1
|
Swati B, Jakub S, Aleš M, Petra J, Martin H. DSSBU: A novel mass spectrometry-cleavable analogue of the BS 3 cross-linker. J Proteomics 2025; 310:105330. [PMID: 39427986 DOI: 10.1016/j.jprot.2024.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Protein cross-linking has assumed an irreplaceable role in structural proteomics. Recently, significant efforts have been made to develop novel mass spectrometry (MS)-cleavable reagents. At present, only water-insoluble MS-cleavable cross-linkers are commercially available. However, to comprehensively analyse the various chemical and structural motifs making up proteins, it is necessary to target different protein sites with varying degrees of hydrophilicity. Here we introduce the new MS-cleavable cross-linker disulfodisuccinimidyl dibutyric urea (DSSBU), which we have developed in-house for this purpose. DSSBU contains an N-hydroxysulfosuccinimide (sulfo-NHS) reactive group, so it can serve as a water-soluble counterpart to the widely used cross-linker disuccinimidyl dibutyric urea (DSBU). To investigate the applicability of DSSBU, we compared the efficacy of four similar cross-linkers: bis[sulfosuccinimidyl] suberate (BS3), disuccinimidyl suberate (DSS), DSBU and DSSBU with bovine serum albumin. In addition, we compared the efficacy of DSBU and DSSBU with human haemoglobin. Our results demonstrate that the sulfo-NHS group ensures the superior water solubility of DSSBU and thus negates the need for organic solvents such as dimethyl sulfoxide while preserving the effectivity of urea-based MS-cleavable crosslinkers such as DSBU. Additionally, it makes it possible to target polar regions in proteins. The data gathered are available via ProteomeXchange under identifier PXD055284. SIGNIFICANCE: We have synthesized the novel protein cross-linker DSSBU, which combines sulfo-NHS ester chemistry with a mass spectrometry-cleavable urea group. This makes DSSBU a water-soluble, MS-cleavable cross-linker that reacts with amino groups. To our knowledge, it is the first cross-linker which combines all three of these characteristics. We have tested the performance of our novel cross-linker on bovine serum albumin, a model widely used by the cross-linking mass spectrometry community, and on human haemoglobin. We have comprehensively assessed the performance of DSSBU and compared its efficacy with that of three other cross-linkers in current use (BS3, DSS and DSBU). We conclude that our novel cross-linker surpasses its MS-non-cleavable analogue BS3 in performance and that its water solubility eliminates the need for organic solvents while its hydrophilicity allows for the targetting of polar regions in proteins. Therefore, it will likely become a significant addition to the portfolio of N-hydroxysuccinimide ester cross-linkers.
Collapse
Affiliation(s)
- Banerjee Swati
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czechia
| | - Sýs Jakub
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czechia; Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha, Czechia
| | - Machara Aleš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czechia
| | - Junková Petra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czechia
| | - Hubálek Martin
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czechia.
| |
Collapse
|
2
|
Ulmer LD, Canzani D, Woods CN, Stone NL, Janowska MK, Klevit RE, Bush MF. High-Performance Workflow for Identifying Site-Specific Crosslinks Originating from a Genetically Incorporated, Photoreactive Amino Acid. J Proteome Res 2024; 23:3560-3570. [PMID: 38968604 PMCID: PMC11296897 DOI: 10.1021/acs.jproteome.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
In conventional crosslinking mass spectrometry, proteins are crosslinked using a highly selective, bifunctional chemical reagent, which limits crosslinks to residues that are accessible and reactive to the reagent. Genetically incorporating a photoreactive amino acid offers two key advantages: any site can be targeted, including those that are inaccessible to conventional crosslinking reagents, and photoreactive amino acids can potentially react with a broad range of interaction partners. However, broad reactivity imposes additional challenges for crosslink identification. In this study, we incorporate benzoylphenylalanine (BPA), a photoreactive amino acid, at selected sites in an intrinsically disordered region of the human protein HSPB5. We report and characterize a workflow for identifying and visualizing residue-level interactions originating from BPA. We routinely identify 30 to 300 crosslinked peptide spectral matches with this workflow, which is up to ten times more than existing tools for residue-level BPA crosslink identification. Most identified crosslinks are assigned to a precision of one or two residues, which is supported by a high degree of overlap between replicate analyses. Based on these results, we anticipate that this workflow will support the more general use of genetically incorporated, photoreactive amino acids for characterizing the structures of proteins that have resisted high-resolution characterization.
Collapse
Affiliation(s)
- Lindsey D. Ulmer
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Daniele Canzani
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Christopher N. Woods
- University of Washington, Department of Biochemistry, Box 357350, Seattle, WA 98195-7350
| | - Natalie L. Stone
- University of Washington, Department of Biochemistry, Box 357350, Seattle, WA 98195-7350
| | - Maria K. Janowska
- University of Washington, Department of Biochemistry, Box 357350, Seattle, WA 98195-7350
| | - Rachel E. Klevit
- University of Washington, Department of Biochemistry, Box 357350, Seattle, WA 98195-7350
| | - Matthew F. Bush
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
3
|
Kang WY, Mondal A, Bonney JR, Perez A, Prentice BM. Structural Elucidation of Ubiquitin via Gas-Phase Ion/Ion Cross-Linking Reactions Using Sodium-Cationized Reagents Coupled with Infrared Multiphoton Dissociation. Anal Chem 2024; 96:8518-8527. [PMID: 38711366 PMCID: PMC11161031 DOI: 10.1021/acs.analchem.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Accurate structural determination of proteins is critical to understanding their biological functions and the impact of structural disruption on disease progression. Gas-phase cross-linking mass spectrometry (XL-MS) via ion/ion reactions between multiply charged protein cations and singly charged cross-linker anions has previously been developed to obtain low-resolution structural information on proteins. This method significantly shortens experimental time relative to conventional solution-phase XL-MS but has several technical limitations: (1) the singly deprotonated N-hydroxysulfosuccinimide (sulfo-NHS)-based cross-linker anions are restricted to attachment at neutral amine groups of basic amino acid residues and (2) analyzing terminal cross-linked fragment ions is insufficient to unambiguously localize sites of linker attachment. Herein, we demonstrate enhanced structural information for alcohol-denatured A-state ubiquitin obtained from an alternative gas-phase XL-MS approach. Briefly, singly sodiated ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS) cross-linker anions enable covalent cross-linking at both ammonium and amine groups. Additionally, covalently modified internal fragment ions, along with terminal b-/y-type counterparts, improve the determination of linker attachment sites. Molecular dynamics simulations validate experimentally obtained gas-phase conformations of denatured ubiquitin. This method has identified four cross-linking sites across 8+ ubiquitin, including two new sites in the N-terminal region of the protein that were originally inaccessible in prior gas-phase XL approaches. The two N-terminal cross-linking sites suggest that the N-terminal half of ubiquitin is more compact in gas-phase conformations. By comparison, the two C-terminal linker sites indicate the signature transformation of this region of the protein from a native to a denatured conformation. Overall, the results suggest that the solution-phase secondary structures of the A-state ubiquitin are conserved in the gas phase. This method also provides sufficient sensitivity to differentiate between two gas-phase conformers of the same charge state with subtle structural variations.
Collapse
Affiliation(s)
| | - Arup Mondal
- Department of Chemistry, University of Florida
| | | | | | | |
Collapse
|
4
|
Functional and Highly Cross-Linkable HIV-1 Envelope Glycoproteins Enriched in a Pretriggered Conformation. J Virol 2022; 96:e0166821. [PMID: 35343783 DOI: 10.1128/jvi.01668-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Binding to the receptor, CD4, drives the pretriggered, "closed" (state-1) conformation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer into more "open" conformations (states 2 and 3). Broadly neutralizing antibodies, which are elicited inefficiently, mostly recognize the state-1 Env conformation, whereas the more commonly elicited poorly neutralizing antibodies recognize states 2/3. HIV-1 Env metastability has created challenges for defining the state-1 structure and developing immunogens mimicking this labile conformation. The availability of functional state-1 Envs that can be efficiently cross-linked at lysine and/or acidic amino acid residues might assist these endeavors. To that end, we modified HIV-1AD8 Env, which exhibits an intermediate level of triggerability by CD4. We introduced lysine/acidic residues at positions that exhibit such polymorphisms in natural HIV-1 strains. Env changes that were tolerated with respect to gp120-gp41 processing, subunit association, and virus entry were further combined. Two common polymorphisms, Q114E and Q567K, as well as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble CD4, and a CD4-mimetic compound, phenotypes indicative of stabilization of the pretriggered state-1 Env conformation. Combining these changes resulted in two lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant phenotypes comparable to those of natural, less triggerable tier 2/3 HIV-1 isolates. Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more efficiently and exhibited stronger gp120-trimer association in detergent lysates. These highly cross-linkable Envs enriched in a pretriggered conformation should assist characterization of the structure and immunogenicity of this labile state. IMPORTANCE The development of an efficient vaccine is critical for combating HIV-1 infection worldwide. However, the instability of the pretriggered shape (state 1) of the viral envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1 Env variants that are enriched in state 1 and can be efficiently cross-linked to maintain this shape. These Env complexes are more stable in detergent, assisting their purification. Thus, our study provides a path to a better characterization of the native pretriggered Env, which should assist vaccine development.
