K Webb
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
8
|
Seetaloo N, Kish M, Phillips JJ. HDfleX: Software for Flexible High Structural Resolution of Hydrogen/Deuterium-Exchange Mass Spectrometry Data. Anal Chem 2022; 94:4557-4564. [PMID: 35263087 PMCID: PMC9204700 DOI: 10.1021/acs.analchem.1c05339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Hydrogen/deuterium-exchange
mass spectrometry (HDX-MS) experiments
on protein structures can be performed at three levels: (1) by enzymatically
digesting labeled proteins and analyzing the peptides (bottom-up),
(2) by further fragmenting peptides following digestion (middle-down),
and (3) by fragmenting the intact labeled protein (top-down) using
soft gas-phase fragmentation methods, such as electron transfer dissociation
(ETD). However, to the best of our knowledge, the software packages
currently available for the analysis of HDX-MS data do not enable
the peptide- and ETD-levels to be combined; they can only be analyzed
separately. Thus, we developed HDfleX, a standalone
application for the analysis of flexible high structural resolution
of HDX-MS data, which allows data at any level of structural resolution
(intact protein, peptide, fragment) to be merged. HDfleX features rapid experimental data fitting, robust statistical significance
analyses, and optional methods for theoretical intrinsic calculations
and a novel empirical correction for comparison between solution conditions.
Collapse
Affiliation(s)
- Neeleema Seetaloo
- Living Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| | - Monika Kish
- Living Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| | - Jonathan J Phillips
- Living Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.,Alan Turing Institute, British Library, London NW1 2DB, U.K
| |
Collapse
|
9
|
Lin Y, Gross ML. Mass Spectrometry-Based Structural Proteomics for Metal Ion/Protein Binding Studies. Biomolecules 2022; 12:135. [PMID: 35053283 PMCID: PMC8773722 DOI: 10.3390/biom12010135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
Metal ions are critical for the biological and physiological functions of many proteins. Mass spectrometry (MS)-based structural proteomics is an ever-growing field that has been adopted to study protein and metal ion interactions. Native MS offers information on metal binding and its stoichiometry. Footprinting approaches coupled with MS, including hydrogen/deuterium exchange (HDX), "fast photochemical oxidation of proteins" (FPOP) and targeted amino-acid labeling, identify binding sites and regions undergoing conformational changes. MS-based titration methods, including "protein-ligand interactions by mass spectrometry, titration and HD exchange" (PLIMSTEX) and "ligand titration, fast photochemical oxidation of proteins and mass spectrometry" (LITPOMS), afford binding stoichiometry, binding affinity, and binding order. These MS-based structural proteomics approaches, their applications to answer questions regarding metal ion protein interactions, their limitations, and recent and potential improvements are discussed here. This review serves as a demonstration of the capabilities of these tools and as an introduction to wider applications to solve other questions.
Collapse
Affiliation(s)
- Yanchun Lin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
10
|
Hamuro Y. Quantitative Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2711-2727. [PMID: 34749499 DOI: 10.1021/jasms.1c00216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This Account describes considerations for the data generation, data analysis, and data interpretation of a hydrogen/deuterium exchange-mass spectrometry (HDX-MS) experiment to have a quantitative argument. Although HDX-MS has gained its popularity as a biophysical tool, the argument from its data often remains qualitative. To generate HDX-MS data that are more suitable for a quantitative argument, the sequence coverage and sequence resolution should be optimized during the feasibility stage, and the time window coverage and time window resolution should be improved during the HDX stage. To extract biophysically meaningful values for a certain perturbation from medium-resolution HDX-MS data, there are two major ways: (i) estimating the area between the two deuterium buildup curves using centroid values with and without the perturbation when plotted against log time scale and (ii) dissecting into multiple single-exponential curves using the isotope envelopes. To have more accurate arguments for an HDX-MS perturbation study, (i) false negatives due to sequence coverage, (ii) false negatives due to time window coverage, (iii) false positives due to sequence resolution, and (iv) false positives due to allosteric effects should be carefully examined.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, New Jersey 08852, United States
| |
Collapse
|
11
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Modzel M, Wollenberg DTW, Trelle MB, Larsen MR, Jørgensen TJD. Ultraviolet Photodissociation of Protonated Peptides and Proteins Can Proceed with H/D Scrambling. Anal Chem 2021; 93:691-696. [PMID: 33295747 DOI: 10.1021/acs.analchem.0c02957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet photodissociation (UVPD) has recently been introduced as an ion activation method for the determination of single-residue deuterium levels in H/D exchange tandem mass spectrometry experiments. In this regard, it is crucial to know which fragment ion types can be utilized for this purpose. UVPD yields rich product ion spectra where all possible backbone fragment ion types (a/x, b/y, and c/z) are typically observed. Here we provide a detailed investigation of the level of H/D scrambling for all fragment ion types upon UVPD of the peptide scrambling probe P1 (HHHHHHIIKIIK) using an Orbitrap tribrid mass spectrometer equipped with a solid-state 213 nm UV laser. The most abundant UVPD-generated fragment ions (i.e., b/y ions) exhibit extensive H/D scrambling. Similarly, a/x and c/z ions have also undergone H/D scrambling due to UV-induced heating of the precursor ion population. Therefore, dominant b/y ions upon UVPD of protonated peptides are a strong indicator for the occurrence of extensive H/D scrambling of the precursor ion population. In contrast to peptide P1, UV-irradiation of ubiquitin did not induce H/D scrambling in the nonfragmented precursor ion population. However, the UVPD-generated b2 and a4 ions from ubiquitin exhibit extensive H/D scrambling. To minimize H/D scrambling, short UV-irradiation time and high gas pressures are recommended.
