1
|
Evans SE, Harrington T, Rodriguez Rivero MC, Rognin E, Tuladhar T, Daly R. 2D and 3D inkjet printing of biopharmaceuticals - A review of trends and future perspectives in research and manufacturing. Int J Pharm 2021; 599:120443. [PMID: 33675921 DOI: 10.1016/j.ijpharm.2021.120443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
There is an ongoing global shift in pharmaceutical business models from small molecule drugs to biologics. This increase in complexity is in response to advancements in our diagnoses and understanding of diseases. With the more targeted approach coupled with its inherently more costly development and manufacturing, 2D and 3D printing are being explored as suitable techniques to deliver more personalised and affordable routes to drug discovery and manufacturing. In this review, we explore first the business context underlying this shift to biopharmaceuticals and provide an update on the latest work exploring discovery and pharmaceutics. We then draw on multiple disciplines to help reveal the shared challenges facing researchers and firms aiming to develop biopharmaceuticals, specifically when using the most commonly explored manufacturing routes of drop-on-demand inkjet printing and pneumatic extrusion. This includes separating out how to consider mechanical and chemical influences during manufacturing, the role of the chosen hardware and the challenges of aqueous formulation based on similar challenges being faced by the printing industry. Together, this provides a review of existing work and guidance for researchers and industry to help with the de-risking and rapid development of future biopharmaceutical products.
Collapse
Affiliation(s)
| | | | | | - Etienne Rognin
- Institute for Manufacturing, Department of Engineering, University of Cambridge (UK), UK
| | | | - Ronan Daly
- Institute for Manufacturing, Department of Engineering, University of Cambridge (UK), UK.
| |
Collapse
|
2
|
Okafor-Muo OL, Hassanin H, Kayyali R, ElShaer A. 3D Printing of Solid Oral Dosage Forms: Numerous Challenges With Unique Opportunities. J Pharm Sci 2020; 109:3535-3550. [PMID: 32976900 DOI: 10.1016/j.xphs.2020.08.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 01/16/2023]
Abstract
Since the FDA approval of Spritam, there has been a growing interest in the application of 3D printing in pharmaceutical science. 3D printing is a method of manufacturing involving the layer-by-layer deposition of materials to create a final product according to a digital model. There are various techniques used to achieve this method of printing including the SLS, SLA, FDM, SSE and PB-inkjet printing. In biomanufacturing, bone and tissue engineering involving 3D printing to create scaffolds, while in pharmaceutics, 3D printing was applied in drug development, and the fabrication of drug delivery devices. This paper aims to review the use of some 3D printing techniques in the fabrication of oral solid dosage forms. FDM, SLA SLS, and PB-Inkjet printing processes were found suitable for the fabrication of oral solid dosage forms, though a great deal of the available research was focused on fused deposition modelling due to its availability and flexibility. Process parameters as well as strategies to control the characteristics of printed dosage forms are analysed and discussed. The review also presents the advantages and possible limitations of 3D printing of medicines.
Collapse
Affiliation(s)
- Ogochukwu Lilian Okafor-Muo
- Department of Pharmacy, Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Hany Hassanin
- School of Engineering, The University of Canterbury Christ Church, Canterbury, CT1 1QU, UK
| | - Reem Kayyali
- Department of Pharmacy, Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Amr ElShaer
- Department of Pharmacy, Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK.
| |
Collapse
|
3
|
Li X, Liu B, Pei B, Chen J, Zhou D, Peng J, Zhang X, Jia W, Xu T. Inkjet Bioprinting of Biomaterials. Chem Rev 2020; 120:10793-10833. [PMID: 32902959 DOI: 10.1021/acs.chemrev.0c00008] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The inkjet technique has the capability of generating droplets in the picoliter volume range, firing thousands of times in a few seconds and printing in the noncontact manner. Since its emergence, inkjet technology has been widely utilized in the publishing industry for printing of text and pictures. As the technology developed, its applications have been expanded from two-dimensional (2D) to three-dimensional (3D) and even used to fabricate components of electronic devices. At the end of the twentieth century, researchers were aware of the potential value of this technology in life sciences and tissue engineering because its picoliter-level printing unit is suitable for depositing biological components. Currently inkjet technology has been becoming a practical tool in modern medicine serving for drug development, scaffold building, and cell depositing. In this article, we first review the history, principles and different methods of developing this technology. Next, we focus on the recent achievements of inkjet printing in the biological field. Inkjet bioprinting of generic biomaterials, biomacromolecules, DNAs, and cells and their major applications are introduced in order of increasing complexity. The current limitations/challenges and corresponding solutions of this technology are also discussed. A new concept, biopixels, is put forward with a combination of the key characteristics of inkjet printing and basic biological units to bring a comprehensive view on inkjet-based bioprinting. Finally, a roadmap of the entire 3D bioprinting is depicted at the end of this review article, clearly demonstrating the past, present, and future of 3D bioprinting and our current progress in this field.