Collapse
|
5
|
Elhabashy H, Merino F, Alva V, Kohlbacher O, Lupas AN. Exploring protein-protein interactions at the proteome level. Structure 2022; 30:462-475. [DOI: 10.1016/j.str.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
|
6
|
Zhou WJ, Wei ZH, He SM, Chi H. pValid 2: A deep learning based validation method for peptide identification in shotgun proteomics with increased discriminating power. J Proteomics 2022; 251:104414. [PMID: 34737111 DOI: 10.1016/j.jprot.2021.104414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Tandem mass spectrometry has been the principal method in shotgun proteomics for peptide and protein identification. However, incorrect identifications reported by proteome search engines are still unknown, and further validation methods are needed. We have proposed a validation method pValid before, but its scope of application is limited because two features used in pValid are related to open database search and sub-optimal peptide candidates for tandem mass spectra, and the performance on complex datasets still has room for improvement. In this study, we developed a more comprehensive validation method, pValid 2, to break these limitations by removing the two features and bringing in a new feature related to the retention time predicted by a deep learning-based method pPredRT. pValid 2 yielded an average false positive rate of 0.03% and an average false negative rate of 1.37% on three testing datasets, better than those of pValid, and flagged 8.47% to 11.31% more incorrect identifications than pValid on two complex datasets. Moreover, pValid 2 flagged almost all decoy identifications in validating the open-search datasets. In addition, the function of validating identifications given by MaxQuant and MS-GF+ was implemented in pValid 2, and the validation results showed that pValid 2 performed dramatically better than three metabolic labeling validation methods. Further considering its cost-effectiveness as a pure computational approach, pValid 2 has the potential to be a widely used validation tool for peptide identifications of any proteome search engines in shotgun proteomics. SIGNIFICANCE: Identification results given by shotgun proteomics are vital to life science research. The correctness of identifications deeply affects the precision of the subsequent studies about protein structures and functions, protein-protein interactions, pathogenic mechanism, and targeted drugs. Thus, validating the correctness of identifications is crucial and urgent. In 2019, we developed an identification credibility validation method named pValid, whose false positive rate (FPR) is 0.03% and false negative rate (FNR) is 1.79%, comparable to those of the gold standard, i.e., the Synthetic-peptide validation method. However, pValid can only be used for validating the results from pFind, and its validation performance on a few complex datasets still has room for improvement. So, in this submission, we proposed pValid 2, a more comprehensive computational validation method that can validate identifications from any proteome search engines with increased discriminating power.
Collapse
Affiliation(s)
- Wen-Jing Zhou
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Hong Wei
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Si-Min He
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hao Chi
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Basic pH reversed-phase liquid chromatography (bRPLC) in combination with tip-based strong cation exchange (SCX-Tip), ReST, an efficient approach for large-scale cross-linked peptide analysis. Anal Chim Acta 2021; 1179:338838. [PMID: 34535262 DOI: 10.1016/j.aca.2021.338838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/21/2021] [Accepted: 07/04/2021] [Indexed: 11/24/2022]
Abstract
Chemical cross-linking in combination with mass spectrometry (XL-MS) has emerged as a useful method for structural elucidation of proteins and protein complexes. Due to the low stoichiometry of cross-linked peptides, a specific enrichment method is always necessary prior to LC-MS/MS analysis, especially for complex samples. Currently, strong cation exchange chromatography (SCX), size exclusion chromatography (SEC), and affinity tag-based enrichment are among the widely used enrichment strategies. Herein, we present a two-dimensional strategy combining basic pH reversed-phase liquid chromatography (bRPLC) fractionation and tip-based SCX (SCX-Tip) enrichment, termed ReST, for the characterization of cross-linked peptides. We revealed the unbiased separation effects of the bRPLC in the cross-linked peptide fractionation. We optimized the enrichment conditions of SCX-Tip using well-designed cross-linked peptides. Taking advantage of the high resolution of bRPLC separation and the high enrichment efficiency of SCX-Tip, we were able to identify 43.6% more cross-linked peptides than the conventional SCX approach. The presented ReST is a simple and efficient approach for proteome-scale protein-protein interaction studies.
Collapse
|
8
|
Abstract
Cross-linking, in general, involves the covalent linkage of two amino acid residues of proteins or protein complexes in close proximity. Mass spectrometry and computational analysis are then applied to identify the formed linkage and deduce structural information such as distance restraints. Quantitative cross-linking coupled with mass spectrometry is well suited to study protein dynamics and conformations of protein complexes. The quantitative cross-linking workflow described here is based on the application of isotope labelled cross-linkers. Proteins or protein complexes present in different structural states are differentially cross-linked using a "light" and a "heavy" cross-linker. The intensity ratios of cross-links (i.e., light/heavy or heavy/light) indicate structural changes or interactions that are maintained in the different states. These structural insights lead to a better understanding of the function of the proteins or protein complexes investigated. The described workflow is applicable to a wide range of research questions including, for instance, protein dynamics or structural changes upon ligand binding.
Collapse
Affiliation(s)
- Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
9
|
Zhao B, Reilly CP, Davis C, Matouschek A, Reilly JP. Use of Multiple Ion Fragmentation Methods to Identify Protein Cross-Links and Facilitate Comparison of Data Interpretation Algorithms. J Proteome Res 2020; 19:2758-2771. [PMID: 32496805 DOI: 10.1021/acs.jproteome.0c00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple ion fragmentation methods involving collision-induced dissociation (CID), higher-energy collisional dissociation (HCD) with regular and very high energy settings, and electron-transfer dissociation with supplementary HCD (EThcD) are implemented to improve the confidence of cross-link identifications. Three different S. cerevisiae proteasome samples cross-linked by diethyl suberthioimidate (DEST) or bis(sulfosuccinimidyl)suberate (BS3) are analyzed. Two approaches are introduced to combine interpretations from the above four methods. Working with cleavable cross-linkers such as DEST, the first approach searches for cross-link diagnostic ions and consistency among the best interpretations derived from all four MS2 spectra associated with each precursor ion. Better agreement leads to a more definitive identification. Compatible with both cleavable and noncleavable cross-linkers such as BS3, the second approach multiplies scoring metrics from a number of fragmentation experiments to derive an overall best match. This significantly increases the scoring gap between the target and decoy matches. The validity of cross-links fragmented by HCD alone and identified by Kojak, MeroX, pLink, and Xi was evaluated using multiple fragmentation data. Possible ways to improve the identification credibility are discussed. Data are available via ProteomeXchange with identifier PXD018310.
Collapse
Affiliation(s)
- Bingqing Zhao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Colin P Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Caroline Davis
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James P Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
10
|
Chu F, Hogan D, Gupta R, Gao XZ, Nguyen HT, Cote RH. Allosteric Regulation of Rod Photoreceptor Phosphodiesterase 6 (PDE6) Elucidated by Chemical Cross-Linking and Quantitative Mass Spectrometry. J Mol Biol 2019; 431:3677-3689. [PMID: 31394113 DOI: 10.1016/j.jmb.2019.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/29/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022]
Abstract
Photoreceptor phosphodiesterase (PDE6) is the central effector enzyme in the visual excitation pathway in rod and cone photoreceptors. Its tight regulation is essential for the speed, sensitivity, recovery, and adaptation of visual signaling. The rod PDE6 holoenzyme (Pαβγ2) is composed of a catalytic heterodimer (Pαβ) that binds two inhibitory γ subunits. Each of the two catalytic subunits (Pα and Pβ) contains a catalytic domain responsible for cGMP hydrolysis and two tandem GAF domains, one of which binds cGMP noncatalytically. Unlike related GAF-containing PDEs where cGMP binding allosterically activates catalysis, the physiological significance of cGMP binding to the GAF domains of PDE6 is unknown. To elucidate the structural determinants of PDE6 allosteric regulators, we biochemically characterized PDE6 complexes in various allosteric states (Pαβ, Pαβ-cGMP, Pαβγ2, and Pαβγ2-cGMP) with a quantitative cross-linking/mass spectrometry approach. We employed a normalization strategy to dissect the cross-linking reactivity of individual residues in order to assess the spatial cross-linking propensity of detected pairs. In addition to identifying cross-linked pairs that undergo conformational changes upon ligand binding, we observed an asymmetric binding of the inhibitory γ-subunit and the noncatalytic cGMP to the GAFa domains of rod PDE6, as well as a stable open conformation of Pαβ catalytic dimer in different allosteric states. These results advance our understanding of the exquisite regulatory control of the lifetime of rod PDE6 activation/deactivation during visual signaling, as well as providing a structural basis for interpreting how mutations in rod PDE6 subunits can lead to retinal diseases.
Collapse
Affiliation(s)
- Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA.
| | - Donna Hogan
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Richa Gupta
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Xiong-Zhuo Gao
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Rick H Cote
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
11
|
Chen ZL, Meng JM, Cao Y, Yin JL, Fang RQ, Fan SB, Liu C, Zeng WF, Ding YH, Tan D, Wu L, Zhou WJ, Chi H, Sun RX, Dong MQ, He SM. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat Commun 2019; 10:3404. [PMID: 31363125 PMCID: PMC6667459 DOI: 10.1038/s41467-019-11337-z] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/20/2019] [Indexed: 01/05/2023] Open
Abstract
We describe pLink 2, a search engine with higher speed and reliability for proteome-scale identification of cross-linked peptides. With a two-stage open search strategy facilitated by fragment indexing, pLink 2 is ~40 times faster than pLink 1 and 3~10 times faster than Kojak. Furthermore, using simulated datasets, synthetic datasets, 15N metabolically labeled datasets, and entrapment databases, four analysis methods were designed to evaluate the credibility of ten state-of-the-art search engines. This systematic evaluation shows that pLink 2 outperforms these methods in precision and sensitivity, especially at proteome scales. Lastly, re-analysis of four published proteome-scale cross-linking datasets with pLink 2 required only a fraction of the time used by pLink 1, with up to 27% more cross-linked residue pairs identified. pLink 2 is therefore an efficient and reliable tool for cross-linking mass spectrometry analysis, and the systematic evaluation methods described here will be useful for future software development. The identification of cross-linked peptides at a proteome scale for interactome analyses represents a complex challenge. Here the authors report an efficient and reliable search engine pLink 2 for proteome-scale cross-linking mass spectrometry analyses, and demonstrate how to systematically evaluate the credibility of search engines.
