1
|
Park SH, Han S, Park S, Kim HS, Kim KM, Kim S, Lee DY, Lee J, Kim YP. Photosensitizing deep-seated cancer cells with photoprotein-conjugated upconversion nanoparticles. J Nanobiotechnology 2023; 21:279. [PMID: 37598155 PMCID: PMC10439569 DOI: 10.1186/s12951-023-02057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/09/2023] [Indexed: 08/21/2023] Open
Abstract
To resolve the problem of target specificity and light transmission to deep-seated tissues in photodynamic therapy (PDT), we report a cancer cell-targeted photosensitizer using photoprotein-conjugated upconversion nanoparticles (UCNPs) with high target specificity and efficient light transmission to deep tissues. Core-shell UCNPs with low internal energy back transfer were conjugated with recombinant proteins that consists of a photosensitizer (KillerRed; KR) and a cancer cell-targeted lead peptide (LP). Under near infrared (NIR)-irradiating condition, the UCNP-KR-LP generated superoxide anion radicals as reactive oxygen species via NIR-to-green light conversion and exhibited excellent specificity to target cancer cells through receptor-mediated cell adhesion. Consequently, this photosensitizing process facilitated rapid cell death in cancer cell lines (MCF-7, MDA-MB-231, and U-87MG) overexpressing integrin beta 1 (ITGB1) receptors but not in a cell line (SK-BR-3) with reduced ITGB1 expression and a non-invasive normal breast cell line (MCF-10A). In contrast to green light irradiation, NIR light irradiation exhibited significant PDT efficacy in cancer cells located beneath porcine skin tissues up to a depth of 10 mm, as well as in vivo tumor xenograft mouse models. This finding suggests that the designed nanocomposite is useful for sensing and targeting various deep-seated tumors.
Collapse
Affiliation(s)
- Sung Hyun Park
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea
| | - Soohyun Han
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sangwoo Park
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kyung-Min Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Suyeon Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 04763, Republic of Korea.
- Elixir Pharmatech Inc, Seoul, 04763, Republic of Korea.
| | - Joonseok Lee
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Young-Pil Kim
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
2
|
Ziaei E, de Paiva IM, Yao SJ, Sarrami N, Mehinrad P, Lai J, Lavasanifar A, Kaur K. Peptide-Drug Conjugate Targeting Keratin 1 Inhibits Triple-Negative Breast Cancer in Mice. Mol Pharm 2023; 20:3570-3577. [PMID: 37307328 PMCID: PMC10699791 DOI: 10.1021/acs.molpharmaceut.3c00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective delivery of chemotherapy to the tumor site while sparing healthy cells and tissues is an attractive approach for cancer treatment. Carriers such as peptides can facilitate selective tumor targeting and payload delivery. Peptides with specific affinity for the overexpressed cell-surface receptors in cancer cells are conjugated to chemotherapy to afford peptide-drug conjugates (PDCs) that show selective uptake by cancer cells. Using a 10-mer linear peptide (WxEAAYQrFL) called 18-4 that targets and binds breast cancer cells, we designed a peptide 18-4-doxorubicin (Dox) conjugate with high specific toxicity toward triple-negative breast cancer (TNBC) MDA-MB-231 cells and 30-fold lower toxicity to normal breast MCF10A epithelial cells. Here, we elucidate the in vivo activity of this potent and tumor-selective peptide 18-4-Dox conjugate in mice bearing orthotopic MDA-MB-231 tumors. Mice treated with four weekly injections of the conjugate showed significantly lower tumor volumes compared to mice treated with free Dox at an equivalent Dox dose. Immunohistochemical (IHC) analysis of mice tissues revealed that treatment with a low dose of PDC (2.5 mg/kg of Dox equiv) reduced the expression of proliferation markers (PCNA and Ki-67) and increased apoptosis (evidenced by increased caspase-3 expression). At the same dose of free Dox (2.5 mg/kg), the expression of these markers was similar to that of saline treatment. Accordingly, significantly more Dox accumulated in tumors of conjugate-treated mice (7-fold) compared to the Dox-treated mice, while lower levels of Dox were observed in the liver, heart, and lungs of peptide-Dox conjugate-treated mice (up to 3-fold less) than Dox-treated mice. The IHC analysis of keratin 1 (K1), the receptor for peptide 18-4, revealed K1 upregulation in tumors and low levels in normal mammary fat pad and liver tissues from mice, suggesting preferential uptake of PDCs by TNBC to be K1 receptor-mediated. Taken together, our data support the use of a PDC approach to deliver chemotherapy selectively to the TNBC to inhibit tumor growth.