Collapse
Affiliation(s)
- Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Boxun Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Ben Pei
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jianwei Chen
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China.,East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiayi Peng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xinzhi Zhang
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
4
|
Leggio L, Arrabito G, Ferrara V, Vivarelli S, Paternò G, Marchetti B, Pignataro B, Iraci N. Mastering the Tools: Natural versus Artificial Vesicles in Nanomedicine. Adv Healthc Mater 2020; 9:e2000731. [PMID: 32864899 DOI: 10.1002/adhm.202000731] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Naturally occurring extracellular vesicles and artificially made vesicles represent important tools in nanomedicine for the efficient delivery of biomolecules and drugs. Since its first appearance in the literature 50 years ago, the research on vesicles is progressing at a fast pace, with the main goal of developing carriers able to protect cargoes from degradation, as well as to deliver them in a time- and space-controlled fashion. While natural occurring vesicles have the advantage of being fully compatible with their host, artificial vesicles can be easily synthetized and functionalized according to the target to reach. Research is striving to merge the advantages of natural and artificial vesicles, in order to provide a new generation of highly performing vesicles, which would improve the therapeutic index of transported molecules. This progress report summarizes current manufacturing techniques used to produce both natural and artificial vesicles, exploring the promises and pitfalls of the different production processes. Finally, pros and cons of natural versus artificial vesicles are discussed and compared, with special regard toward the current applications of both kinds of vesicles in the healthcare field.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
| | - Giuseppe Arrabito
- Department of Physics and Chemistry – Emilio Segrè University of Palermo Building 17, Viale delle Scienze Palermo 90128 Italy
| | - Vittorio Ferrara
- Department of Chemical Sciences University of Catania Viale Andrea Doria 6 Catania 95125 Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
- Neuropharmacology Section OASI Institute for Research and Care on Mental Retardation and Brain Aging Troina 94018 Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry – Emilio Segrè University of Palermo Building 17, Viale delle Scienze Palermo 90128 Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences University of Catania Torre Biologica, Via S. Sofia 97 Catania 95125 Italy
| |
Collapse
|
5
|
Kuang M, Wu L, Huang Z, Wang J, Zhang X, Song Y. Inkjet Printing of a Micro/Nanopatterned Surface to Serve as Microreactor Arrays. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30962-30971. [PMID: 32515181 DOI: 10.1021/acsami.0c07066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microreactors are of great importance for chemical reaction screening, nanoparticle synthesis, protein crystallization, DNA detection, organic synthesis, etc. Here, we reported an effective, flexible, and low-cost method for fabricating microreactor arrays by inkjet printing technology. This strategy utilizes the controllable sliding behavior of the three-phase contact line to form hydrophilic-hydrophobic micropatterns for microreactors with sizes low to several hundreds of nanometers. Reactions in the order of 1 × 10-21 mol molecules can be realized in these microreactors, and crystallization processes can also be conducted to synthesize single crystals.
Collapse
Affiliation(s)
- Minxuan Kuang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhandong Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingxia Wang
- Laboratory of Bio-Inspired Smart Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiuqin Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Arrabito G, Ferrara V, Bonasera A, Pignataro B. Artificial Biosystems by Printing Biology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907691. [PMID: 32511894 DOI: 10.1002/smll.201907691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/09/2020] [Indexed: 05/09/2023]
Abstract
The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection between the field of printing and the bottom up Synthetic Biology. Printing Biology explores new approaches for the reconfigurable assembly of designed life-like or life-inspired structures. This work presents this emerging field, highlighting its main features, i.e., printing methodologies (from 2D to 3D), molecular ink properties, deposition mechanisms, and finally the applications and future challenges. Printing Biology is expected to show a growing impact on the development of biotechnology and life-inspired fabrication.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Vittorio Ferrara
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, Catania, 95125, Italy
| | - Aurelio Bonasera
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| |
Collapse
|
7
|
Abstract
Solution-based printing approaches permit digital designs to be converted into physical objects by depositing materials in a layer-by-layer additive fashion from microscale to nanoscale resolution. The extraordinary adaptability of this technology to different inks and substrates has received substantial interest in the recent literature. In such a context, this review specifically focuses on the realization of inks for the deposition of ZnO, a well-known wide bandgap semiconductor inorganic material showing an impressive number of applications in electronic, optoelectronic, and piezoelectric devices. Herein, we present an updated review of the latest advancements on the ink formulations and printing techniques for ZnO-based nanocrystalline inks, as well as of the major applications which have been demonstrated. The most relevant ink-processing conditions so far explored will be correlated with the resulting film morphologies, showing the possibility to tune the ZnO ink composition to achieve facile, versatile, and scalable fabrication of devices of different natures.