Collapse
Affiliation(s)
- Zhen-Lin Chen
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Ming Meng
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Cao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Ji-Li Yin
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run-Qian Fang
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Bo Fan
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Liu
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Feng Zeng
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue-He Ding
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Dan Tan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Long Wu
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Jing Zhou
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Chi
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui-Xiang Sun
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Si-Min He
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Chavez JD, Mohr JP, Mathay M, Zhong X, Keller A, Bruce JE. Systems structural biology measurements by in vivo cross-linking with mass spectrometry. Nat Protoc 2019; 14:2318-2343. [PMID: 31270507 DOI: 10.1038/s41596-019-0181-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
This protocol describes a workflow for utilizing large-scale cross-linking with mass spectrometry (XL-MS) to make systems-level structural biology measurements in complex biological samples, including cells, isolated organelles, and tissue samples. XL-MS is a structural biology technique that provides information on the molecular structure of proteins and protein complexes using chemical probes that report the proximity of probe-reactive amino acids within proteins, typically lysine residues. Information gained through XL-MS studies is often complementary to more traditional methods, such as X-ray crystallography, nuclear magnetic resonance, and cryo-electron microscopy. The use of MS-cleavable cross-linkers, including protein interaction reporter (PIR) technologies, enables XL-MS studies on protein structures and interactions in extremely complex biological samples, including intact living cells. PIR cross-linkers are designed to contain chemical bonds at specific locations within the cross-linker molecule that can be selectively cleaved by collision-induced dissociation or UV light. When broken, these bonds release the intact peptides that were cross-linked, as well as a reporter ion. Conservation of mass dictates that the sum of the two released peptide masses and the reporter mass equals the measured precursor mass. This relationship is used to identify cross-linked peptide pairs. Release of the individual peptides permits accurate measurement of their masses and independent amino acid sequence determination by tandem MS, allowing the use of standard proteomics search engines such as Comet for peptide sequence assignment, greatly simplifying data analysis of cross-linked peptide pairs. Search results are processed with XLinkProphet for validation and can be uploaded into XlinkDB for interaction network and structural analysis.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jared P Mohr
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Martin Mathay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xuefei Zhong
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Fang Z, Baghdady YZ, Schug KA, Chowdhury SM. Evaluation of Different Stationary Phases in the Separation of Inter-Cross-Linked Peptides. J Proteome Res 2019; 18:1916-1925. [PMID: 30786713 DOI: 10.1021/acs.jproteome.9b00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chemical cross-linking coupled with mass spectrometry (MS) is becoming a routinely and widely used technique for depicting and constructing protein structures and protein interaction networks. One major challenge for cross-linking/MS is the determination of informative low-abundant inter-cross-linked products, generated within a sample of high complexity. A C18 stationary phase is the conventional means for reversed-phase (RP) separation of inter-cross-linked peptides. Various RP stationary phases, which provide different selectivities and retentions, have been developed as alternatives to C18 stationary phases. In this study, two phenyl-based columns, biphenyl and fluorophenyl, were investigated and compared with a C18 phase for separating BS3 (bis(sulfosuccinimidyl)suberate) cross-linked bovine serum albumin (BSA) and myoglobin by bottom-up proteomics. Fractions from the three columns were collected and analyzed in a linear ion trap (LIT) mass spectrometer for improving detection of low abundant inter-cross-linked peptides. Among these three columns, the fluorophenyl column provides additional ion-exchange interaction and exhibits unique retention in separating the cross-linked peptides. The fractioned data was analyzed in pLink, showing the fluorophenyl column consistently obtained more inter-cross-linked peptide identifications than both C18 and biphenyl columns. For the BSA cross-linked sample, the identified inter-cross-linked peptide numbers of the fluorophenyl to C18 column are 136 to 102 in "low confident" results and 11 to 6 in "high confident" results. The fluorophenyl column could potentially be a better alternative for targeting the low stoichiometric inter-cross-linked peptides.
Collapse
Affiliation(s)
- Zixiang Fang
- Department of Chemistry & Biochemistry , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Yehia Z Baghdady
- Department of Chemistry & Biochemistry , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Kevin A Schug
- Department of Chemistry & Biochemistry , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Saiful M Chowdhury
- Department of Chemistry & Biochemistry , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| |
Collapse
|
14
|
Conformational Differences between Functional Human Immunodeficiency Virus Envelope Glycoprotein Trimers and Stabilized Soluble Trimers. J Virol 2019; 93:JVI.01709-18. [PMID: 30429345 DOI: 10.1128/jvi.01709-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/07/2018] [Indexed: 01/11/2023] Open
Abstract
Binding to the receptor CD4 triggers entry-related conformational changes in the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, (gp120/gp41)3 Soluble versions of HIV-1 Env trimers (sgp140 SOSIP.664) stabilized by a gp120-gp41 disulfide bond and a change (I559P) in gp41 have been structurally characterized. Here, we use cross-linking/mass spectrometry to evaluate the conformations of functional membrane Env and sgp140 SOSIP.664. Differences were detected in the gp120 trimer association domain and C terminus and in the gp41 heptad repeat 1 (HR1) region. Whereas the membrane Env trimer exposes the gp41 HR1 coiled coil only after CD4 binding, the sgp140 SOSIP.664 HR1 coiled coil was accessible to the gp41 HR2 peptide even in the absence of CD4. Our results delineate differences in both gp120 and gp41 subunits between functional membrane Env and the sgp140 SOSIP.664 trimer and provide distance constraints that can assist validation of candidate structural models of the native HIV-1 Env trimer.IMPORTANCE HIV-1 envelope glycoprotein spikes mediate the entry of the virus into host cells and are a major target for vaccine-induced antibodies. Soluble forms of the envelope glycoproteins that are stable and easily produced have been characterized extensively and are being considered as vaccines. Here, we present evidence that these stabilized soluble envelope glycoproteins differ in multiple respects from the natural HIV-1 envelope glycoproteins. By pinpointing these differences, our results can guide the improvement of envelope glycoprotein preparations to achieve greater similarity to the viral envelope glycoprotein spike, potentially increasing their effectiveness as a vaccine.
Collapse
|
15
|
Khare S, Bhasin M, Sahoo A, Varadarajan R. Protein model discrimination attempts using mutational sensitivity, predicted secondary structure, and model quality information. Proteins 2019; 87:326-336. [PMID: 30615225 DOI: 10.1002/prot.25654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 01/02/2023]
Abstract
Structure prediction methods often generate a large number of models for a target sequence. Even if the correct fold for the target sequence is sampled in this dataset, it is difficult to distinguish it from other decoy structures. An attempt to solve this problem using experimental mutational sensitivity data for the CcdB protein was described previously by exploiting the correlation of residue depth with mutational sensitivity (r ~ 0.6). We now show that such a correlation extends to four other proteins with localized active sites, and for which saturation mutagenesis datasets exist. We also examine whether incorporation of predicted secondary structure information and the DOPE model quality assessment score, in addition to mutational sensitivity, improves the accuracy of model discrimination using a decoy dataset of 163 targets from CASP. Although most CASP models would have been subjected to model quality assessment prior to submission, we find that the DOPE score makes a substantial contribution to the observed improvement. We therefore also applied the approach to CcdB and four other proteins for which reliable experimental mutational data exist and observe that inclusion of experimental mutational data results in a small qualitative improvement in model discrimination relative to that seen with just the DOPE score. This is largely because of our limited ability to quantitatively predict effects of point mutations on in vivo protein activity. Further improvements in the methodology are required to facilitate improved utilization of single mutant data.
Collapse
Affiliation(s)
- Shruti Khare
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Anusmita Sahoo
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.,Chemical Biology Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
16
|
Kaur U, Meng H, Lui F, Ma R, Ogburn RN, Johnson JHR, Fitzgerald MC, Jones LM. Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale. J Proteome Res 2018; 17:3614-3627. [PMID: 30222357 DOI: 10.1021/acs.jproteome.8b00341] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, a suite of new mass-spectrometry-based proteomics methods has been developed that now enables the conformational properties of proteins and protein-ligand complexes to be studied in complex biological mixtures, from cell lysates to intact cells. Highlighted here are seven of the techniques in this new toolbox. These techniques include chemical cross-linking (XL-MS), hydroxyl radical footprinting (HRF), Drug Affinity Responsive Target Stability (DARTS), Limited Proteolysis (LiP), Pulse Proteolysis (PP), Stability of Proteins from Rates of Oxidation (SPROX), and Thermal Proteome Profiling (TPP). The above techniques all rely on conventional bottom-up proteomics strategies for peptide sequencing and protein identification. However, they have required the development of unconventional proteomic data analysis strategies. Discussed here are the current technical challenges associated with these different data analysis strategies as well as the relative analytical capabilities of the different techniques. The new biophysical capabilities that the above techniques bring to bear on proteomic research are also highlighted in the context of several different application areas in which these techniques have been used, including the study of protein ligand binding interactions (e.g., protein target discovery studies and protein interaction network analyses) and the characterization of biological states.
Collapse
Affiliation(s)
- Upneet Kaur
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - He Meng
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | | | - Renze Ma
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Ryenne N Ogburn
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Julia H R Johnson
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Michael C Fitzgerald
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
17
|
Hagen SE, Liu K, Jin Y, Piersimoni L, Andrews PC, Showalter HD. Synthesis of CID-cleavable protein crosslinking agents containing quaternary amines for structural mass spectrometry. Org Biomol Chem 2018; 16:8245-8248. [PMID: 29537042 PMCID: PMC6138586 DOI: 10.1039/c8ob00329g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two novel cyclic quaternary amine crosslinking probes are synthesized for structural mass spectrometry of protein complexes in solution and for analysis of protein interactions in organellar and whole cell extracts. Each exhibits high aqueous solubility, excellent protein crosslinking efficiencies, low collision induced dissociation (CID) energy fragmentation efficiencies, high stoichiometries of reaction, increased charges of crosslinked peptide ions, and maintenance of overall surface charge balance of crosslinked proteins.