Collapse
Affiliation(s)
- Maciej Modzel
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.,Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Daniel T Weltz Wollenberg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.,Novozymes A/S, Krogshøjvej 36, Bagsværd 2880, Denmark
| | - Morten Beck Trelle
- Department of Clinical Biochemistry, Svendborg Hospital, Baagøes Allé 15, SVB Building 17.01, 5700 Svendborg, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| |
Collapse
|
13
|
Hamuro Y. Tutorial: Chemistry of Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:133-151. [PMID: 33227208 DOI: 10.1021/jasms.0c00260] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemistry related to hydrogen/deuterium exchange-mass spectrometry (HDX-MS) for the analysis of proteins is described. First, the HDX rates of various functional groups in proteins are explained by reviewing the observed rates described in the literature, followed by estimating rates of all types of heteroatom hydrogens in proteins using proton transfer theory and the pKa values. The estimated HDX rates match well with the respective observed rates for most functional groups, with the exception of indole and amide groups. The discrepancies between the observed and estimated HDX rates for these groups are explained by the reaction mechanisms. Second, the factors that affect the HDX rates of backbone amide hydrogen, including side chain, N- and C-terminals, pH, temperature, organic solvent, and isotopes, are discussed. These factors are important for the proper design of exchange reactions and downstream process as well as the analysis and interpretation of HDX-MS data.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, New Jersey 08852, United States
| |
Collapse
|
14
|
Mitra G. Emerging Role of Mass Spectrometry-Based Structural Proteomics in Elucidating Intrinsic Disorder in Proteins. Proteomics 2020; 21:e2000011. [PMID: 32959512 DOI: 10.1002/pmic.202000011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Inherent disorder is an integral part of all proteomes, represented as fully or partially unfolded proteins. The lack of order in intrinsically disordered proteins (IDPs) results in an incredibly flexible, floppy, and heterogeneous ensemble, contrary to the well-structured and unique organization of folded proteins. Despite such unusual demeanor, IDPs are crucial for numerous cellular processes and are increasingly being associated with disease-causing pathologies. These warrant more intensive investigation of this atypical class of protein. Traditional biophysical tools, however, fall short of analyzing IDPs, thus making their structure-function characterization challenging. Mass spectrometry (MS) in recent years has evolved as a valuable tool for elucidating the unusual conformational facets of IDPs. In this review, the features of advanced MS techniques such as Hydrogen-deuterium exchange (HDX)-MS, native MS, limited proteolysis (LiP)-MS, chemical cross-linking (XL)-MS, and Fast photochemical oxidation of proteins (FPOP)-MS are briefly discussed. Recent MS studies on IDPs and the unique advantages/shortfalls associated with the above methods while evaluating structural proteomics of IDPs, are illustrated. Eventually the future scope of the MS methods in further decoding the unexplored landscapes of IDPs is presented.
Collapse
Affiliation(s)
- Gopa Mitra
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, St. John's National Academy of Health Sciences, 100 Feet Road, Koramangala, Bangalore, Karnataka, 560034, India
| |
Collapse
|
15
|
Wollenberg DTW, Pengelley S, Mouritsen JC, Suckau D, Jørgensen CI, Jørgensen TJD. Avoiding H/D Scrambling with Minimal Ion Transmission Loss for HDX-MS/MS-ETD Analysis on a High-Resolution Q-TOF Mass Spectrometer. Anal Chem 2020; 92:7453-7461. [PMID: 32427467 DOI: 10.1021/acs.analchem.9b05208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) enables the study of protein dynamics by measuring the time-resolved deuterium incorporation into a protein incubated in D2O. Using electron-based fragmentation in the gas phase it is possible to measure deuterium uptake at single-residue resolution. However, a prerequisite for this approach is that the solution-phase labeling is conserved in the gas phase prior to precursor fragmentation. It is therefore essential to reduce or even avoid intramolecular hydrogen/deuterium migration, which causes randomization of the deuterium labels along the peptide (hydrogen scrambling). Here, we describe an optimization strategy for reducing scrambling to a negligible level while minimizing the impact on sensitivity on a high-resolution Q-TOF equipped with ETD and an electrospray ionization interface consisting of a glass transfer capillary followed by a dual ion funnel. In our strategy we narrowed down the optimization to two accelerating potentials, and we defined the optimization of these in a simple rule by accounting for their interdependency in relation to scrambling and transmission efficiency. Using this rule, we were able to reduce scrambling from 75% to below 5% on average using the highly scrambling-sensitive quadruply charged P1 peptide scrambling probe resulting in a minor 33% transmission loss. To demonstrate the applicability of this approach, we probe the dynamics of certain regions in cytochrome c.
Collapse
Affiliation(s)
- Daniel T Weltz Wollenberg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.,Novozymes A/S, Krogshøjvej 36, Bagsværd 2280, Denmark
| | - Stuart Pengelley
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, Bremen, 28359, Germany
| | | | - Detlev Suckau
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, Bremen, 28359, Germany
| | | | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| |
Collapse
|
16
|
Uppal SS, Mookherjee A, Harkewicz R, Beasley SE, Bush MF, Guttman M. High-Precision, Gas-Phase Hydrogen/Deuterium-Exchange Kinetics by Mass Spectrometry Enabled by Exchange Standards. Anal Chem 2020; 92:7725-7732. [PMID: 32368904 DOI: 10.1021/acs.analchem.0c00749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mass spectrometry (MS) has become a primary tool for identifying and quantifying biological molecules. In combination with other orthogonal techniques, such as gas-phase hydrogen/deuterium exchange (gHDX), MS is also capable of probing the structure of ions. However, gHDX kinetics can depend strongly on many factors, including laboratory temperature, instrumental conditions, and instrument platform selection. These effects can lead to high variability with gHDX measurements, which has hindered the broader adoption of gHDX for structural MS. Here we introduce an approach for standardizing gHDX measurements using cosampled standards. Quantifying the exchange kinetics for analytes relative to the exchange kinetics of the standards results in greater accuracy and precision than the underlying absolute measurements. The standardization was found to be effective for several types of analytes including small molecules and intact proteins. A subset of analytes showed deviations in their standardized exchange profiles that are attributed to field heating and the concomitant conformational isomerization. Inclusion of helium during the gHDX process for collisional cooling helps mitigate such variations in exchange kinetics related to ion heating. We anticipate that the outcomes of this research will enable the broader use of gHDX in MS-based workflows for molecular identification and isomer differentiation.