Collapse
|
8
|
Lee J, Purushothaman B, Song JM. Inkjet Bioprinting on Parchment Paper for Hit Identification from Small Molecule Libraries. ACS OMEGA 2020; 5:588-596. [PMID: 31956806 PMCID: PMC6964283 DOI: 10.1021/acsomega.9b03169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
In this study, an inkjet bioprinting-based high-throughput screening (HTS) system was designed and applied for the first time to a catecholpyrimidine-based small molecule library to find hit compounds that inhibit c-Jun NH2-terminal kinase1 (JNK1). JNK1 kinase, inactivated MAPKAPK2, and specific fluorescent peptides along with bioink were printed on parchment paper under optimized printing conditions that did not allow rapid evaporation of printed media based on Triton-X and glycerol. Subsequently, different small compounds were printed and tested against JNK1 kinase to evaluate their degree of phosphorylation inhibition. After printing and incubation, fluorescence intensities from the phosphorylated/nonphosphorylated peptide were acquired for the % phosphorylation analysis. The IM50 (inhibitory mole 50) value was determined as 1.55 × 10-15 mol for the hit compound, 22. Thus, this work demonstrated that inkjet bioprinting-based HTS can potentially be adopted for the drug discovery process using small molecule libraries, and cost-effective HTS can be expected to be established based on its low nano- to picoliter printing volume.
Collapse
|
9
|
Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticles-A Platform for Drug Development. Molecules 2017; 22:molecules22112020. [PMID: 29160839 PMCID: PMC6150386 DOI: 10.3390/molecules22112020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/12/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) have shown great potential in improving drug delivery of poorly water soluble (BCS class II, IV) and poorly permeable (BCS class III, IV) drugs, as well as facilitating successful delivery of unstable compounds. The nanoparticle technology would allow improved treatment by reducing adverse reactions of currently approved drugs and possibly reintroducing previously discarded compounds from the drug development pipeline. This study aims to highlight important aspects in mesoporous silica nanoparticle (MSN) ink formulation development for digital inkjet printing technology and to advice on choosing a method (2D/3D) for nanoparticle print deposit characterization. The results show that both unfunctionalized and polyethyeleneimine (PEI) surface functionalized MSNs, as well as drug-free and drug-loaded MSN-PEI suspensions, can be successfully inkjet-printed. Furthermore, the model BCS class IV drug remained incorporated in the MSNs and the suspension remained physically stable during the processing time and steps. This proof-of-concept study suggests that inkjet printing technology would be a flexible deposition method of pharmaceutical MSN suspensions to generate patterns according to predefined designs. The concept could be utilized as a versatile drug screening platform in the future due to the possibility of accurately depositing controlled volumes of MSN suspensions on various materials.
Collapse
|
10
|
Jiao Z, Li F, Xie L, Liu X, Chi B, Yang W. Experimental research of drop-on-demand droplet jetting 3D printing with molten polymer. J Appl Polym Sci 2017. [DOI: 10.1002/app.45933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhiwei Jiao
- State Key Laboratory of Organic-Inorganic, College of Mechanical and Electrical Engineering; Beijing University of Chemical Technology; Beijing 100029 People's Republic of China
| | - Fei Li
- State Key Laboratory of Organic-Inorganic, College of Mechanical and Electrical Engineering; Beijing University of Chemical Technology; Beijing 100029 People's Republic of China
| | - Liyang Xie
- Beijing Aerospace Propulsion Institute; Beijing 100048 People's Republic of China
| | - Xiaojun Liu
- State Key Laboratory of Organic-Inorganic, College of Mechanical and Electrical Engineering; Beijing University of Chemical Technology; Beijing 100029 People's Republic of China
| | - Baihong Chi
- Space Star Technology Co., Ltd; Beijing 100086 People's Republic of China
| | - Weimin Yang
- State Key Laboratory of Organic-Inorganic, College of Mechanical and Electrical Engineering; Beijing University of Chemical Technology; Beijing 100029 People's Republic of China
| |
Collapse
|
11
|
Fox CB, Nemeth CL, Chevalier RW, Cantlon J, Bogdanoff DB, Hsiao JC, Desai TA. Picoliter-volume inkjet printing into planar microdevice reservoirs for low-waste, high-capacity drug loading. Bioeng Transl Med 2017; 2:9-16. [PMID: 28503662 PMCID: PMC5426811 DOI: 10.1002/btm2.10053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oral delivery of therapeutics is the preferred route for systemic drug administration due to ease of access and improved patient compliance. However, many therapeutics suffer from low oral bioavailability due to low pH and enzymatic conditions, poor cellular permeability, and low residence time. Microfabrication techniques have been used to create planar, asymmetric microdevices for oral drug delivery to address these limitations. The geometry of these microdevices facilitates prolonged drug exposure with unidirectional release of drug toward gastrointestinal epithelium. While these devices have significantly enhanced drug permeability in vitro and in vivo, loading drug into the micron-scale reservoirs of the devices in a low-waste, high-capacity manner remains challenging. Here, we use picoliter-volume inkjet printing to load topotecan and insulin into planar microdevices efficiently. Following a simple surface functionalization step, drug solution can be spotted into the microdevice reservoir. We show that relatively high capacities of both topotecan and insulin can be loaded into microdevices in a rapid, automated process with little to no drug waste.