Collapse
Affiliation(s)
- Elmira Ziaei
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA, 92618-1908, USA
| | - Igor Moura de Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Shih-Jing Yao
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA, 92618-1908, USA
| | - Nasim Sarrami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Parnian Mehinrad
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Justine Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA, 92618-1908, USA
| |
Collapse
|
3
|
Goncalves BG, Banerjee IA. A computational and laboratory approach for the investigation of interactions of peptide conjugated natural terpenes with EpHA2 receptor. J Mol Model 2023; 29:204. [PMID: 37291458 DOI: 10.1007/s00894-023-05596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
CONTEXT Ephrin type A receptor 2 (EphA2) is a well-known drug target for cancer treatment due to its overexpression in numerous types of cancers. Thus, it is crucial to determine the binding interactions of this receptor with both the ligand-binding domain (LBD) and the kinase-binding domain (KBD) through a targeted approach in order to modulate its activity. In this work, natural terpenes with inherent anticancer properties were conjugated with short peptides YSAYP and SWLAY that are known to bind to the LBD of EphA2 receptor. We examined the binding interactions of six terpenes (maslinic acid, levopimaric acid, quinopimaric acid, oleanolic, polyalthic, and hydroxybetulinic acid) conjugated to the above peptides with the ligand-binding domain (LBD) of EphA2 receptor computationally. Additionally, following the "target-hopping approach," we also examined the interactions of the conjugates with the KBD. Our results indicated that most of the conjugates showed higher binding interactions with the EphA2 kinase domain compared to LBD. Furthermore, the binding affinities of the terpenes increased upon conjugating the peptides with the terpenes. In order to further investigate the specificity toward EphA2 kinase domain, we also examined the binding interactions of the terpenes conjugated to VPWXE (x = norleucine), as VPWXE has been shown to bind to other RTKs. Our results indicated that the terpenes conjugated to SWLAY in particular showed high efficacy toward binding to the KBD. We also designed conjugates where in the peptide portion and the terpenes were separated by a butyl (C4) group linker to examine if the binding interactions could be enhanced. Docking studies showed that the conjugates with linkers had enhanced binding with the LBD compared to those without linkers, though binding remained slightly higher without linkers toward the KBD. As a proof of concept, maslinate and oleanolate conjugates of each of the peptides were then tested with F98 tumor cells which are known to overexpress EphA2 receptor. Results indicated that the oleanolate-amido-SWLAY conjugates were efficacious in reducing the cell proliferation of the tumor cells and may be potentially developed and further studied for targeting tumor cells overexpressing the EphA2 receptor. To test if these conjugates could bind to the receptor and potentially function as kinase inhibitors, we conducted SPR analysis and ADP-Glo assay. Our results indicated that OA conjugate with SWLAY showed the highest inhibition. METHODS Docking studies were carried out using AutoDock Vina, v.1.2.0; Molecular Dynamics and MMGBSA calculations were carried out through Schrodinger Software DESMOND.
Collapse
Affiliation(s)
- Beatriz G Goncalves
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
4
|
Craciun BF, Clima L, Bostiog DI, Silion M, Calin M, Peptanariu D, Pinteala M. Multilayer gold nanoparticles as non-viral vectors for targeting MCF-7 cancer cells. BIOMATERIALS ADVANCES 2022; 144:213201. [PMID: 36436432 DOI: 10.1016/j.bioadv.2022.213201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Cargocomplexes play a vital role in non-viral delivery methods due to their capacity to target certain cells (or cells through the cell-division cycle) and inject their (macro)molecular "cargo" into them. The development of gene carriers that can efficiently transport and deliver genetic material into human-targeted cells with minimal toxicity is an important challenge in the field. The present study reports the straightforward preparation and testing of a modular non-viral gene carrier based on AuNPs. The design, synthesis, and in vitro evaluation of multilayer gold nanoparticles (AuNPs) as non-viral gene carriers with high transfection efficiency, reduced cytotoxicity for targeted therapeutic delivery of nucleic acids to MCF-7 cancer cells are presented. The developed non-viral vector is based on supramolecular "host-guest" inclusion complexes of β-cyclodextrin, positioned on the AuNPs surface over a layer of polyethyleneimine, and adamantyl moiety from polyethylene glycol conjugated decapeptide (WXEAAYQRFL). First, the β-CD functionalized PEI was utilized as the template for the synthesis of AuNPs of controlled sizes. The reaction produced small AuNPs with a cationic layer which is known for efficient condensation of genetic material and β-CD suitable for the decoration of the carrier with targeting moieties using "host-guest" inclusion complexation. Subsequently, adamantine-polyethylene glycol conjugated decapeptide was attached to the AuNPs. The in vitro results have validated the ability of the proposed systems to selectively target tumor cells with high efficacy and low toxicity due to the unique affinity of the aptamer-functionalized nanoparticles toward breast cancer cells. The findings of this work demonstrated that the proposed modular system may represent a very promising platform for the AuNP-based non-viral vectors mainly due to the versatility of the system, which allows for the facile exchange of several types of ligands for improving the targeting properties and transfection efficiency, or for providing better protection from the endocytotic systems.