Collapse
Affiliation(s)
- Susan E Hagen
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Sinitcyn P, Rudolph JD, Cox J. Computational Methods for Understanding Mass Spectrometry–Based Shotgun Proteomics Data. Annu Rev Biomed Data Sci 2018. [DOI: 10.1146/annurev-biodatasci-080917-013516] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Computational proteomics is the data science concerned with the identification and quantification of proteins from high-throughput data and the biological interpretation of their concentration changes, posttranslational modifications, interactions, and subcellular localizations. Today, these data most often originate from mass spectrometry–based shotgun proteomics experiments. In this review, we survey computational methods for the analysis of such proteomics data, focusing on the explanation of the key concepts. Starting with mass spectrometric feature detection, we then cover methods for the identification of peptides. Subsequently, protein inference and the control of false discovery rates are highly important topics covered. We then discuss methods for the quantification of peptides and proteins. A section on downstream data analysis covers exploratory statistics, network analysis, machine learning, and multiomics data integration. Finally, we discuss current developments and provide an outlook on what the near future of computational proteomics might bear.
Collapse
Affiliation(s)
- Pavel Sinitcyn
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jan Daniel Rudolph
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jürgen Cox
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
19
|
Chu F, Thornton DT, Nguyen HT. Chemical cross-linking in the structural analysis of protein assemblies. Methods 2018; 144:53-63. [PMID: 29857191 DOI: 10.1016/j.ymeth.2018.05.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
For decades, chemical cross-linking of proteins has been an established method to study protein interaction partners. The chemical cross-linking approach has recently been revived by mass spectrometric analysis of the cross-linking reaction products. Chemical cross-linking and mass spectrometric analysis (CXMS) enables the identification of residues that are close in three-dimensional (3D) space but not necessarily close in primary sequence. Therefore, this approach provides medium resolution information to guide de novo structure prediction, protein interface mapping and protein complex model building. The robustness and compatibility of the CXMS approach with multiple biochemical methods have made it especially appealing for challenging systems with multiple biochemical compositions and conformation states. This review provides an overview of the CXMS approach, describing general procedures in sample processing, data acquisition and analysis. Selection of proper chemical cross-linking reagents, strategies for cross-linked peptide identification, and successful application of CXMS in structural characterization of proteins and protein complexes are discussed.
Collapse
Affiliation(s)
- Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, United States.
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, United States
| |
Collapse
|
20
|
Opuni KFM, Al-Majdoub M, Yefremova Y, El-Kased RF, Koy C, Glocker MO. Mass spectrometric epitope mapping. MASS SPECTROMETRY REVIEWS 2018; 37:229-241. [PMID: 27403762 DOI: 10.1002/mas.21516] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Mass spectrometric epitope mapping has become a versatile method to precisely determine a soluble antigen's partial structure that directly interacts with an antibody in solution. Typical lengths of investigated antigens have increased up to several 100 amino acids while experimentally determined epitope peptides have decreased in length to on average 10-15 amino acids. Since the early 1990s more and more sophisticated methods have been developed and have forwarded a bouquet of suitable approaches for epitope mapping with immobilized, temporarily immobilized, and free-floating antibodies. While up to now monoclonal antibodies have been mostly used in epitope mapping experiments, the applicability of polyclonal antibodies has been proven. The antibody's resistance towards enzymatic proteolysis has been of key importance for the two mostly applied methods: epitope excision and epitope extraction. Sample consumption has dropped to low pmol amounts on both, the antigen and the antibody. While adequate in-solution sample handling has been most important for successful epitope mapping, mass spectrometric analysis has been found the most suitable read-out method from early on. The rapidity by which mass spectrometric epitope mapping nowadays is executed outperforms all alternative methods. Thus, it can be asserted that mass spectrometric epitope mapping has reached a state of maturity, which allows it to be used in any mass spectrometry laboratory. After 25 years of constant and steady improvements, its application to clinical samples, for example, for patient characterization and stratification, is anticipated in the near future. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:229-241, 2018.
Collapse
Affiliation(s)
- Kwabena F M Opuni
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Mahmoud Al-Majdoub
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Yelena Yefremova
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Reham F El-Kased
- Microbiology and Immunology Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Cornelia Koy
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
21
|
Zhang X, Wang JH, Tan D, Li Q, Li M, Gong Z, Tang C, Liu Z, Dong MQ, Lei X. Carboxylate-Selective Chemical Cross-Linkers for Mass Spectrometric Analysis of Protein Structures. Anal Chem 2018; 90:1195-1201. [DOI: 10.1021/acs.analchem.7b03789] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoyun Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jian-Hua Wang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Dan Tan
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Qiang Li
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Maodong Li
- Center
for Quantitative Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhou Gong
- CAS
Key Laboratory of Magnetic Resonance in Biological Systems, State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Chun Tang
- CAS
Key Laboratory of Magnetic Resonance in Biological Systems, State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Zhirong Liu
- Center
for Quantitative Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng-Qiu Dong
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Mandalaparthy V, Sanaboyana VR, Rafalia H, Gosavi S. Exploring the effects of sparse restraints on protein structure prediction. Proteins 2017; 86:248-262. [DOI: 10.1002/prot.25438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Varun Mandalaparthy
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road; Bangalore 560065 India
| | - Venkata Ramana Sanaboyana
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road; Bangalore 560065 India
| | - Hitesh Rafalia
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road; Bangalore 560065 India
- Manipal University, Madhav Nagar; Manipal 576104 India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road; Bangalore 560065 India
| |
Collapse
|
23
|
Irvine GW, Stillman MJ. Residue Modification and Mass Spectrometry for the Investigation of Structural and Metalation Properties of Metallothionein and Cysteine-Rich Proteins. Int J Mol Sci 2017; 18:ijms18050913. [PMID: 28445428 PMCID: PMC5454826 DOI: 10.3390/ijms18050913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/23/2022] Open
Abstract
Structural information regarding metallothioneins (MTs) has been hard to come by due to its highly dynamic nature in the absence of metal-thiolate cluster formation and crystallization difficulties. Thus, typical spectroscopic methods for structural determination are limited in their usefulness when applied to MTs. Mass spectrometric methods have revolutionized our understanding of protein dynamics, structure, and folding. Recently, advances have been made in residue modification mass spectrometry in order to probe the hard-to-characterize structure of apo- and partially metalated MTs. By using different cysteine specific alkylation reagents, time dependent electrospray ionization mass spectrometry (ESI-MS), and step-wise “snapshot” ESI-MS, we are beginning to understand the dynamics of the conformers of apo-MT and related species. In this review we highlight recent papers that use these and similar techniques for structure elucidation and attempt to explain in a concise manner the data interpretations of these complex methods. We expect increasing resolution in our picture of the structural conformations of metal-free MTs as these techniques are more widely adopted and combined with other promising tools for structural elucidation.
Collapse
Affiliation(s)
- Gordon W Irvine
- Department of Chemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| |
Collapse
|
24
|
Barysz HM, Malmström J. Development of Large-scale Cross-linking Mass Spectrometry. Mol Cell Proteomics 2017; 17:1055-1066. [PMID: 28389583 DOI: 10.1074/mcp.r116.061663] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 03/26/2017] [Indexed: 11/06/2022] Open
Abstract
Cross-linking mass spectrometry (CLMS) provides distance constraints to study the structure of proteins, multiprotein complexes and protein-protein interactions which are critical for the understanding of protein function. CLMS is an attractive technology to bridge the gap between high-resolution structural biology techniques and proteomic-based interactome studies. However, as outlined in this review there are still several bottlenecks associated with CLMS which limit its application on a proteome-wide level. Specifically, there is an unmet need for comprehensive software that can reliably identify cross-linked peptides from large data sets. In this review we provide supporting information to reason that targeted proteomics of cross-links may provide the required sensitivity to reliably detect and quantify cross-linked peptides and that a reporter ion signature for cross-linked peptides may become a useful approach to increase confidence in the identification process of cross-linked peptides. In addition, the review summarizes the recent advances in CLMS workflows using the analysis of condensin complex in intact chromosomes as a model complex.
Collapse
Affiliation(s)
- Helena Maria Barysz
- From the ‡Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Malmström
- From the ‡Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Tinnefeld V, Venne AS, Sickmann A, Zahedi RP. Enrichment of Cross-Linked Peptides Using Charge-Based Fractional Diagonal Chromatography (ChaFRADIC). J Proteome Res 2017; 16:459-469. [DOI: 10.1021/acs.jproteome.6b00587] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Verena Tinnefeld
- Leibniz-Institut
für Analytische Wissenschaften - ISAS - e.V., Dortmund 44227, Germany
| | - A. Saskia Venne
- Leibniz-Institut
für Analytische Wissenschaften - ISAS - e.V., Dortmund 44227, Germany
| | - Albert Sickmann
- Leibniz-Institut
für Analytische Wissenschaften - ISAS - e.V., Dortmund 44227, Germany
- Department
of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
- Medizinisches
Proteom Center, Ruhr Universität Bochum, Bochum 44801, Germany
| | - René P. Zahedi
- Leibniz-Institut
für Analytische Wissenschaften - ISAS - e.V., Dortmund 44227, Germany
| |
Collapse
|
26
|
Wu S, Tan D, Woolford JL, Dong MQ, Gao N. Atomic modeling of the ITS2 ribosome assembly subcomplex from cryo-EM together with mass spectrometry-identified protein-protein crosslinks. Protein Sci 2016; 26:103-112. [PMID: 27643814 DOI: 10.1002/pro.3045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022]
Abstract
The assembly of ribosomal subunits starts in the nucleus, initiated by co-transcriptional folding of nascent ribosomal RNA (rRNA) transcripts and binding of ribosomal proteins and assembly factors. The internal transcribed spacer 2 (ITS2) is a precursor sequence to be processed from the intermediate 27S rRNA in the nucleoplasm; its removal is required for nuclear export of pre-60S particles. The proper processing of the ITS2 depends on multiple associated assembly factors and RNases. However, none of the structures of the known ITS2-binding factors is available. Here, we describe the modeling of the ITS2 subcomplex, including five assembly factors Cic1, Nop7, Nop15, Nop53, and Rlp7, using a combination of cryo-electron microscopy and cross-linking of proteins coupled with mass spectrometry approaches. The resulting atomic models provide structural insights into their function in ribosome assembly, and establish a framework for further dissection of their molecular roles in ITS2 processing.