Collapse
Affiliation(s)
- Cade B Fox
- Dept. of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Cameron L Nemeth
- UC Berkeley and UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158
| | - Rachel W Chevalier
- Dept. of Pediatrics, Division of Pediatric Gastroenterology, School of Medicine, University of California, San Francisco, CA 94158
| | | | - Derek B Bogdanoff
- Center for Advanced Technology, University of California, San Francisco, CA, 94158
| | - Jeff C Hsiao
- Dept. of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Tejal A Desai
- Dept. of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158.,UC Berkeley and UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158
| |
Collapse
|
12
|
Bonhoeffer B, Kwade A, Juhnke M. Impact of Formulation Properties and Process Parameters on the Dispensing and Depositioning of Drug Nanosuspensions Using Micro-Valve Technology. J Pharm Sci 2017; 106:1102-1110. [PMID: 28062204 DOI: 10.1016/j.xphs.2016.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/29/2016] [Accepted: 12/21/2016] [Indexed: 11/26/2022]
Abstract
Flexible manufacturing processes with continuously adjustable dose strengths are considered particularly innovative and interesting for applications in personalized medicine, continuous manufacturing, or early drug development. A piezo-actuated micro-valve has been investigated for the dispensing and depositioning of drug nanosuspensions onto substrates to facilitate the manufacturing of solid oral dosage forms. The investigated micro-valve has been characterized regarding dispensing behavior, mass flow, accuracy, and robustness. The amount of dispensed drug compound during 1 dispensing event could be continuously adjusted from a few micrograms to several milligrams with high accuracy. Fluid properties, dispensing parameters of the micro-valve, and the resulting steady state mass flow could be correlated adequately for low-viscous drug nanosuspensions. High-speed imaging was used to investigate the dispensing behavior of the micro-valve regarding the evolution of the dispensed drug nanosuspension after ejection from the nozzle and the behavior during impact on flat and dry solid substrates. The experimentally determined breakup length of the dispensed liquid jet could be correlated with a semiempirical equation. From image sequences of the jet impact, We-Re phase diagrams could be established, providing a profound understanding and systematic guidance for the controlled depositioning of the entire dispensed drug nanosuspension onto the substrate.
Collapse
Affiliation(s)
| | - Arno Kwade
- Institute for Particle Technology, TU Braunschweig, Braunschweig 38106, Germany
| | - Michael Juhnke
- Novartis Pharma AG, Technical R&D, Basel CH-4002, Switzerland.
| |
Collapse
|
13
|
Montenegro-Nicolini M, Morales JO. Overview and Future Potential of Buccal Mucoadhesive Films as Drug Delivery Systems for Biologics. AAPS PharmSciTech 2017; 18:3-14. [PMID: 27084567 DOI: 10.1208/s12249-016-0525-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022] Open
Abstract
The main route of administration for drug products is the oral route, yet biologics are initially developed as injectables due to their limited stability through the gastrointestinal tract and solubility issues. In order to avoid injections, a myriad of investigations on alternative administration routes that can bypass enzymatic degradation and the first-pass effect are found in the literature. As an alternative site for biologics absorption, the buccal route presents with a number of advantages. The buccal mucosa is a barrier, providing protection to underlying tissue, but is more permeable than other alternative routes such as the skin. Buccal films are polymeric matrices designed to be mucoadhesive properties and usually formulated with permeability enhancers to improve bioavailability. Conventionally, buccal films for biologics are manufactured by solvent casting, yet recent developments have shown the potential of hot melt extrusion, and most recently ink jet printing as promising strategies. This review aims at depicting the field of biologics-loaded mucoadhesive films as buccal drug delivery systems. In light of the literature available, the buccal epithelium is a promising route for biologics administration, which is reflected in clinical trials currently in progress, looking forward to register and commercialize the first biologic product formulated as a buccal film.