Collapse
Affiliation(s)
- Bogdan Florin Craciun
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Lilia Clima
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Denisse-Iulia Bostiog
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Mihaela Silion
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
| | - Manuela Calin
- Medical and Pharmaceutical BioNanoTechnologies Laboratory (BioNanoMed), "Nicolae Simionescu" Institute of Cellular Biology and Pathology, Bucharest, Romania
| | - Dragos Peptanariu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| |
Collapse
|
5
|
Tong S, Darwish S, Ariani HHN, Lozada KA, Salehi D, Cinelli MA, Silverman RB, Kaur K, Yang S. A Small Peptide Increases Drug Delivery in Human Melanoma Cells. Pharmaceutics 2022; 14:1036. [PMID: 35631623 PMCID: PMC9145755 DOI: 10.3390/pharmaceutics14051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Melanoma is the most fatal type of skin cancer and is notoriously resistant to chemotherapies. The response of melanoma to current treatments is difficult to predict. To combat these challenges, in this study, we utilize a small peptide to increase drug delivery to melanoma cells. A peptide library array was designed and screened using a peptide array-whole cell binding assay, which identified KK-11 as a novel human melanoma-targeting peptide. The peptide and its D-amino acid substituted analogue (VPWxEPAYQrFL or D-aa KK-11) were synthesized via a solid-phase strategy. Further studies using FITC-labeled KK-11 demonstrated dose-dependent uptake in human melanoma cells. D-aa KK-11 significantly increased the stability of the peptide, with 45.3% remaining detectable after 24 h with human serum incubation. Co-treatment of KK-11 with doxorubicin was found to significantly enhance the cytotoxicity of doxorubicin compared to doxorubicin alone, or sequential KK-11 and doxorubicin treatment. In vivo and ex vivo imaging revealed that D-aa KK-11 distributed to xenografted A375 melanoma tumors as early as 5 min and persisted up to 24 h post tail vein injection. When co-administered, D-aa KK-11 significantly enhanced the anti-tumor activity of a novel nNOS inhibitor (MAC-3-190) in an A375 human melanoma xenograft mouse model compared to MAC-3-190 treatment alone. No apparent systemic toxicities were observed. Taken together, these results suggest that KK-11 may be a promising human melanoma-targeted delivery vector for anti-melanoma cargo.
Collapse
Affiliation(s)
- Shirley Tong
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.T.); (K.A.L.)
| | - Shaban Darwish
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.D.); (H.H.N.A.); (D.S.)
| | - Hanieh Hossein Nejad Ariani
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.D.); (H.H.N.A.); (D.S.)
| | - Kate Alison Lozada
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.T.); (K.A.L.)
| | - David Salehi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.D.); (H.H.N.A.); (D.S.)
| | - Maris A. Cinelli
- Center for Developmental Therapeutics, Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; (M.A.C.); (R.B.S.)
| | - Richard B. Silverman
- Center for Developmental Therapeutics, Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; (M.A.C.); (R.B.S.)
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kamaljit Kaur
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.D.); (H.H.N.A.); (D.S.)
| | - Sun Yang
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.T.); (K.A.L.)
| |
Collapse
|
6
|
Delivery of doxorubicin loaded P18 conjugated-poly(2-ethyl-oxazoline)-DOPE nanoliposomes for targeted therapy of breast cancer. Toxicol Appl Pharmacol 2021; 428:115671. [PMID: 34391753 DOI: 10.1016/j.taap.2021.115671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
Breast cancer, a heterogeneous disease, has the highest incidence rate and is a major cause of death in females worldwide. Drug delivery by using nanotechnology has shown great promise for improving cancer treatment. Nanoliposomes are known to have enhanced accumulation ability in tumors due to prolonged systemic circulation. Peptide 18 (P18), a tumor homing peptide targeting keratin-1 (KRT-1), was previously shown to have high binding affinity towards breast cancer cells. In this study, we investigate the ability of P18 conjugated PEtOx-DOPE nanoliposomes (P18-PEtOx-DOPE) for the targeted delivery of doxorubicin to AU565 breast cancer model. Toxicology studies of PEtOx-DOPE nanoliposomes performed on normal breast epithelial cells (MCF10A), showed minimal toxicity. Doxorubicin delivery by P18-PEtOx-DOPE to AU565 cells induces cytotoxicity in a dose and time dependent manner causing mitotic arrest in G2/M phase at 24 h. Anti-cancer activity of P18-PEtOx-DOPE-DOX nanoliposomes on AU565 cells was detected by Annexin V/PI apoptosis assay. In terms of in vivo antitumor efficacy, P18-PEtOx-DOPE-DOX nanoliposomes administration to AU565 CD-1 nu/nu mice model showed significant decrease in tumor volume suggesting that DOX delivered by these nanoliposomes elicited a strong antitumor response comparable to the free delivery of doxorubicin. Overall, our results offered preclinical proof for the use of P18-PEtOx-DOPE-DOX nanoliposomes in KRT-1+ breast cancer therapy.