Collapse
Affiliation(s)
- Shan Wu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Dan Tan
- National Institute of Biological Sciences, Beijing, 102206, People's Republic of China
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, People's Republic of China
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
27
|
Mummadisetti MP, Frankel LK, Bellamy HD, Sallans L, Goettert JS, Brylinski M, Bricker TM. Use of Protein Cross-Linking and Radiolytic Labeling To Elucidate the Structure of PsbO within Higher-Plant Photosystem II. Biochemistry 2016; 55:3204-13. [PMID: 27203407 DOI: 10.1021/acs.biochem.6b00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have used protein cross-linking with the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and radiolytic footprinting coupled with high-resolution tandem mass spectrometry, to examine the structure of higher-plant PsbO when it is bound to Photosystem II. Twenty intramolecular cross-linked residue pairs were identified. On the basis of this cross-linking data, spinach PsbO was modeled using the Thermosynechococcus vulcanus PsbO structure as a template, with the cross-linking distance constraints incorporated using the MODELLER program. Our model of higher-plant PsbO identifies several differences between the spinach and cyanobacterial proteins. The N-terminal region is particularly interesting, as this region has been suggested to be important for oxygen evolution and for the specific binding of PsbO to Photosystem II. Additionally, using radiolytic mapping, we have identified regions on spinach PsbO that are shielded from the bulk solvent. These domains may represent regions on PsbO that interact with other components, as yet unidentified, of the photosystem.
Collapse
Affiliation(s)
- Manjula P Mummadisetti
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Laurie K Frankel
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Henry D Bellamy
- The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices, Louisiana State University , Baton Rouge, Louisiana 70806, United States
| | - Larry Sallans
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | - Jost S Goettert
- The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices, Louisiana State University , Baton Rouge, Louisiana 70806, United States
| | - Michal Brylinski
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
28
|
Ji C, Li S, Reilly JP, Radivojac P, Tang H. XLSearch: a Probabilistic Database Search Algorithm for Identifying Cross-Linked Peptides. J Proteome Res 2016; 15:1830-41. [PMID: 27068484 PMCID: PMC5770149 DOI: 10.1021/acs.jproteome.6b00004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical cross-linking combined with mass spectrometric analysis has become an important technique for probing protein three-dimensional structure and protein-protein interactions. A key step in this process is the accurate identification and validation of cross-linked peptides from tandem mass spectra. The identification of cross-linked peptides, however, presents challenges related to the expanded nature of the search space (all pairs of peptides in a sequence database) and the fact that some peptide-spectrum matches (PSMs) contain one correct and one incorrect peptide but often receive scores that are comparable to those in which both peptides are correctly identified. To address these problems and improve detection of cross-linked peptides, we propose a new database search algorithm, XLSearch, for identifying cross-linked peptides. Our approach is based on a data-driven scoring scheme that independently estimates the probability of correctly identifying each individual peptide in the cross-link given knowledge of the correct or incorrect identification of the other peptide. These conditional probabilities are subsequently used to estimate the joint posterior probability that both peptides are correctly identified. Using the data from two previous cross-link studies, we show the effectiveness of this scoring scheme, particularly in distinguishing between true identifications and those containing one incorrect peptide. We also provide evidence that XLSearch achieves more identifications than two alternative methods at the same false discovery rate (availability: https://github.com/COL-IU/XLSearch ).
Collapse
Affiliation(s)
- Chao Ji
- Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, United States
| | - Sujun Li
- Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, United States
| | - James P. Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Predrag Radivojac
- Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, United States
| | - Haixu Tang
- Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
29
|
Zheng Q, Zhang H, Wu S, Chen H. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:864-875. [PMID: 26902947 PMCID: PMC4841728 DOI: 10.1007/s13361-016-1356-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca(2+) on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Shiyong Wu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
30
|
Tan D, Li Q, Zhang MJ, Liu C, Ma C, Zhang P, Ding YH, Fan SB, Tao L, Yang B, Li X, Ma S, Liu J, Feng B, Liu X, Wang HW, He SM, Gao N, Ye K, Dong MQ, Lei X. Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states. eLife 2016; 5. [PMID: 26952210 PMCID: PMC4811778 DOI: 10.7554/elife.12509] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/26/2016] [Indexed: 12/20/2022] Open
Abstract
To improve chemical cross-linking of proteins coupled with mass spectrometry (CXMS), we developed a lysine-targeted enrichable cross-linker containing a biotin tag for affinity purification, a chemical cleavage site to separate cross-linked peptides away from biotin after enrichment, and a spacer arm that can be labeled with stable isotopes for quantitation. By locating the flexible proteins on the surface of 70S ribosome, we show that this trifunctional cross-linker is effective at attaining structural information not easily attainable by crystallography and electron microscopy. From a crude Rrp46 immunoprecipitate, it helped identify two direct binding partners of Rrp46 and 15 protein-protein interactions (PPIs) among the co-immunoprecipitated exosome subunits. Applying it to E. coli and C. elegans lysates, we identified 3130 and 893 inter-linked lysine pairs, representing 677 and 121 PPIs. Using a quantitative CXMS workflow we demonstrate that it can reveal changes in the reactivity of lysine residues due to protein-nucleic acid interaction. DOI:http://dx.doi.org/10.7554/eLife.12509.001 Proteins fold into structures that are determined by the order of the amino acids that they are built from. These structures enable the protein to carry out its role, which often involves interacting with other proteins. Chemical cross-linking coupled with mass spectrometry (CXMS) is a powerful method used to study protein structure and how proteins interact, with a benefit of stabilizing and capturing brief interactions. CXMS uses a chemical compound called a linker that has two arms, each of which can bind specific amino acids in a protein or in multiple proteins. Only when the regions are close to each other can they be “cross-linked” in this way. After cross-linking, the proteins are cut into small pieces known as peptides. The cross-linked peptides are then separated from the non cross-linked ones and characterized. Although CXMS is a popular method, there are aspects about it that limit its use. It does not work well on complex samples that contain lots of different proteins, as it is difficult to separate the cross-linked peptides from the overwhelming amounts of non cross-linked peptides. Also, although it can be used to detect changes in the shape of a protein, which are often crucial to the protein's role, the method has not been smoothed out. Tan, Li et al. have now developed a new cross-linker called Leiker that addresses these limitations. Leiker cross-links the amino acid lysine to another lysine, and contains a molecular tag that allows cross-linked peptides to be efficiently purified away from non cross-linked peptides. As part of a streamlined workflow to detect changes in the shape of a protein, Leiker also contains a region that can be labeled. Analysing a bacterial ribosome, which contains more than 50 proteins, showed that Leiker-based CXMS could detect many more protein interactions than previous studies had. These included interactions that changed too rapidly to be studied by other structural methods. Tan, Li et al. then applied Leiker-based CXMS to the entire contents of bacterial cells at different stages of growth, and identified a protein interaction that is only found in growing cells. In future, Leiker will be useful for analyzing the structure of large protein complexes, probing changes in protein structure, and mapping the interactions between proteins in complex mixtures. DOI:http://dx.doi.org/10.7554/eLife.12509.002
Collapse
Affiliation(s)
- Dan Tan
- Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Qiang Li
- National Institute of Biological Sciences, Beijing, China.,Synthetic and Functional Biomolecules Center, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mei-Jun Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Chao Liu
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Chengying Ma
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Pan Zhang
- Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Yue-He Ding
- Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Sheng-Bo Fan
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Li Tao
- Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Bing Yang
- National Institute of Biological Sciences, Beijing, China
| | - Xiangke Li
- National Institute of Biological Sciences, Beijing, China
| | - Shoucai Ma
- National Institute of Biological Sciences, Beijing, China
| | - Junjie Liu
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Boya Feng
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- National Institute of Biological Sciences, Beijing, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Si-Min He
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing, China
| | - Meng-Qiu Dong
- Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Xiaoguang Lei
- National Institute of Biological Sciences, Beijing, China.,Synthetic and Functional Biomolecules Center, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
31
|
Ma C, Yan K, Tan D, Li N, Zhang Y, Yuan Y, Li Z, Dong MQ, Lei J, Gao N. Structural dynamics of the yeast Shwachman-Diamond syndrome protein (Sdo1) on the ribosome and its implication in the 60S subunit maturation. Protein Cell 2016; 7:187-200. [PMID: 26850260 PMCID: PMC4791427 DOI: 10.1007/s13238-015-0242-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/14/2015] [Indexed: 12/16/2022] Open
Abstract
The human Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease caused by mutations in a highly conserved ribosome assembly factor SBDS. The functional role of SBDS is to cooperate with another assembly factor, elongation factor 1-like (Efl1), to promote the release of eukaryotic initiation factor 6 (eIF6) from the late-stage cytoplasmic 60S precursors. In the present work, we characterized, both biochemically and structurally, the interaction between the 60S subunit and SBDS protein (Sdo1p) from yeast. Our data show that Sdo1p interacts tightly with the mature 60S subunit in vitro through its domain I and II, and is capable of bridging two 60S subunits to form a stable 2:2 dimer. Structural analysis indicates that Sdo1p bind to the ribosomal P-site, in the proximity of uL16 and uL5, and with direct contact to H69 and H38. The dynamic nature of Sdo1p on the 60S subunit, together with its strategic binding position, suggests a surveillance role of Sdo1p in monitoring the conformational maturation of the ribosomal P-site. Altogether, our data support a conformational signal-relay cascade during late-stage 60S maturation, involving uL16, Sdo1p, and Efl1p, which interrogates the functional P-site to control the departure of the anti-association factor eIF6.