Collapse
|
14
|
Arrabito G, Cavaleri F, Montalbano V, Vetri V, Leone M, Pignataro B. Monitoring few molecular binding events in scalable confined aqueous compartments by raster image correlation spectroscopy (CADRICS). LAB ON A CHIP 2016; 16:4666-4676. [PMID: 27812580 DOI: 10.1039/c6lc01072e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The assembly of scalable liquid compartments for binding assays in array formats constitutes a topic of fundamental importance in life sciences. This challenge can be addressed by mimicking the structure of cellular compartments with biological native conditions. Here, inkjet printing is employed to develop up to hundreds of picoliter aqueous droplet arrays stabilized by oil-confinement with mild surfactants (Tween-20). The aqueous environments constitute specialized compartments in which biomolecules may exploit their function and a wide range of molecular interactions can be quantitatively investigated. Raster Image Correlation Spectroscopy (RICS) is employed to monitor in each compartment a restricted range of dynamic intermolecular events demonstrated through protein-binding assays involving the biotin/streptavidin model system.
Collapse
Affiliation(s)
- G Arrabito
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Ed. 17, V.le delle Scienze, 90128 Palermo, Italy.
| | - F Cavaleri
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Ed. 17, V.le delle Scienze, 90128 Palermo, Italy.
| | - V Montalbano
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Ed. 17, V.le delle Scienze, 90128 Palermo, Italy.
| | - V Vetri
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Ed. 17, V.le delle Scienze, 90128 Palermo, Italy. and Aten Center, Università degli Studi di Palermo, Ed. 18, V.le delle Scienze, 90128 Palermo, Italy
| | - M Leone
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Ed. 17, V.le delle Scienze, 90128 Palermo, Italy. and Aten Center, Università degli Studi di Palermo, Ed. 18, V.le delle Scienze, 90128 Palermo, Italy
| | - B Pignataro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Ed. 17, V.le delle Scienze, 90128 Palermo, Italy. and Aten Center, Università degli Studi di Palermo, Ed. 18, V.le delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
15
|
Scoutaris N, Ross S, Douroumis D. Current Trends on Medical and Pharmaceutical Applications of Inkjet Printing Technology. Pharm Res 2016; 33:1799-816. [DOI: 10.1007/s11095-016-1931-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/21/2016] [Indexed: 11/27/2022]
|
16
|
|
17
|
Choi IH, Kim H, Lee S, Baek S, Kim J. Plug-in nanoliter pneumatic liquid dispenser with nozzle design flexibility. BIOMICROFLUIDICS 2015; 9:064102. [PMID: 26594263 PMCID: PMC4644146 DOI: 10.1063/1.4935937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/05/2015] [Indexed: 05/07/2023]
Abstract
This paper presents a novel plug-in nanoliter liquid dispensing system with a plug-and-play interface for simple and reversible, yet robust integration of the dispenser. A plug-in type dispenser was developed to facilitate assembly and disassembly with an actuating part through efficient modularization. The entire process for assembly and operation of the plug-in dispenser is performed via the plug-and-play interface in less than a minute without loss of dispensing quality. The minimum volume of droplets pneumatically dispensed using the plug-in dispenser was 124 nl with a coefficient of variation of 1.6%. The dispensed volume increased linearly with the nozzle size. Utilizing this linear relationship, two types of multinozzle dispensers consisting of six parallel channels (emerging from an inlet) and six nozzles were developed to demonstrate a novel strategy for volume gradient dispensing at a single operating condition. The droplet volume dispensed from each nozzle also increased linearly with nozzle size, demonstrating that nozzle size is a dominant factor on dispensed volume, even for multinozzle dispensing. Therefore, the proposed plug-in dispenser enables flexible design of nozzles and reversible integration to dispense droplets with different volumes, depending on the application. Furthermore, to demonstrate the practicality of the proposed dispensing system, we developed a pencil-type dispensing system as an alternative to a conventional pipette for rapid and reliable dispensing of minute volume droplets.