Collapse
Affiliation(s)
- Sanjit S Uppal
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Abhigya Mookherjee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rick Harkewicz
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sarah E Beasley
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
17
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Genereux JC. Mass spectrometric approaches for profiling protein folding and stability. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:111-144. [PMID: 31928723 DOI: 10.1016/bs.apcsb.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein stability reports on protein homeostasis, function, and binding interactions, such as to other proteins, metabolites and drugs. As such, there is a pressing need for technologies that can report on protein stability. The ideal technique could be applied in vitro or in vivo systems, proteome-wide, independently of matrix, under native conditions, with residue-level resolution, and on protein at endogenous levels. Mass spectrometry has rapidly become a preferred technology for identifying and quantifying proteins. As such, it has been increasingly incorporated into methodologies for interrogating protein stability and folding. Although no single technology can satisfy all desired applications, several emerging approaches have shown outstanding success at providing biological insight into the stability of the proteome. This chapter outlines some of these recent emerging technologies.
Collapse
Affiliation(s)
- Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA, United States
| |
Collapse
|
19
|
Wang Q, Borotto NB, Håkansson K. Gas-Phase Hydrogen/Deuterium Scrambling in Negative-Ion Mode Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:855-863. [PMID: 30805882 PMCID: PMC6680243 DOI: 10.1007/s13361-019-02143-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/12/2019] [Accepted: 01/22/2019] [Indexed: 06/07/2023]
Abstract
Hydrogen/deuterium exchange coupled with mass spectrometry (HDX MS) has become a powerful method to characterize protein conformational dynamics. Workflows typically utilize pepsin digestion prior to MS analysis to yield peptide level structural resolution. Tandem mass spectrometry (MS/MS) can potentially facilitate determination of site-specific deuteration to single-residue resolution. However, to be effective, MS/MS activation must minimize the occurrence of gas-phase intramolecular randomization of solution-generated deuterium labels. While significant work has focused on understanding this process in positive-ion mode, little is known about hydrogen/deuterium (H/D) scrambling processes in negative-ion mode. Here, we utilize selectively deuterated model peptides to investigate the extent of intramolecular H/D scrambling upon several negative-ion mode MS/MS techniques, including negative-ion collision-induced dissociation (nCID), electron detachment dissociation (EDD), negative-ion free radical-initiated peptide sequencing (nFRIPS), and negative-ion electron capture dissociation (niECD). H/D scrambling was extensive in deprotonated peptides upon nCID and nFRIPS. In fact, the energetics required to induce dissociation in nCID are sufficient to allow histidine C-2 and Cβ hydrogen atoms to participate in the scrambling process. EDD and niECD demonstrated moderate H/D scrambling with niECD being superior in terms of minimizing hydrogen migration, achieving ~ 30% scrambling levels for small c-type fragment ions. We believe the observed scrambling is likely due to activation during ionization and ion transport rather than during the niECD event itself.
Collapse
Affiliation(s)
- Qingyi Wang
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, MI, 48109-1055, USA
| | - Nicholas B Borotto
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, MI, 48109-1055, USA.
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, MI, 48109-1055, USA.
| |
Collapse
|
20
|
Hamuro Y, Zhang T. High-Resolution HDX-MS of Cytochrome c Using Pepsin/Fungal Protease Type XIII Mixed Bed Column. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:227-234. [PMID: 30374663 DOI: 10.1007/s13361-018-2087-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
A pepsin/FPXIII (protease from Aspergillus saitoi, type XIII) mixed bed column significantly improved the resolution of bottom-up hydrogen/deuterium exchange mass spectrometry (HDX-MS) data compared with a pepsin-only column. The HDX-MS method using the mixed bed column determined 65 amide hydrogen exchange rates out of one hundred cytochrome c backbone amide hydrogens. Different cleavage specificities of the two enzymes generated 138 unique high-quality peptic fragments, which allows fine sub-localization of deuterium. The exchange rates determined in this method are consistent within the current study as well as with the previous HDX-NMR study. High-resolution HDX-MS data can determine the exchange rate of each residue not the deuterium buildup curve of a peptic fragment. The exchange rates provide more precise and quantitative measurements of protein dynamics in a more reproducible manner. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- SGS Life North America, 606 Brandywine Parkway, West Chester, PA, 19380, USA.
- Janssen Pharmaceutical, 1400 McKean Road, Spring House, PA, 19477, USA.
| | - Terry Zhang
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA, 95134, USA
| |
Collapse
|
21
|
Karch KR, Coradin M, Zandarashvili L, Kan ZY, Gerace M, Englander SW, Black BE, Garcia BA. Hydrogen-Deuterium Exchange Coupled to Top- and Middle-Down Mass Spectrometry Reveals Histone Tail Dynamics before and after Nucleosome Assembly. Structure 2018; 26:1651-1663.e3. [PMID: 30293810 DOI: 10.1016/j.str.2018.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/21/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
Until recently, a major limitation of hydrogen-deuterium exchange mass spectrometry (HDX-MS) was that resolution of deuterium localization was limited to the length of the peptide generated during proteolysis. However, electron transfer dissociation (ETD) has been shown to preserve deuterium label in the gas phase, enabling better resolution. To date, this technology remains mostly limited to small, already well-characterized proteins. Here, we optimize, expand, and adapt HDX-MS tandem MS (MS/MS) capabilities to accommodate histone and nucleosomal complexes on top-down HDX-MS/MS and middle-down HDX-MS/MS platforms and demonstrate that near site-specific resolution of deuterium localization can be obtained with high reproducibility. We are able to study histone tail dynamics in unprecedented detail, which have evaded analysis by traditional structural biology techniques for decades, revealing important insights into chromatin biology. Together, the results of these studies highlight the versatility, reliability, and reproducibility of ETD-based HDX-MS/MS methodology to interrogate large protein and protein/DNA complexes.