Collapse
|
7
|
Prencipe F, Diaferia C, Rossi F, Ronga L, Tesauro D. Forward Precision Medicine: Micelles for Active Targeting Driven by Peptides. Molecules 2021; 26:4049. [PMID: 34279392 PMCID: PMC8271712 DOI: 10.3390/molecules26134049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Precision medicine is based on innovative administration methods of active principles. Drug delivery on tissue of interest allows improving the therapeutic index and reducing the side effects. Active targeting by means of drug-encapsulated micelles decorated with targeting bioactive moieties represents a new frontier. Between the bioactive moieties, peptides, for their versatility, easy synthesis and immunogenicity, can be selected to direct a drug toward a considerable number of molecular targets overexpressed on both cancer vasculature and cancer cells. Moreover, short peptide sequences can facilitate cellular intake. This review focuses on micelles achieved by self-assembling or mixing peptide-grafted surfactants or peptide-decorated amphiphilic copolymers. Nanovectors loaded with hydrophobic or hydrophilic cytotoxic drugs or with gene silence sequences and externally functionalized with natural or synthetic peptides are described based on their formulation and in vitro and in vivo behaviors.
Collapse
Affiliation(s)
- Filippo Prencipe
- Institute of Crystallography (IC) CNR, Via Amendola 122/o, 70126 Bari, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Filomena Rossi
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Luisa Ronga
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
| | - Diego Tesauro
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
8
|
Nikiforov PO, Hejja B, Chahwan R, Soeller C, Gielen F, Chimerel C. Functional Phenotype Flow Cytometry: On Chip Sorting of Individual Cells According to Responses to Stimuli. Adv Biol (Weinh) 2021; 5:e2100220. [PMID: 34160140 DOI: 10.1002/adbi.202100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/21/2021] [Indexed: 11/11/2022]
Abstract
The ability to effectively separate and isolate biological cells into specific and well-defined subpopulations is crucial for the advancement of our understanding of cellular heterogeneity and its relevance to living systems. Here is described the development of the functional phenotype flow cytometer (FPFC), a new device designed to separate cells on the basis of their in situ real-time phenotypic responses to stimuli. The FPFC performs a cascade of cell processing steps on a microfluidic platform: introduces biological cells one at a time into a solution of a biological reagent that acts as a stimulus, incubates the cells with the stimulus solution in a flow, and sorts the cells into subpopulations according to their phenotypic responses to the provided stimulus. The presented implementation of the FPFC uses intracellular fluorescence as a readout, incubates cells for 75 s, and operates at a throughput of up to 4 cells min-1 -resulting in the profiling and sorting of hundreds of cells within a few hours. The design and operation of the FPFC are validated by sorting cells from the human Burkitt's lymphoma cancerous cell line Ramos on the basis of their response to activation of the B cell antigen receptor (BCR) by a targeted monoclonal antibody.