Collapse
Affiliation(s)
- Chengying Ma
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaige Yan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dan Tan
- National Institute of Biological Sciences, Beijing, 102206, China.,Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ningning Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yixiao Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi Yuan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhifei Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China.,Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jianlin Lei
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ning Gao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
32
|
Protein Structural Analysis via Mass Spectrometry-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:397-431. [PMID: 27975228 DOI: 10.1007/978-3-319-41448-5_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Modern mass spectrometry (MS) technologies have provided a versatile platform that can be combined with a large number of techniques to analyze protein structure and dynamics. These techniques include the three detailed in this chapter: (1) hydrogen/deuterium exchange (HDX), (2) limited proteolysis, and (3) chemical crosslinking (CX). HDX relies on the change in mass of a protein upon its dilution into deuterated buffer, which results in varied deuterium content within its backbone amides. Structural information on surface exposed, flexible or disordered linker regions of proteins can be achieved through limited proteolysis, using a variety of proteases and only small extents of digestion. CX refers to the covalent coupling of distinct chemical species and has been used to analyze the structure, function and interactions of proteins by identifying crosslinking sites that are formed by small multi-functional reagents, termed crosslinkers. Each of these MS applications is capable of revealing structural information for proteins when used either with or without other typical high resolution techniques, including NMR and X-ray crystallography.
Collapse
|
33
|
Lum KK, Cristea IM. Proteomic approaches to uncovering virus-host protein interactions during the progression of viral infection. Expert Rev Proteomics 2016; 13:325-40. [PMID: 26817613 PMCID: PMC4919574 DOI: 10.1586/14789450.2016.1147353] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/25/2016] [Indexed: 01/10/2023]
Abstract
The integration of proteomic methods to virology has facilitated a significant breadth of biological insight into mechanisms of virus replication, antiviral host responses and viral subversion of host defenses. Throughout the course of infection, these cellular mechanisms rely heavily on the formation of temporally and spatially regulated virus-host protein-protein interactions. Reviewed here are proteomic-based approaches that have been used to characterize this dynamic virus-host interplay. Specifically discussed are the contribution of integrative mass spectrometry, antibody-based affinity purification of protein complexes, cross-linking and protein array techniques for elucidating complex networks of virus-host protein associations during infection with a diverse range of RNA and DNA viruses. The benefits and limitations of applying proteomic methods to virology are explored, and the contribution of these approaches to important biological discoveries and to inspiring new tractable avenues for the design of antiviral therapeutics is highlighted.
Collapse
Affiliation(s)
- Krystal K Lum
- Department of Molecular Biology, Princeton
University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton
University, Princeton, NJ, USA
| |
Collapse
|
34
|
Nguyen-Huynh NT, Osz J, Peluso-Iltis C, Rochel N, Potier N, Leize-Wagner E. Monitoring of the retinoic acid receptor-retinoid X receptor dimerization upon DNA binding by native mass spectrometry. Biophys Chem 2015; 210:2-8. [PMID: 26558701 DOI: 10.1016/j.bpc.2015.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/09/2015] [Accepted: 10/27/2015] [Indexed: 11/20/2022]
Abstract
Identifying protein-DNA interactions is essential to understand the regulatory networks of cells and their influence on gene expression. In this study, we use native electrospray mass spectrometry (ESI-MS) to investigate how the heterodimerization of retinoic acid receptor-retinoid X receptor (RAR-RXR) is mediated by DNA sequence. In presence of various RAR response elements (RAREs), three oligomeric states of RAR-RXR DNA binding domains (DBDs) bound to RAREs (monomer, homo- or heterodimers) were detected and individually monitored to follow subunit assembly and disassembly upon RAREs' abundancy or sequence. In particular, a cooperative heterodimerization was shown with RARb2 DR5 (5 base pair spaced direct repeat) while a high heterogeneity reflecting random complex formation could be observed with the DR0 response elements, in agreement with native gel electrophoresis data or molecular modeling. Such MS information will help to identify the composition of species formed in solution and to define which DR sequence is specific for RAR-RXR heterodimerization.
Collapse
Affiliation(s)
- Nha-Thi Nguyen-Huynh
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008 Strasbourg, France
| | - Judit Osz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Carole Peluso-Iltis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Noëlle Potier
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008 Strasbourg, France.
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008 Strasbourg, France
| |
Collapse
|
35
|
Venable JD, Steckler C, Ou W, Grünewald J, Agarwalla S, Brock A. Isotope-Coded Labeling for Accelerated Protein Interaction Profiling Using MS. Anal Chem 2015; 87:7540-4. [PMID: 26151661 DOI: 10.1021/acs.analchem.5b01410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein interaction surface mapping using MS is widely applied but comparatively resource-intensive. Here, a workflow adaptation for use of isotope-coded tandem mass tags for the purpose is reported. The key benefit of improved throughput derived from sample acquisition multiplexing and automated analysis is shown to be maintained in the new application. Mapping of the epitopes of two monoclonal antibodies on their respective targets serves to illustrate the novel approach. We conclude that the approach enables mapping of interactions by MS at significantly larger scales than hereto possible.
Collapse
Affiliation(s)
- John D Venable
- †Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | - Caitlin Steckler
- †Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States.,‡Joint Center for Structural Genomics, La Jolla, California 92037, United States, http://www.jcsg.org
| | - Weijia Ou
- †Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | - Jan Grünewald
- †Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | - Sanjay Agarwalla
- †Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | - Ansgar Brock
- †Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| |
Collapse
|
36
|
Zheng H, Handing KB, Zimmerman MD, Shabalin IG, Almo SC, Minor W. X-ray crystallography over the past decade for novel drug discovery - where are we heading next? Expert Opin Drug Discov 2015; 10:975-89. [PMID: 26177814 DOI: 10.1517/17460441.2015.1061991] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Macromolecular X-ray crystallography has been the primary methodology for determining the three-dimensional structures of proteins, nucleic acids and viruses. Structural information has paved the way for structure-guided drug discovery and laid the foundations for structural bioinformatics. However, X-ray crystallography still has a few fundamental limitations, some of which may be overcome and complemented using emerging methods and technologies in other areas of structural biology. AREAS COVERED This review describes how structural knowledge gained from X-ray crystallography has been used to advance other biophysical methods for structure determination (and vice versa). This article also covers current practices for integrating data generated by other biochemical and biophysical methods with those obtained from X-ray crystallography. Finally, the authors articulate their vision about how a combination of structural and biochemical/biophysical methods may improve our understanding of biological processes and interactions. EXPERT OPINION X-ray crystallography has been, and will continue to serve as, the central source of experimental structural biology data used in the discovery of new drugs. However, other structural biology techniques are useful not only to overcome the major limitation of X-ray crystallography, but also to provide complementary structural data that is useful in drug discovery. The use of recent advancements in biochemical, spectroscopy and bioinformatics methods may revolutionize drug discovery, albeit only when these data are combined and analyzed with effective data management systems. Accurate and complete data management is crucial for developing experimental procedures that are robust and reproducible.
Collapse
Affiliation(s)
- Heping Zheng
- University of Virginia, Department of Molecular Physiology and Biological Physics , 1340 Jefferson Park Avenue, Charlottesville, VA 22908 , USA +1 434 243 6865 ; +1 434 243 2981 ;
| | | | | | | | | | | |
Collapse
|
37
|
Clavier S, Bolbach G, Sachon E. Photocross-Linked Peptide-Protein Complexes Analysis: A Comparative Study of CID and ETD Fragmentation Modes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1014-1026. [PMID: 25840810 DOI: 10.1007/s13361-015-1095-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/06/2015] [Accepted: 02/08/2015] [Indexed: 06/04/2023]
Abstract
Protein-protein interactions are among the keys to organizing cellular processes in space and time. One of the only direct ways to identify such interactions in their cellular environment is to covalently bond the interacting partners to fix the interaction. Photocross-linking in living cells is thus a very promising technique. The feasibility of in cellulo photocross-linking reactions has been shown and mass spectrometry is a tool of choice to analyze photocross-linked proteins. However, the interpretation of the MS and MS/MS spectra of photocross-linked peptides remains one of the most important bottlenecks of the method and still limits its potential for large-scale applications (interactomics). Fundamental studies are still necessary to understand and characterize the fragmentation behavior of photocross-linked peptides. Here, we report the successful identification of the interaction sites in a well-characterized model of in vitro interaction between a protein and a peptide. We describe in detail the fragmentation pattern of these photocross-linked species in order to identify trends that could be generalized. In particular, we compare CID and ETD fragmentation modes (and HCD in a lesser extent), demonstrating the complementarity of both methods and the advantage of ETD for the analysis of photocross-linked species. The information should help further development of dedicated software to properly score MS/MS spectra of photocross-linked species.
Collapse
Affiliation(s)
- Séverine Clavier
- Sorbonne Université, UPMC-Univ Paris 6, Ecole Normale Supérieure, PSL Research university, Département de chimie, CNRS, UMR7203 Laboratoire des BioMolécules, 4 place Jussieu, 75252, Paris, Cedex 05, France
| | | | | |
Collapse
|
38
|
Nguyen-Huynh NT, Sharov G, Potel C, Fichter P, Trowitzsch S, Berger I, Lamour V, Schultz P, Potier N, Leize-Wagner E. Chemical cross-linking and mass spectrometry to determine the subunit interaction network in a recombinant human SAGA HAT subcomplex. Protein Sci 2015; 24:1232-46. [PMID: 25753033 DOI: 10.1002/pro.2676] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 01/04/2023]
Abstract
Understanding the way how proteins interact with each other to form transient or stable protein complexes is a key aspect in structural biology. In this study, we combined chemical cross-linking with mass spectrometry to determine the binding stoichiometry and map the protein-protein interaction network of a human SAGA HAT subcomplex. MALDI-MS equipped with high mass detection was used to follow the cross-linking reaction using bis[sulfosuccinimidyl] suberate (BS3) and confirm the heterotetrameric stoichiometry of the specific stabilized subcomplex. Cross-linking with isotopically labeled BS3 d0-d4 followed by trypsin digestion allowed the identification of intra- and intercross-linked peptides using two dedicated search engines: pLink and xQuest. The identified interlinked peptides suggest a strong network of interaction between GCN5, ADA2B and ADA3 subunits; SGF29 is interacting with GCN5 and ADA3 but not with ADA2B. These restraint data were combined to molecular modeling and a low-resolution interacting model for the human SAGA HAT subcomplex could be proposed, illustrating the potential of an integrative strategy using cross-linking and mass spectrometry for addressing the structural architecture of multiprotein complexes.