Collapse
Affiliation(s)
- Kelly R Karch
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia 19104, USA
| | - Mariel Coradin
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia 19104, USA
| | - Levani Zandarashvili
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia 19104, USA
| | - Zhong-Yuan Kan
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - Morgan Gerace
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia 19104, USA
| | - S Walter Englander
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - Ben E Black
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia 19104, USA.
| |
Collapse
|
22
|
Oganesyan I, Lento C, Wilson DJ. Contemporary hydrogen deuterium exchange mass spectrometry. Methods 2018; 144:27-42. [DOI: 10.1016/j.ymeth.2018.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 02/07/2023] Open
|
23
|
Hamuro Y, E SY. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:989-1001. [PMID: 29500740 DOI: 10.1007/s13361-018-1892-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ, 08852, USA.
- SGS Life North America, 606 Brandywine Parkway, West Chester, PA, 19380, USA.
| | - Sook Yen E
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ, 08852, USA
- Regeneron, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| |
Collapse
|
24
|
MS-based conformation analysis of recombinant proteins in design, optimization and development of biopharmaceuticals. Methods 2018; 144:134-151. [PMID: 29678586 DOI: 10.1016/j.ymeth.2018.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/18/2023] Open
Abstract
Mass spectrometry (MS)-based methods for analyzing protein higher order structures have gained increasing application in the field of biopharmaceutical development. The predominant methods used in this area include native MS, hydrogen deuterium exchange-MS, covalent labeling, cross-linking and limited proteolysis. These MS-based methods will be briefly described in this article, followed by a discussion on how these methods contribute at different stages of discovery and development of protein therapeutics.
Collapse
|
25
|
Mistarz UH, Bellina B, Jensen PF, Brown JM, Barran PE, Rand KD. UV Photodissociation Mass Spectrometry Accurately Localize Sites of Backbone Deuteration in Peptides. Anal Chem 2017; 90:1077-1080. [DOI: 10.1021/acs.analchem.7b04683] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ulrik H. Mistarz
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Bruno Bellina
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, and Photon Science Institute, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Pernille F. Jensen
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jeffery M. Brown
- Waters Corporation, Stamford
Avenue, Altrincham Road, Wilmslow, SK9 4AX, United Kingdom
| | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, and Photon Science Institute, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Kasper D. Rand
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
26
|
Masson GR, Jenkins ML, Burke JE. An overview of hydrogen deuterium exchange mass spectrometry (HDX-MS) in drug discovery. Expert Opin Drug Discov 2017; 12:981-994. [PMID: 28770632 DOI: 10.1080/17460441.2017.1363734] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful methodology to study protein dynamics, protein folding, protein-protein interactions, and protein small molecule interactions. The development of novel methodologies and technical advancements in mass spectrometers has greatly expanded the accessibility and acceptance of this technique within both academia and industry. Areas covered: This review examines the theoretical basis of how amide exchange occurs, how different mass spectrometer approaches can be used for HDX-MS experiments, as well as the use of HDX-MS in drug development, specifically focusing on how HDX-MS is used to characterize bio-therapeutics, and its use in examining protein-protein and protein small molecule interactions. Expert opinion: HDX-MS has been widely accepted within the pharmaceutical industry for the characterization of bio-therapeutics as well as in the mapping of antibody drug epitopes. However, there is room for this technique to be more widely used in the drug discovery process. This is particularly true in the use of HDX-MS as a complement to other high-resolution structural approaches, as well as in the development of small molecule therapeutics that can target both active-site and allosteric binding sites.
Collapse
Affiliation(s)
- Glenn R Masson
- a Protein and Nucleic Acid Chemistry Division , MRC Laboratory of Molecular Biology , Cambridge , UK
| | - Meredith L Jenkins
- b Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| | - John E Burke
- b Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| |
Collapse
|
27
|
Rouck J, Krapf J, Roy J, Huff H, Das A. Recent advances in nanodisc technology for membrane protein studies (2012-2017). FEBS Lett 2017; 591:2057-2088. [PMID: 28581067 PMCID: PMC5751705 DOI: 10.1002/1873-3468.12706] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 01/01/2023]
Abstract
Historically, the main barrier to membrane protein investigations has been the tendency of membrane proteins to aggregate (due to their hydrophobic nature), in aqueous solution as well as on surfaces. The introduction of biomembrane mimetics has since stimulated momentum in the field. One such mimetic, the nanodisc (ND) system, has proved to be an exceptional system for solubilizing membrane proteins. Herein, we critically evaluate the advantages and imperfections of employing nanodiscs in biophysical and biochemical studies. Specifically, we examine the techniques that have been modified to study membrane proteins in nanodiscs. Techniques discussed here include fluorescence microscopy, solution-state/solid-state nuclear magnetic resonance, electron microscopy, small-angle X-ray scattering, and several mass spectroscopy methods. Newer techniques such as SPR, charge-sensitive optical detection, and scintillation proximity assays are also reviewed. Lastly, we cover how nanodiscs are advancing nanotechnology through nanoplasmonic biosensing, lipoprotein-nanoplatelets, and sortase-mediated labeling of nanodiscs.