Collapse
Affiliation(s)
- In Ho Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , San 31, Pohang, Kyungbuk 790-784, South Korea
| | - Hojin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , San 31, Pohang, Kyungbuk 790-784, South Korea
| | - Sanghyun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , San 31, Pohang, Kyungbuk 790-784, South Korea
| | - Seungbum Baek
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , San 31, Pohang, Kyungbuk 790-784, South Korea
| | - Joonwon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , San 31, Pohang, Kyungbuk 790-784, South Korea
| |
Collapse
|
18
|
Brown P, Talbot E, Wood T, Egan M, Wu J, Saini K, Kumar N, Bain C, Badyal J. Controlling picolitre droplet impact dynamics by tailoring the solid subsurface. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Sun Y, Chen X, Zhou X, Zhu J, Yu Y. Droplet-in-oil array for picoliter-scale analysis based on sequential inkjet printing. LAB ON A CHIP 2015; 15:2429-36. [PMID: 25904463 DOI: 10.1039/c5lc00356c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In recent years, inkjet printing, as a new method to fabricate microdroplet microarrays, has been increasingly applied in the field of biochemical diagnostics. To further improve the general applicability of the inkjet printing technology in fabricating biochemical chips, in this work, we introduce a model to describe the multiple injection procedure implemented by the inkjet printing approach, with experimental verification. The multiple injection model demonstrates a new sequential inkjet printing method that generates picoliter-scale multicomponent droplet-in-oil arrays via multistep printing on uniform planar substrates. Based on our previous work on double-inkjet printing, this technique adapts the piezoelectric inkjet printing technology to fabricate an oil droplet array, into which multiple precise injections of secondary droplets with different compositions and volumes can be automatically printed in the required sequence, simultaneously addressing the evaporation issues associated with printing picoliter droplets without external assistance. In this paper, we first describe the theory and characterize the model, which account for the basic principles of sequential inkjet printing, as well as validate the design in terms of multiple injections, droplet fusion, and rapid mixing. The feasibility and effectiveness of the method are also demonstrated in a dual fluorescence assay and a β-galactosidase enzyme inhibition assay. We believe that applying the sequential inkjet printing methodology in existing inkjet printing devices will enhance their use as universal diagnostic tools as well as accelerate the adoption of inkjet printing in multistep screening experiments.
Collapse
Affiliation(s)
- Yingnan Sun
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, PR China.
| | | | | | | | | |
Collapse
|
20
|
Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of Antibodies and Enzymes on 3-Aminopropyltriethoxysilane-Functionalized Bioanalytical Platforms for Biosensors and Diagnostics. Chem Rev 2014; 114:11083-130. [DOI: 10.1021/cr5000943] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sandeep Kumar Vashist
- HSG-IMIT - Institut für Mikro- und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Edmond Lam
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | | | - Keith B. Male
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - John H. T. Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| |
Collapse
|
21
|
High throughput screening for biomaterials discovery. J Control Release 2014; 190:115-26. [DOI: 10.1016/j.jconrel.2014.06.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 01/29/2023]
|
22
|
Lee S, Choi IH, Kim YK, Kim J. Velocity control of nanoliter droplets using a pneumatic dispensing system. MICRO AND NANO SYSTEMS LETTERS 2014. [DOI: 10.1186/s40486-014-0005-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
This paper introduces a pneumatic dispensing system to control the velocity of nanoliter droplets with small variation of volume. The system consists of a flexible membrane integrated with a backflow stopper. This unique dispensing mechanism can control the velocity of droplets according to applied positive pressures regardless of other operating conditions and design parameters. The range of droplet velocities is shifted by the flow resistance at the outlet under the same cross-section area. Our dispensing system can eject droplets of desired volume at a velocity that can be easily controlled by selecting design parameters and operating conditions. This dispensing system will provide a reliable performance within an optimized condition stably to deposit droplets onto accurate locations.
Collapse
|
23
|
Kokornaczyk MO, Trebbi G, Dinelli G, Marotti I, Bregola V, Nani D, Borghini F, Betti L. Droplet evaporation method as a new potential approach for highlighting the effectiveness of ultra high dilutions. Complement Ther Med 2014; 22:333-40. [DOI: 10.1016/j.ctim.2014.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 02/05/2014] [Accepted: 02/18/2014] [Indexed: 11/16/2022] Open
|
24
|
ZHENG Y, HOU LY, ZHU L, WANG HC, HE JQ, ZHANG WY. Micro-reagent Dispensing Method Based on Pulse Driving & Controlling of Micro-fluids Technology and Application Research. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(13)60703-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm 2013; 85:1075-83. [DOI: 10.1016/j.ejpb.2013.03.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 11/17/2022]
|
26
|
Chen F, Zhang Y, Nakagawa Y, Zeng H, Luo C, Nakajima H, Uchiyama K, Lin JM. A piezoelectric drop-on-demand generator for accurate samples in capillary electrophoresis. Talanta 2013; 107:111-7. [PMID: 23598200 DOI: 10.1016/j.talanta.2012.12.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/30/2012] [Accepted: 12/31/2012] [Indexed: 11/17/2022]
Abstract
In this work, we propose a piezoelectric droplet generator for injection of well-defined amounts of sample in capillary electrophoresis. We demonstrate stable, precise and drop-on-demand droplet formation for various solutions, with precise control of waveform driving piezoelectric crystal inside the ink-jet head. By tuning the waveform, we can also manipulate the droplet size and delivery frequency. This injector was used in sampling for capillary electrophoresis. As a state-of-the-art application, the analysis of theobromine, caffeine and theophiline using micellar electrokinetic chromatography was developed. The volume of sample (single droplet) analyzed in this experiment was 179 pL (RSD=1.2%, n=10). The detection limits for caffeine, theobromine, and theophiline are 0.02, 0.08 and 0.06 mM L(-1), respectively. Compared with conventional methods, the combination of picoliter droplet dispenser with capillary electrophoresis allows precise and accurate sampling, as well as for reduced sample consumption, which will prove to be an efficient tool in quantitative separation and analysis.