Collapse
Affiliation(s)
- Nha-Thi Nguyen-Huynh
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Grigory Sharov
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Clément Potel
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Pélagie Fichter
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Simon Trowitzsch
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Imre Berger
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Valérie Lamour
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Patrick Schultz
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Noëlle Potier
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| |
Collapse
|
39
|
Probing the protein interaction network of Pseudomonas aeruginosa cells by chemical cross-linking mass spectrometry. Structure 2015; 23:762-73. [PMID: 25800553 DOI: 10.1016/j.str.2015.01.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/13/2015] [Accepted: 01/23/2015] [Indexed: 11/22/2022]
Abstract
In pathogenic Gram-negative bacteria, interactions among membrane proteins are key mediators of host cell attachment, invasion, pathogenesis, and antibiotic resistance. Membrane protein interactions are highly dependent upon local properties and environment, warranting direct measurements on native protein complex structures as they exist in cells. Here we apply in vivo chemical cross-linking mass spectrometry, to reveal the first large-scale protein interaction network in Pseudomonas aeruginosa, an opportunistic human pathogen, by covalently linking interacting protein partners, thereby fixing protein complexes in vivo. A total of 626 cross-linked peptide pairs, including previously unknown interactions of many membrane proteins, are reported. These pairs not only define the existence of these interactions in cells but also provide linkage constraints for complex structure predictions. Structures of three membrane proteins, namely, SecD-SecF, OprF, and OprI are predicted using in vivo cross-linked sites. These findings improve understanding of membrane protein interactions and structures in cells.
Collapse
|
40
|
Zheng Q, Zhang H, Tong L, Wu S, Chen H. Cross-linking electrochemical mass spectrometry for probing protein three-dimensional structures. Anal Chem 2014; 86:8983-91. [PMID: 25141260 PMCID: PMC4165463 DOI: 10.1021/ac501526n] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/20/2014] [Indexed: 12/27/2022]
Abstract
Chemical cross-linking combined with mass spectrometry (MS) is powerful to provide protein three-dimensional structure information but difficulties in identifying cross-linked peptides and elucidating their structures limit its usefulness. To tackle these challenges, this study presents a novel cross-linking MS in conjunction with electrochemistry using disulfide-bond-containing dithiobis[succinimidyl propionate] (DSP) as the cross-linker. In our approach, electrolysis of DSP-bridged protein/peptide products, as online monitored by desorption electrospray ionization mass spectrometry is highly informative. First, as disulfide bonds are electrochemically reducible, the cross-links are subject to pronounced intensity decrease upon electrolytic reduction, suggesting a new way to identify cross-links. Also, mass shift before and after electrolysis suggests the linkage pattern of cross-links. Electrochemical reduction removes disulfide bond constraints, possibly increasing sequence coverage for tandem MS analysis and yielding linear peptides whose structures are more easily determined than their cross-linked precursor peptides. Furthermore, this cross-linking electrochemical MS method is rapid, due to the fast nature of electrochemical conversion (much faster than traditional chemical reduction) and no need for chromatographic separation, which would be of high value for structural proteomics research.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Hao Zhang
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Lingying Tong
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Shiyong Wu
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| | - Hao Chen
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
41
|
Zeng-Elmore X, Gao XZ, Pellarin R, Schneidman-Duhovny D, Zhang XJ, Kozacka KA, Tang Y, Sali A, Chalkley RJ, Cote RH, Chu F. Molecular architecture of photoreceptor phosphodiesterase elucidated by chemical cross-linking and integrative modeling. J Mol Biol 2014; 426:3713-3728. [PMID: 25149264 DOI: 10.1016/j.jmb.2014.07.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/01/2014] [Accepted: 07/28/2014] [Indexed: 11/20/2022]
Abstract
Photoreceptor phosphodiesterase (PDE6) is the central effector enzyme in visual excitation pathway in rod and cone photoreceptors. Its tight regulation is essential for the speed, sensitivity, recovery and adaptation of visual detection. Although major steps in the PDE6 activation/deactivation pathway have been identified, mechanistic understanding of PDE6 regulation is limited by the lack of knowledge about the molecular organization of the PDE6 holoenzyme (αβγγ). Here, we characterize the PDE6 holoenzyme by integrative structural determination of the PDE6 catalytic dimer (αβ), based primarily on chemical cross-linking and mass spectrometric analysis. Our models built from high-density cross-linking data elucidate a parallel organization of the two catalytic subunits, with juxtaposed α-helical segments within the tandem regulatory GAF domains to provide multiple sites for dimerization. The two catalytic domains exist in an open configuration when compared to the structure of PDE2 in the apo state. Detailed structural elements for differential binding of the γ-subunit to the GAFa domains of the α- and β-subunits are revealed, providing insight into the regulation of the PDE6 activation/deactivation cycle.
Collapse
Affiliation(s)
- Xiaohui Zeng-Elmore
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
| | - Xiong-Zhuo Gao
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Dina Schneidman-Duhovny
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Xiu-Jun Zhang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Katie A Kozacka
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Yang Tang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Rick H Cote
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA.
| |
Collapse
|
42
|
Liu M, Zhang Z, Cheetham J, Ren D, Zhou ZS. Discovery and characterization of a photo-oxidative histidine-histidine cross-link in IgG1 antibody utilizing ¹⁸O-labeling and mass spectrometry. Anal Chem 2014; 86:4940-8. [PMID: 24738698 PMCID: PMC4030806 DOI: 10.1021/ac500334k] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel photo-oxidative cross-linking
between two histidines (His-His)
has been discovered and characterized in an IgG1 antibody via the
workflow of XChem-Finder, 18O labeling and mass spectrometry
(2013, 85, 5900−590823634697). Its structure was elucidated by peptide
mapping with multiple proteases with various specificities (e.g.,
trypsin, Asp-N, and GluC combined with trypsin or Asp-N) and mass
spectrometry with complementary fragmentation modes (e.g., collision-induced
dissociation (CID) and electron-transfer dissociation (ETD)). Our
data indicated that cross-linking occurred across two identical conserved
histidine residues on two separate heavy chains in the hinge region,
which is highly flexible and solvent accessible. On the basis of model
studies with short peptides, it has been proposed that singlet oxygen
reacts with the histidyl imidazole ring to form an endoperoxide and
then converted to the 2-oxo-histidine (2-oxo-His) and His+32 intermediates, the latter is
subject to a
nucleophilic attack by the unmodified histidine; and finally, elimination
of a water molecule leads to the final adduct with a net mass increase
of 14 Da. Our findings are consistent with this mechanism. Successful
discovery of cross-linked His-His again demonstrates the broad applicability
and utility of our XChem-Finder approach in the discovery and elucidation
of protein cross-linking, particularly without a priori knowledge of the chemical nature and site of cross-linking.
Collapse
Affiliation(s)
- Min Liu
- Analytical Research and Development, Amgen , One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | |
Collapse
|
43
|
Coffman K, Yang B, Lu J, Tetlow AL, Pelliccio E, Lu S, Guo DC, Tang C, Dong MQ, Tamanoi F. Characterization of the Raptor/4E-BP1 interaction by chemical cross-linking coupled with mass spectrometry analysis. J Biol Chem 2014; 289:4723-34. [PMID: 24403073 DOI: 10.1074/jbc.m113.482067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mTORC1 plays critical roles in the regulation of protein synthesis, growth, and proliferation in response to nutrients, growth factors, and energy conditions. One of the substrates of mTORC1 is 4E-BP1, whose phosphorylation by mTORC1 reverses its inhibitory action on eIF4E, resulting in the promotion of protein synthesis. Raptor in mTOR complex 1 is believed to recruit 4E-BP1, facilitating phosphorylation of 4E-BP1 by the kinase mTOR. We applied chemical cross-linking coupled with mass spectrometry analysis to gain insight into interactions between mTORC1 and 4E-BP1. Using the cross-linking reagent bis[sulfosuccinimidyl] suberate, we showed that Raptor can be cross-linked with 4E-BP1. Mass spectrometric analysis of cross-linked Raptor-4E-BP1 led to the identification of several cross-linked peptide pairs. Compilation of these peptides revealed that the most N-terminal Raptor N-terminal conserved domain (in particular residues from 89 to 180) of Raptor is the major site of interaction with 4E-BP1. On 4E-BP1, we found that cross-links with Raptor were clustered in the central region (amino acid residues 56-72) we call RCR (Raptor cross-linking region). Intramolecular cross-links of Raptor suggest the presence of two structured regions of Raptor: one in the N-terminal region and the other in the C-terminal region. In support of the idea that the Raptor N-terminal conserved domain and the 4E-BP1 central region are closely located, we found that peptides that encompass the RCR of 4E-BP1 inhibit cross-linking and interaction of 4E-BP1 with Raptor. Furthermore, mutations of residues in the RCR decrease the ability of 4E-BP1 to serve as a substrate for mTORC1 in vitro and in vivo.