Collapse
Affiliation(s)
- John Rouck
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - John Krapf
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Jahnabi Roy
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Hannah Huff
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Beckman Institute for Advanced Science, Division of Nutritional Sciences, Neuroscience Program and Department of Bioengineering, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| |
Collapse
|
28
|
Analysis of phosphoinositide 3-kinase inhibitors by bottom-up electron-transfer dissociation hydrogen/deuterium exchange mass spectrometry. Biochem J 2017; 474:1867-1877. [PMID: 28381646 PMCID: PMC5544108 DOI: 10.1042/bcj20170127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022]
Abstract
Until recently, one of the major limitations of hydrogen/deuterium exchange mass spectrometry (HDX-MS) was the peptide-level resolution afforded by proteolytic digestion. This limitation can be selectively overcome through the use of electron-transfer dissociation to fragment peptides in a manner that allows the retention of the deuterium signal to produce hydrogen/deuterium exchange tandem mass spectrometry (HDX-MS/MS). Here, we describe the application of HDX-MS/MS to structurally screen inhibitors of the oncogene phosphoinositide 3-kinase catalytic p110α subunit. HDX-MS/MS analysis is able to discern a conserved mechanism of inhibition common to a range of inhibitors. Owing to the relatively minor amounts of protein required, this technique may be utilised in pharmaceutical development for screening potential therapeutics.
Collapse
|
29
|
Hamuro Y. Regio-Selective Intramolecular Hydrogen/Deuterium Exchange in Gas-Phase Electron Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:971-977. [PMID: 28194737 DOI: 10.1007/s13361-017-1612-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/29/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ, 08852, USA.
| |
Collapse
|
30
|
Uppal SS, Beasley SE, Scian M, Guttman M. Gas-Phase Hydrogen/Deuterium Exchange for Distinguishing Isomeric Carbohydrate Ions. Anal Chem 2017; 89:4737-4742. [PMID: 28304155 DOI: 10.1021/acs.analchem.7b00683] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structural diversity of carbohydrates presents a major challenge for glycobiology and the analysis of glycoconjugates. Mass spectrometry has become a primary tool for glycan analysis thanks to its speed and sensitivity, but the information content regarding the glycan structure of protonated glycoconjugates is hindered by the inability to differentiate linkage and stereoisomers. Here, we examine a variety of protonated carbohydrate structures by gas-phase hydrogen/deuterium exchange (HDX) to discover that the exchange rates are distinct for isomeric carbohydrates with even subtle structural differences. By incorporating an internal exchange standard, HDX could effectively distinguish all linkage and stereoisomers that were examined and presents a mass spectrometry-based approach for glycan structural analysis with immense potential.
Collapse
Affiliation(s)
- Sanjit S Uppal
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Sarah E Beasley
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Michele Scian
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
31
|
Hamuro Y. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:486-497. [PMID: 28108962 DOI: 10.1007/s13361-016-1571-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/02/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ, 08852, USA.
| |
Collapse
|
32
|
Vadas O, Jenkins ML, Dornan GL, Burke JE. Using Hydrogen-Deuterium Exchange Mass Spectrometry to Examine Protein-Membrane Interactions. Methods Enzymol 2016; 583:143-172. [PMID: 28063489 DOI: 10.1016/bs.mie.2016.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many fundamental cellular processes are controlled via assembly of a network of proteins at membrane surfaces. The proper recruitment of proteins to membranes can be controlled by a wide variety of mechanisms, including protein lipidation, protein-protein interactions, posttranslational modifications, and binding to specific lipid species present in membranes. There are, however, only a limited number of analytical techniques that can study the assembly of protein-membrane complexes at the molecular level. A relatively new addition to the set of techniques available to study these protein-membrane systems is the use of hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS experiments measure protein conformational dynamics in their native state, based on the rate of exchange of amide hydrogens with solvent. This review discusses the use of HDX-MS as a tool to identify the interfaces of proteins with membranes and membrane-associated proteins, as well as define conformational changes elicited by membrane recruitment. Specific examples will focus on the use of HDX-MS to examine how large macromolecular protein complexes are recruited and activated on membranes, and how both posttranslational modifications and cancer-linked oncogenic mutations affect these processes.
Collapse
Affiliation(s)
- O Vadas
- Pharmaceutical Sciences Section, University of Geneva, Geneva, Switzerland
| | | | - G L Dornan
- University of Victoria, Victoria BC, Canada
| | - J E Burke
- University of Victoria, Victoria BC, Canada.
| |
Collapse
|
33
|
Guttman M, Wales TE, Whittington D, Engen JR, Brown JM, Lee KK. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:662-8. [PMID: 26810432 PMCID: PMC4829384 DOI: 10.1007/s13361-015-1330-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 05/21/2023]
Abstract
Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA.