Collapse
Affiliation(s)
- Fengming Chen
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Arrabito G, Galati C, Castellano S, Pignataro B. Luminometric sub-nanoliter droplet-to-droplet array (LUMDA) and its application to drug screening by phase I metabolism enzymes. LAB ON A CHIP 2013; 13:68-72. [PMID: 23132304 DOI: 10.1039/c2lc40948h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Here we show the fabrication of the Luminometric Sub-nanoliter Droplet-to-droplet Array (LUMDA chip) by inkjet printing. The chip is easy to be implemented and allows for a multiplexed multi-step biochemical assay in sub-nanoliter liquid spots. This concept is here applied to the integral membrane enzyme CYP3A4, i.e. the most relevant enzymatic target for phase I drug metabolism, and to some structurally-related inhibitors.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Scuola Superiore di Catania, Via Valdisavoia, 9 95123 Catania, Italy
| | | | | | | |
Collapse
|
28
|
Zeng H, Weng Y, Ikeda S, Nakagawa Y, Nakajima H, Uchiyama K. Accurate and Highly Reproducible Picoliter Injection System for Capillary Electrophoresis. Anal Chem 2012; 84:10537-42. [DOI: 10.1021/ac302353q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hulie Zeng
- Department of Applied Chemistry, Graduate School of
Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Ying Weng
- Department of Applied Chemistry, Graduate School of
Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Saori Ikeda
- Department of Applied Chemistry, Graduate School of
Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Yuri Nakagawa
- Department of Applied Chemistry, Graduate School of
Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry, Graduate School of
Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Katsumi Uchiyama
- Department of Applied Chemistry, Graduate School of
Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
29
|
|
30
|
Brown PS, Talbot EL, Wood TJ, Bain CD, Badyal JPS. Superhydrophobic hierarchical honeycomb surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13712-13719. [PMID: 22966860 DOI: 10.1021/la302719m] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Two-dimensional hexagonally ordered honeycomb surfaces have been created by solvent casting polybutadiene films under controlled humidity. Subsequent CF(4) plasmachemical fluorination introduces cross-linking and surface texturing, leading to hierarchical surfaces with roughness on both the 10 μm (honeycomb) and micrometer (texturing) length scales. For microliter droplets, these display high water contact angle values (>170°) in combination with low contact angle hysteresis (i.e., superhydrophobicity) while displaying bouncing of picoliter water droplets. In the case of picoliter droplets, it is found that surfaces which exhibit similar static contact angles can give rise to different droplet impact dynamics, governed by the underlying surface topography. These studies are of relevance to technological processes such as rapid cooling, delayed freezing, crop spraying, and inkjet printing.
Collapse
Affiliation(s)
- P S Brown
- Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, UK
| | | | | | | | | |
Collapse
|
31
|
Chen F, Lin Z, Zheng Y, Zeng H, Nakajima H, Uchiyama K, Lin JM. Development of an automatic multi-channel ink-jet ejection chemiluminescence system and its application to the determination of horseradish peroxidase. Anal Chim Acta 2012; 739:77-82. [DOI: 10.1016/j.aca.2012.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/03/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
|
32
|
Rodríguez-Dévora JI, Zhang B, Reyna D, Shi ZD, Xu T. High throughput miniature drug-screening platform using bioprinting technology. Biofabrication 2012; 4:035001. [DOI: 10.1088/1758-5082/4/3/035001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Zhu X, Zheng Q, Yang H, Cai J, Huang L, Duan Y, Xu Z, Cen P. Recent advances in inkjet dispensing technologies: applications in drug discovery. Expert Opin Drug Discov 2012; 7:761-70. [DOI: 10.1517/17460441.2012.697892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Arrabito G, Pignataro B. Solution Processed Micro- and Nano-Bioarrays for Multiplexed Biosensing. Anal Chem 2012; 84:5450-62. [DOI: 10.1021/ac300621z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Giuseppe Arrabito
- Scuola Superiore di Catania, Via Valdisavoia 9, 95123, Catania, Italy
| | - Bruno Pignataro
- Dipartimento di Chimica “S. Cannizzaro”, Università degli Studi di Palermo, V. le delle
Scienze, Parco d’Orleans II, 90128, Palermo, Italy
| |
Collapse
|
35
|
Brown PS, Berson A, Talbot EL, Wood TJ, Schofield WCE, Bain CD, Badyal JPS. Impact of picoliter droplets on superhydrophobic surfaces with ultralow spreading ratios. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13897-13903. [PMID: 22011196 DOI: 10.1021/la203329n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The impact of picoliter-sized water droplets on superhydrophobic CF(4) plasma fluorinated polybutadiene surfaces is investigated with high-speed imaging. Variation of the surface topography by plasmachemical modification enables the dynamics of wetting to be precisely controlled. Final spreading ratios as low as 0.63 can be achieved. A comparison of the maximum spreading ratio and droplet oscillation frequencies to models described in the literature shows that both are found to be much lower than theoretically predicted.