Collapse
Affiliation(s)
- Kimberly Coffman
- From the Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California 90095
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tinnefeld V, Sickmann A, Ahrends R. Catch me if you can: challenges and applications of cross-linking approaches. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:99-116. [PMID: 24881459 DOI: 10.1255/ejms.1259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biomolecular complexes are the groundwork of life and the basis for cell signaling, energy transfer, motion, stability and cellular metabolism. Understanding the underlying complex interactions on the molecular level is an essential step to obtain a comprehensive insight into cellular and systems biology. For the investigation of molecular interactions, various methods, including Förster resonance energy transfer, nuclear magnetic resonance spectroscopy, X-ray crystallography and yeast two-hybrid screening, can be utilized. Nevertheless, the most reliable approach for structural proteomics and the identification of novel protein-binding partners is chemical cross-linking. The rationale is that upon forming a covalent bond between a protein and its interaction partner (protein, lipid, RNA/DNA, carbohydrate) the native complex state is "frozen" and accessible for detailed mass spectrometric analysis. In this review we provide a synopsis on crosslinker design, chemistry, pitfalls, limitations and novel applications in the field, and feature an overview of current software applications.
Collapse
|
45
|
McGee WM, McLuckey SA. Gas Phase Dissociation Behavior of Acyl-Arginine Peptides. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2013; 354-356:181-187. [PMID: 24465154 PMCID: PMC3899352 DOI: 10.1016/j.ijms.2013.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The gas phase dissociation behavior of peptides containing acyl-arginine residues is investigated. These acylations are generated via a combination of ion/ion reactions between arginine-containing peptides and N-hydroxysuccinimide (NHS) esters and subsequent tandem mass spectrometry (MS/MS). Three main dissociation pathways of acylated arginine, labeled Paths 1-3, have been identified and are dependent on the acyl groups. Path 1 involves the acyl-arginine undergoing deguanidination, resulting in the loss of the acyl group and dissociation of the guanidine to generate an ornithine residue. This pathway generates selective cleavage sites based on the recently discussed "ornithine effect". Path 2 involves the coordinated losses of H2O and NH3 from the acyl-arginine side chain while maintaining the acylation. We propose that Path 2 is initiated via cyclization of the δ-nitrogen of arginine and the C-terminal carbonyl carbon, resulting in rapid rearrangement from the acyl-arginine side chain and the neutral losses. Path 3 occurs when the acyl group contains α-hydrogens and is observed as a rearrangement to regenerate unmodified arginine while the acylation is lost as a ketene.
Collapse
Affiliation(s)
| | - Scott A. McLuckey
- Address reprint requests to: Dr. S. A. McLuckey, 560 Oval Drive, Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA, Phone: (765) 494-5270, Fax: (765) 494-0239,
| |
Collapse
|
46
|
Prentice BM, McGee WM, Stutzman JR, McLuckey SA. Strategies for the Gas Phase Modification of Cationized Arginine via Ion/ion Reactions. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2013; 354-355:10.1016/j.ijms.2013.05.026. [PMID: 24273437 PMCID: PMC3835304 DOI: 10.1016/j.ijms.2013.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The gas phase acetylation of cationized arginine residues is demonstrated here using ion/ion reactions with sulfosuccinimidyl acetate (sulfo-NHS acetate) anions. Previous reports have demonstrated the gas phase modification of uncharged primary amine (the N-terminus and ε-amino side chain of lysine) and uncharged guanidine (the arginine side chain) functionalities via sulfo-NHS ester chemistry. Herein, charge-saturated arginine-containing peptides that contain sodium ions as the charge carriers, such as [ac-ARAAARA+2Na]2+, are shown to exhibit strong reactivity towards sulfo-NHS acetate whereas the protonated peptide analogues exhibit no such reactivity. This difference in reactivity is attributed to the lower sodium ion (as compared to proton) affinity of the arginine, which results in increased nucleophilicity of the cationized arginine guanidinium functionality. This increased nucleophilicity improves the arginine residue's reactivity towards sulfo-NHS esters and enhances the gas phase covalent modification pathway. No such dramatic increase in reactivity towards sulfo-NHS acetate has been observed upon sodium cationization of lysine amino acid residues, indicating that this behavior appears to be unique to arginine. The sodium cationization process is demonstrated in the condensed phase by simply spiking sodium chloride into the peptide sample solution and in the gas phase by a peptide-sodium cation exchange process with a sulfo-NHS acetate sodium-bound dimer cluster reagent. This methodology demonstrates several ways by which arginine can be covalently modified in the gas phase even when it is charged. Collisional activation of an acetylated arginine product can result in deguanidination of the residue, generating an ornithine. This gas phase ornithination exhibits similar site-specific fragmentation behavior to that observed with peptides ornithinated in solution and may represent a useful approach for inducing selective peptide cleavages.
Collapse
Affiliation(s)
| | | | | | - Scott A. McLuckey
- Address reprint requests to: Dr. S. A. McLuckey 560 Oval Drive Department of Chemistry Purdue University West Lafayette, IN 47907-2084, USA Phone: (765) 494-5270 Fax: (765) 494-0239
| |
Collapse
|
47
|
Holding AN, Lamers MH, Stephens E, Skehel JM. Hekate: software suite for the mass spectrometric analysis and three-dimensional visualization of cross-linked protein samples. J Proteome Res 2013; 12:5923-33. [PMID: 24010795 PMCID: PMC3859183 DOI: 10.1021/pr4003867] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Chemical cross-linking
of proteins combined with mass spectrometry
provides an attractive and novel method for the analysis of native
protein structures and protein complexes. Analysis of the data however
is complex. Only a small number of cross-linked peptides are produced
during sample preparation and must be identified against a background
of more abundant native peptides. To facilitate the search and identification
of cross-linked peptides, we have developed a novel software suite,
named Hekate. Hekate is a suite of tools that address the challenges
involved in analyzing protein cross-linking experiments when combined
with mass spectrometry. The software is an integrated pipeline for
the automation of the data analysis workflow and provides a novel
scoring system based on principles of linear peptide analysis. In
addition, it provides a tool for the visualization of identified cross-links
using three-dimensional models, which is particularly useful when
combining chemical cross-linking with other structural techniques.
Hekate was validated by the comparative analysis of cytochrome c (bovine heart) against previously reported data.1 Further validation was carried out on known structural
elements of DNA polymerase III, the catalytic α-subunit of the Escherichia coli DNA replisome along with new insight
into the previously uncharacterized C-terminal domain of the protein.
Collapse
Affiliation(s)
- Andrew N Holding
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | | | | | | |
Collapse
|
48
|
Zhou Y, Vachet RW. Covalent labeling with isotopically encoded reagents for faster structural analysis of proteins by mass spectrometry. Anal Chem 2013; 85:9664-70. [PMID: 24010814 DOI: 10.1021/ac401978w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent labeling and mass spectrometry (MS) are increasingly being used to obtain higher-order structure of proteins and protein complexes. Because most covalent labels are relatively large, steps must be taken to ensure the structural integrity of the modified protein during the labeling reactions so that correct structural information can be obtained. Measuring labeling kinetics is a reliable way to ensure that a given labeling reagent does not perturb a protein's structure, but obtaining such kinetic information is time and sample intensive because it requires multiple liquid chromatography (LC)-MS experiments. Here we present a new strategy that uses isotopically encoded labeling reagents to measure labeling kinetics in a single LC-MS experiment. We illustrate this new strategy by labeling solvent-exposed lysine residues with commercially available tandem mass tags. After tandem MS experiments, these tags allow the simultaneous identification of modified sites and determination of the reaction rates at each site in a way that is just as reliable as experiments that involve multiple LC-MS measurements.
Collapse
Affiliation(s)
- Yuping Zhou
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | |
Collapse
|
49
|
Kim DE, Dimaio F, Yu-Ruei Wang R, Song Y, Baker D. One contact for every twelve residues allows robust and accurate topology-level protein structure modeling. Proteins 2013; 82 Suppl 2:208-18. [PMID: 23900763 DOI: 10.1002/prot.24374] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/12/2013] [Accepted: 06/21/2013] [Indexed: 12/19/2022]
Abstract
A number of methods have been described for identifying pairs of contacting residues in protein three-dimensional structures, but it is unclear how many contacts are required for accurate structure modeling. The CASP10 assisted contact experiment provided a blind test of contact guided protein structure modeling. We describe the models generated for these contact guided prediction challenges using the Rosetta structure modeling methodology. For nearly all cases, the submitted models had the correct overall topology, and in some cases, they had near atomic-level accuracy; for example the model of the 384 residue homo-oligomeric tetramer (Tc680o) had only 2.9 Å root-mean-square deviation (RMSD) from the crystal structure. Our results suggest that experimental and bioinformatic methods for obtaining contact information may need to generate only one correct contact for every 12 residues in the protein to allow accurate topology level modeling.
Collapse
Affiliation(s)
- David E Kim
- Department of Biochemistry, University of Washington, Seattle, 98195, Washington
| | | | | | | | | |
Collapse
|
50
|
Merkley ED, Cort JR, Adkins JN. Cross-linking and mass spectrometry methodologies to facilitate structural biology: finding a path through the maze. ACTA ACUST UNITED AC 2013; 14:77-90. [PMID: 23917845 DOI: 10.1007/s10969-013-9160-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/26/2013] [Indexed: 12/12/2022]
Abstract
Multiprotein complexes, rather than individual proteins, make up a large part of the biological macromolecular machinery of a cell. Understanding the structure and organization of these complexes is critical to understanding cellular function. Chemical cross-linking coupled with mass spectrometry is emerging as a complementary technique to traditional structural biology methods and can provide low-resolution structural information for a multitude of purposes, such as distance constraints in computational modeling of protein complexes. In this review, we discuss the experimental considerations for successful application of chemical cross-linking-mass spectrometry in biological studies and highlight three examples of such studies from the recent literature. These examples (as well as many others) illustrate the utility of a chemical cross-linking-mass spectrometry approach in facilitating structural analysis of large and challenging complexes.
Collapse
Affiliation(s)
- Eric D Merkley
- MS K8-98, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | |
Collapse
|