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | | | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
34
|
Gallagher ES, Hudgens JW. Mapping Protein–Ligand Interactions with Proteolytic Fragmentation, Hydrogen/Deuterium Exchange-Mass Spectrometry. Methods Enzymol 2016; 566:357-404. [DOI: 10.1016/bs.mie.2015.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Zhang Z, Vachet RW. Kinetics of Protein Complex Dissociation Studied by Hydrogen/Deuterium Exchange and Mass Spectrometry. Anal Chem 2015; 87:11777-83. [PMID: 26531682 DOI: 10.1021/acs.analchem.5b03123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The growing importance of protein aggregation diseases requires the development of new methods to elucidate the molecular features that are responsible for the incipient protein-protein interactions. Kinetic information from protein-protein association/dissociation reactions is particularly valuable for revealing mechanistic insight, but robust tools that can provide this information are somewhat lacking. In this work, we describe a hydrogen/deuterium exchange (HDX)-based method that provides rate constant information for protein oligomer dissociation, using the well-studied β-lactoglobulin (βLG) dimer as a model system to validate our approach. By measuring the rate of exchange at different regions of the protein using top-down tandem mass spectrometry and fitting the resulting data to an appropriate mathematical model, we are able to extract the dimer's dissociation rate constant. We exploit the fact that regions of the protein that are part of the protein-protein interface have exchange patterns that are distinct from noninterfacial regions. This observation indicates that the HDX/MS method not only provides kinetic information but also could provide structural insight about the interface at the same time, which would be very valuable for previously uncharacterized protein-protein complexes.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Chemistry, University of Massachusetts , LGRT 104, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts , LGRT 104, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
36
|
|
37
|
Burns KM, Sarpe V, Wagenbach M, Wordeman L, Schriemer DC. HX-MS2 for high performance conformational analysis of complex protein states. Protein Sci 2015; 24:1313-24. [PMID: 26009873 DOI: 10.1002/pro.2707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023]
Abstract
Water-mediated hydrogen exchange (HX) processes involving the protein main chain are sensitive to structural dynamics and molecular interactions. Measuring deuterium uptake in amide bonds provides information on conformational states, structural transitions and binding events. Increasingly, deuterium levels are measured by mass spectrometry (MS) from proteolytically generated peptide fragments of large molecular systems. However, this bottom-up method has limited spectral capacity and requires a burdensome manual validation exercise, both of which restrict analysis of protein systems to generally less than 150 kDa. In this study, we present a bottom-up HX-MS(2) method that improves peptide identification rates, localizes high-quality HX data and simplifies validation. The method combines a new peptide scoring algorithm (WUF, weighted unique fragment) with data-independent acquisition of peptide fragmentation data. Scoring incorporates the validation process and emphasizes identification accuracy. The HX-MS(2) method is illustrated using data from a conformational analysis of microtubules treated with dimeric kinesin MCAK. When compared to a conventional Mascot-driven HX-MS method, HX-MS(2) produces two-fold higher α/β-tubulin sequence depth at a peptide utilization rate of 74%. A Mascot approach delivers a utilization rate of 44%. The WUF score can be constrained by false utilization rate (FUR) calculations to return utilization values exceeding 90% without serious data loss, indicating that automated validation should be possible. The HX-MS(2) data confirm that N-terminal MCAK domains anchor kinesin force generation in kinesin-mediated depolymerization, while the C-terminal tails regulate MCAK-tubulin interactions.
Collapse
Affiliation(s)
- Kyle M Burns
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Vladimir Sarpe
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Mike Wagenbach
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, 98195-7290
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, 98195-7290
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| |
Collapse
|
38
|
McAllister RG, Konermann L. Challenges in the Interpretation of Protein H/D Exchange Data: A Molecular Dynamics Simulation Perspective. Biochemistry 2015; 54:2683-92. [DOI: 10.1021/acs.biochem.5b00215] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert G. McAllister
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
39
|
Khakinejad M, Kondalaji SG, Maleki H, Arndt JR, Donohoe GC, Valentine SJ. Combining ion mobility spectrometry with hydrogen-deuterium exchange and top-down MS for peptide ion structure analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:2103-15. [PMID: 25267084 DOI: 10.1007/s13361-014-0990-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 05/25/2023]
Abstract
The gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined by ion mobility spectrometry (IMS) and hydrogen deuterium exchange (HDX)-tandem mass spectrometry (MS/MS) techniques. [M+4H](4+) ions exhibit two conformers with collision cross sections of 418 Å(2) and 471 Å(2). [M+3H](3+) ions exhibit a predominant conformer with a collision cross section of 340 Å(2) as well as an unresolved conformer (shoulder) with a collision cross section of ~367 Å(2). Maximum HDX levels for the more compact [M+4H](4+) ions and the compact and partially-folded [M+3H](3+) ions are ~12.9, ~15.5, and ~14.9, respectively. Ion structures obtained from molecular dynamics simulations (MDS) suggest that this ordering of HDX level results from increased charge-site/exchange-site density for the more compact ions of lower charge. Additionally, a new model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) for the computer-generated structures is shown to better correlate to the experimentally determined per-residue deuterium uptake. Future comparisons of IMS-HDX-MS data with structures obtained from MDS are discussed with respect to novel experiments that will reveal the HDX rates of individual residues.
Collapse
Affiliation(s)
- Mahdiar Khakinejad
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | | | | | | | | |
Collapse
|
40
|
Rand KD, Zehl M, Jørgensen TJD. Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry: overcoming gas-phase hydrogen/deuterium scrambling. Acc Chem Res 2014; 47:3018-27. [PMID: 25171396 DOI: 10.1021/ar500194w] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteins are dynamic molecules that exhibit conformational flexibility to function properly. Well-known examples of this are allosteric regulation of protein activity and ligand-induced conformational changes in protein receptors. Detailed knowledge of the conformational properties of proteins is therefore pertinent to both basic and applied research, including drug development, since the majority of drugs target protein receptors and a growing number of drugs introduced to the market are therapeutic peptides or proteins. X-ray crystallography provides a static picture at atomic resolution of the lowest-energy structure of the native ensemble. There is a growing need for sensitive analytical tools to explore all of the significant molecular structures in the conformational landscape of proteins. Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) has recently emerged as a powerful method for characterizing protein conformational dynamics. The basis of this method is the fact that backbone amides in stable hydrogen-bonded structures (e.g., α-helices and β-sheets) are protected against exchange with the aqueous solvent. All protein structures are dynamic, however, and eventually all of the protecting hydrogen bonds will transiently break as the protein--according to thermodynamic principles--cycles through partially unfolded states that correspond to excited free energy levels. As a result, all of the backbone amides will eventually become temporarily solvent-exposed and exchange-competent over time. Consequently, a folded protein in D2O will gradually incorporate deuterium into its backbone amides, and the kinetics of the process can be readily monitored by mass spectrometry. The deuterium uptake kinetics for the intact protein (global exchange kinetics) represents the sum of the exchange kinetics for the individual backbone amides. Local exchange kinetics is typically achieved by using pepsin digestion under quench conditions (i.e., under cold acidic conditions where the amide hydrogen exchange rate is slowed by many orders of magnitude). The ability to localize the individual deuterated residues (the spatial resolution) is determined by the size (typically ∼7-15 residues) and the number of peptic peptides. These peptides provide a relatively coarse-grained picture of the protein dynamics. A fundamental understanding of the relationship between protein function/dysfunction and conformational dynamics requires in many cases higher resolution and ultimately single-residue resolution. In this Account, we summarize our efforts to achieve single-residue deuterium levels in proteins by electron-based or laser-induced gas-phase fragmentation methods. A crucial analytical requirement for this approach is that the pattern of deuterium labeling from solution is retained in the gas-phase fragment ions. It is therefore essential to control and minimize any occurrence of gas-phase randomization of the solution deuterium label (H/D scrambling) during the MS experiment. For this purpose, we have developed model peptide probes to accurately measure the onset and extent of H/D scrambling. Our analytical procedures to control the occurrence of H/D scrambling are detailed along with the physical parameters that induce it during MS analysis. In light of the growing use of gas-phase dissociation experiments to measure the HDX of proteins in order to obtain a detailed characterization and understanding of the dynamic conformations and interactions of proteins at the molecular level, we discuss the perspectives and challenges of future high-resolution HDX-MS methodology.