Collapse
Affiliation(s)
- P S Brown
- Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
Rodríguez-Dévora JI, Shi ZD, Xu T. Direct assembling methodologies for high-throughput bioscreening. Biotechnol J 2011; 6:1454-65. [PMID: 22021162 DOI: 10.1002/biot.201100100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 01/01/2023]
Abstract
Over the last few decades, high-throughput (HT) bioscreening, a technique that allows rapid screening of biochemical compound libraries against biological targets, has been widely used in drug discovery, stem cell research, development of new biomaterials, and genomics research. To achieve these ambitions, scaffold-free (or direct) assembly of biological entities of interest has become critical. Appropriate assembling methodologies are required to build an efficient HT bioscreening platform. The development of contact and non-contact assembling systems as a practical solution has been driven by a variety of essential attributes of the bioscreening system, such as miniaturization, high throughput, and high precision. The present article reviews recent progress on these assembling technologies utilized for the construction of HT bioscreening platforms.
Collapse
Affiliation(s)
- Jorge I Rodríguez-Dévora
- Biomedical Engineering Program and Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | | | | |
Collapse
|
37
|
Kokornaczyk MO, Dinelli G, Marotti I, Benedettelli S, Nani D, Betti L. Self-organized crystallization patterns from evaporating droplets of common wheat grain leakages as a potential tool for quality analysis. ScientificWorldJournal 2011; 11:1712-25. [PMID: 22125430 PMCID: PMC3201687 DOI: 10.1100/2011/937149] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/12/2011] [Indexed: 12/02/2022] Open
Abstract
We studied the evaporation-induced pattern formation in droplets of common wheat kernel leakages prepared out of ancient and modern wheat cultivars as a possible tool for wheat quality analysis. The experiments showed that the substances which passed into the water during the soaking of the kernels created crystalline structures with different degrees of complexity while the droplets were evaporating. The forms ranged from spots and simple structures with single ramifications, through dendrites, up to highly organized hexagonal shapes and fractal-like structures. The patterns were observed and photographed using dark field microscopy in small magnifications. The evaluation of the patterns was performed both visually and by means of the fractal dimension analysis. From the results, it can be inferred that the wheat cultivars differed in their pattern-forming capacities. Two of the analyzed wheat cultivars showed poor pattern formation, whereas another two created well-formed and complex patterns. Additionally, the wheat cultivars were analyzed for their vigor by means of the germination test and measurement of the electrical conductivity of the grain leakages. The results showed that the more vigorous cultivars also created more complex patterns, whereas the weaker cultivars created predominantly poor forms. This observation suggests a correlation between the wheat seed quality and droplet evaporation patterns.
Collapse
Affiliation(s)
- Maria Olga Kokornaczyk
- Department of Agroenvironmental Sciences and Technologies, University of Bologna, 40127 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Sharma H, Nguyen D, Chen A, Lew V, Khine M. Unconventional low-cost fabrication and patterning techniques for point of care diagnostics. Ann Biomed Eng 2010; 39:1313-27. [PMID: 21152984 PMCID: PMC3069320 DOI: 10.1007/s10439-010-0213-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/17/2010] [Indexed: 01/28/2023]
Abstract
The potential of rapid, quantitative, and sensitive diagnosis has led to many innovative ‘lab on chip’ technologies for point of care diagnostic applications. Because these chips must be designed within strict cost constraints to be widely deployable, recent research in this area has produced extremely novel non-conventional micro- and nano-fabrication innovations. These advances can be leveraged for other biological assays as well, including for custom assay development and academic prototyping. The technologies reviewed here leverage extremely low-cost substrates and easily adoptable ways to pattern both structural and biological materials at high resolution in unprecedented ways. These new approaches offer the promise of more rapid prototyping with less investment in capital equipment as well as greater flexibility in design. Though still in their infancy, these technologies hold potential to improve upon the resolution, sensitivity, flexibility, and cost-savings over more traditional approaches.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA USA
| | - Diep Nguyen
- Department of Biomedical Engineering, University of California, Irvine, CA USA
| | - Aaron Chen
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA USA
| | - Valerie Lew
- Department of Biomedical Engineering, University of California, Irvine, CA USA
| | - Michelle Khine
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA USA
- Department of Biomedical Engineering, University of California, Irvine, CA USA
| |
Collapse
|