Collapse
Affiliation(s)
- Kasper D. Rand
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Martin Zehl
- Department
of Pharmacognosy and Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
41
|
West GM, Willard FS, Sloop KW, Showalter AD, Pascal BD, Griffin PR. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain. PLoS One 2014; 9:e105683. [PMID: 25180755 PMCID: PMC4152014 DOI: 10.1371/journal.pone.0105683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022] Open
Abstract
Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.
Collapse
Affiliation(s)
- Graham M. West
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
- Mass Spectrometry and Proteomics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Francis S. Willard
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Kyle W. Sloop
- Endocrine Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Aaron D. Showalter
- Endocrine Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Bruce D. Pascal
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
- Informatics Core, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Patrick R. Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
42
|
Marciano DP, Dharmarajan V, Griffin PR. HDX-MS guided drug discovery: small molecules and biopharmaceuticals. Curr Opin Struct Biol 2014; 28:105-11. [PMID: 25179005 DOI: 10.1016/j.sbi.2014.08.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/24/2014] [Accepted: 08/13/2014] [Indexed: 12/24/2022]
Abstract
Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS or DXMS) has emerged as an important tool for the development of small molecule therapeutics and biopharmaceuticals. Central to these advances have been improvements to automated HDX-MS platforms and software that allow for the rapid acquisition and processing of experimental data. Correlating the HDX-MS profile of large numbers of ligands with their functional outputs has enabled the development of structure activity relationships (SAR) and delineation of ligand classes based on functional selectivity. HDX-MS has also been applied to address many of the unique challenges posed by the continued emergence of biopharmaceuticals. Here we review the latest applications of HDX-MS to drug discovery, recent advances in technology and software, and provide perspective on future outlook.
Collapse
Affiliation(s)
- David P Marciano
- Molecular Therapeutics Department, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | | | - Patrick R Griffin
- Molecular Therapeutics Department, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
43
|
Huang RYC, Chen G. Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry. Anal Bioanal Chem 2014; 406:6541-58. [PMID: 24948090 DOI: 10.1007/s00216-014-7924-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/18/2014] [Accepted: 05/22/2014] [Indexed: 01/02/2023]
Abstract
Characterization of therapeutic drugs is a crucial step in drug development in the biopharmaceutical industry. Analysis of protein therapeutics is a challenging task because of the complexities associated with large molecular size and 3D structures. Recent advances in hydrogen/deuterium-exchange mass spectrometry (HDX-MS) have provided a means to assess higher-order structure of protein therapeutics in solution. In this review, the principles and procedures of HDX-MS for protein therapeutics characterization are presented, focusing on specific applications of epitope mapping for protein-protein interactions and higher-order structure comparison studies for conformational dynamics of protein therapeutics.
Collapse
Affiliation(s)
- Richard Y-C Huang
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08543, USA
| | | |
Collapse
|
44
|
Modzel M, Stefanowicz P, Szewczuk Z. Hydrogen scrambling in non-covalent complexes of peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:2739-2744. [PMID: 23124664 DOI: 10.1002/rcm.6396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Mass spectrometry analysis combined with hydrogen-deuterium exchange (HDX-MS) is arising as a tool for quick analysis of native protein conformation. However, during collision-induced dissociation (CID) the spatial distribution of deuterium is not always conserved. It is therefore important to find out how hydrogen scrambling occurs--this study concentrates on the possibility of scrambling between amino acid residues spatially close together, but not connected by covalent bonds. METHODS Peptides used in this study were synthesized by Fmoc strategy. Deuteration occurred in ammonia formate solution in D(2)O. Non-covalent complexes consisting of a deuterated and a non-deuterated peptide were analyzed by electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR-MS) with quadrupole mass filter. Low-energy CID was used for complex dissociation. RESULTS The complexes were isolated on a quadrupole and subjected to CID to cause dissociation. The deuterium distribution before and after the dissociation of a non-covalent complex to its components was measured. The study revealed that no significant scrambling occurred between the constituents of the complexes--the degree of scrambling did not exceed 10%. CONCLUSIONS The results obtained for the complexes should be similar to those for protein parts spatially close together--hydrogen scrambling between them should be negligible. The knowledge that almost all the scrambling occurs along peptide chains gives a better insight into the mechanism of HDX inside a protein.
Collapse
Affiliation(s)
- Maciej Modzel
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, Wroclaw, Poland
| | | | | |
Collapse
|
45
|
Brock A. Fragmentation hydrogen exchange mass spectrometry: A review of methodology and applications. Protein Expr Purif 2012; 84:19-37. [DOI: 10.1016/j.pep.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/19/2023]
|
46
|
Amon S, Trelle MB, Jensen ON, Jørgensen TJD. Spatially resolved protein hydrogen exchange measured by subzero-cooled chip-based nanoelectrospray ionization tandem mass spectrometry. Anal Chem 2012; 84:4467-73. [PMID: 22536891 DOI: 10.1021/ac300268r] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mass spectrometry has become a valuable method for studying structural dynamics of proteins in solution by measuring their backbone amide hydrogen/deuterium exchange (HDX) kinetics. In a typical exchange experiment one or more proteins are incubated in deuterated buffer at physiological conditions. After a given period of deuteration, the exchange reaction is quenched by acidification (pH 2.5) and cooling (0 °C) and the deuterated protein (or a digest thereof) is analyzed by mass spectrometry. The unavoidable loss of deuterium (back-exchange) that occurs under quench conditions is undesired as it leads to loss of information. Here we describe the successful application of a chip-based nanoelectrospray ionization mass spectrometry top-down fragmentation approach based on cooling to subzero temperature (-15 °C) which reduces the back-exchange at quench conditions to very low levels. For example, only 4% and 6% deuterium loss for fully deuterated ubiquitin and β(2)-microglobulin were observed after 10 min of back-exchange. The practical value of our subzero-cooled setup for top-down fragmentation HDX analyses is demonstrated by electron-transfer dissociation of ubiquitin ions under carefully optimized mass spectrometric conditions where gas-phase hydrogen scrambling is negligible. Our results show that the known dynamic behavior of ubiquitin in solution is accurately reflected in the deuterium contents of the fragment ions.
Collapse
Affiliation(s)
- Sabine Amon
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | | | | |
Collapse
|
47
|
Mapping of discontinuous conformational epitopes by amide hydrogen/deuterium exchange mass spectrometry and computational docking. J Mol Recognit 2012; 25:114-24. [DOI: 10.1002/jmr.1169] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Landgraf RR, Chalmers MJ, Griffin PR. Automated hydrogen/deuterium exchange electron transfer dissociation high resolution mass spectrometry measured at single-amide resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:301-9. [PMID: 22131230 PMCID: PMC3796066 DOI: 10.1007/s13361-011-0298-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 05/12/2023]
Abstract
Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a well established method for the measurement of solution-phase deuterium incorporation into proteins, which can provide insight into protein conformational mobility. However, most HDX measurements are constrained to regions of the protein where pepsin proteolysis allows detection at peptide resolution. Recently, single-amide resolution deuterium incorporation has been achieved by limiting gas-phase scrambling in the mass spectrometer. This was accomplished by employing a combination of soft ionization and desolvation conditions coupled with the radical-driven fragmentation technique electron transfer dissociation (ETD). Here, a hybrid LTQ-Orbitrap XL is systematically evaluated for its utility in providing single-amide deuterium incorporation for differential HDX analysis of a nuclear receptor upon binding small molecule ligands. We are able to show that instrumental parameters can be optimized to minimize scrambling and can be incorporated into an established and fully automated HDX platform making differential single-amide HDX possible for bottom-up analysis of complex systems. We have applied this system to determine differential single amide resolution HDX data for the peroxizome proliferator activated receptor bound with two ligands of interest.
Collapse
Affiliation(s)
- Rachelle R Landgraf
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #2A2, Jupiter, FL 33458, USA
| | | | | |
Collapse
|
49
|
Percy AJ, Rey M, Burns KM, Schriemer DC. Probing protein interactions with hydrogen/deuterium exchange and mass spectrometry-a review. Anal Chim Acta 2012; 721:7-21. [PMID: 22405295 DOI: 10.1016/j.aca.2012.01.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 11/17/2022]
Abstract
Assessing the functional outcome of protein interactions in structural terms is a goal of structural biology, however most techniques have a limited capacity for making structure-function determinations with both high resolution and high throughput. Mass spectrometry can be applied as a reader of protein chemistries in order to fill this void, and enable methodologies whereby protein structure-function determinations may be made on a proteome-wide level. Protein hydrogen/deuterium exchange (H/DX) offers a chemical labeling strategy suitable for tracking changes in "dynamic topography" and thus represents a powerful means of monitoring protein structure-function relationships. This review presents the exchange method in the context of interaction analysis. Applications involving interface detection, quantitation of binding, and conformational responses to ligation are discussed, and commentary on recent analytical developments is provided.
Collapse
Affiliation(s)
- Andrew J Percy
- Department of Chemistry, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
50
|
Pan Y, Piyadasa H, O'Neil JD, Konermann L. Conformational dynamics of a membrane transport protein probed by H/D exchange and covalent labeling: the glycerol facilitator. J Mol Biol 2011; 416:400-13. [PMID: 22227391 DOI: 10.1016/j.jmb.2011.12.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 01/22/2023]
Abstract
Glycerol facilitator (GF) is a tetrameric membrane protein responsible for the selective permeation of glycerol and water. Each of the four GF subunits forms a transmembrane channel. Every subunit consists of six helices that completely span the lipid bilayer, as well as two half-helices (TM7 and TM3). X-ray crystallography has revealed that the selectivity of GF is due to its unique amphipathic channel interior. To explore the structural dynamics of GF, we employ hydrogen/deuterium exchange (HDX) and oxidative labeling with mass spectrometry (MS). HDX-MS reveals that transmembrane helices are generally more protected than extramembrane segments, consistent with data previously obtained for other membrane proteins. Interestingly, TM7 does not follow this trend. Instead, this half-helix undergoes rapid deuteration, indicative of a highly dynamic local structure. The oxidative labeling behavior of most GF residues is consistent with the static crystal structure. However, the side chains of C134 and M237 undergo labeling although they should be inaccessible according to the X-ray structure. In agreement with our HDX-MS data, this observation attests to the fact that TM7 is only marginally stable. We propose that the highly mobile nature of TM7 aids in the efficient diffusion of guest molecules through the channel ("molecular lubrication"). In the absence of such dynamics, host-guest molecular recognition would favor semipermanent binding of molecules inside the channel, thereby impeding transport. The current work highlights the complementary nature of HDX, covalent labeling, and X-ray crystallography for the characterization of membrane proteins.
Collapse
Affiliation(s)
- Yan Pan
- Department of Chemistry, The University of Western Ontario, London, ON, Canada N6A 5B7
| | | | | | | |
Collapse
|