Collapse
Affiliation(s)
- Petar O Nikiforov
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Beata Hejja
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Zurich, 8057, Switzerland
| | - Christian Soeller
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Fabrice Gielen
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Catalin Chimerel
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
9
|
Goyal R, Jerath G, Akhil R, Chandrasekharan A, Puppala ER, Ponneganti S, Sarma A, Naidu VGM, Santhoshkumar TR, Ramakrishnan V. Geometry encoded functional programming of tumor homing peptides for targeted drug delivery. J Control Release 2021; 333:16-27. [PMID: 33722612 DOI: 10.1016/j.jconrel.2021.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 01/10/2023]
Abstract
Poly-peptide molecules have shown promising applications in drug delivery and tumor targeting. A series of tumor homing peptides were designed by exhaustively sampling low energy geometrical basins of amino acids at specific sites of a peptide molecule to induce a conformational lock. This peptide library was pruned to a limited set of eight molecules, employing electrostatic interactions, docking, and molecular dynamics simulations. These designed and optimized peptides were synthesized and tested on various cell lines, including breast cancer (MDA-MB-231), cervical cancer (HeLa), osteosarcoma (U2-OS), and non-cancerous mammary epithelial cells (MCF-10A) using confocal microscopy and flow cytometry. Peptides show differential uptake in cancerous MDA-MB-231, HeLa, U2-OS, and non-cancerous MCF-10A cells. Confocal imaging verified their ability to penetrate even in 3D tumorospheres of MDA-MB-231 cells. Further, experiments of mitochondrial membrane potential depolarization and Caspase-3 activation confirmed that their cytotoxic effects are by apoptosis. Homing ability of the designed peptides in in vivo system and fluorescence imaging with clinical samples of human origin have further confirmed that the in vitro studies are qualitatively identical and quantitatively comparable in their ability to selectively recognize tumor cells. Overall, we present a roadmap for the functional programming of peptide-based homing and penetrating molecules that can perform selective tumor targeting.
Collapse
Affiliation(s)
- Ruchika Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gaurav Jerath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - R Akhil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aneesh Chandrasekharan
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Eswara Rao Puppala
- National Institute of Pharmaceutical Education and Research Guwahati, Guwahati 781101, Assam, India
| | - Srikanth Ponneganti
- National Institute of Pharmaceutical Education and Research Guwahati, Guwahati 781101, Assam, India
| | - Anupam Sarma
- Dr. Bhubaneswar Borooah Cancer Institute, Tata Memorial Centre (Mumbai), Guwahati 781016, Assam, India
| | - V G M Naidu
- National Institute of Pharmaceutical Education and Research Guwahati, Guwahati 781101, Assam, India
| | - T R Santhoshkumar
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India.
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
10
|
Devrim B, Bolat ZB, Telci D, Şahin F, Gulyuz S, Ozkose UU, Yilmaz O, Bozkır A. Design and evaluation of peptide-18-targeted nanoliposomes constructed by poly(2-oxazoline)-DOPE for doxorubicin delivery. J Microencapsul 2021; 38:285-297. [PMID: 33853478 DOI: 10.1080/02652048.2021.1905094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS The aim of this study is to develop targeted nanoliposome formulations to provide efficient treatment for breast cancer. In this study, peptide 18-modified poly(2-ethyl-2-oxazoline)-dioleoylphosphatidylethanolamine (P18-PEtOx-DOPE), was synthesised to construct nanoliposomes. METHODS Doxorubicin (DOX) was encapsulated into the nanoliposomes by ethanol injection method. Particle size and polydispersity index were measured by dynamic light scattering. Zeta potential was determined by electrophoretic laser Doppler anemometry. The shape of the nanoliposomes was examined by transmission electron microscope. Specific bindings of P18-PEtOx-DOPE nanoliposomes were demonstrated on AU565 cells by confocal microscopy and flow cytometry studies. RESULTS DOX-loaded nanoliposomes with particle diameter of 150.00 ± 2.84 nm and PDI of 0.212 ± 0.013 were obtained. PEtOx-DOPE and PEtOx-DOPE nanoliposomes are non-toxic on HUVEC, HEK293 and hMSC cells for 48 h. Furthermore, P18-PEtOx-DOPE nanoliposomes demonstrated specificity towards AU565 cells with high binding affinity. CONCLUSIONS As a result, DOX-loaded P18-PEtOx-DOPE nanoliposomes can serve as favourable candidates in breast cancer targeted therapy.
Collapse
Affiliation(s)
- Burcu Devrim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeynep Busra Bolat
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Dilek Telci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Sevgi Gulyuz
- Marmara Research Center, TUBITAK, Materials Institution, Gebze, Turkey.,Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Maslak, Turkey
| | - Umut Ugur Ozkose
- Marmara Research Center, TUBITAK, Materials Institution, Gebze, Turkey.,Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Maslak, Turkey.,Department of Chemistry, Faculty of Science and Letters, Piri Reis University, Istanbul, Turkey
| | - Ozgur Yilmaz
- Marmara Research Center, TUBITAK, Materials Institution, Gebze, Turkey
| | - Asuman Bozkır
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
11
|
Kim EH, Park S, Kim YK, Moon M, Park J, Lee KJ, Lee S, Kim YP. Self-luminescent photodynamic therapy using breast cancer targeted proteins. SCIENCE ADVANCES 2020; 6:eaba3009. [PMID: 32917700 PMCID: PMC7486108 DOI: 10.1126/sciadv.aba3009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Despite the potential of photodynamic therapy (PDT), its comprehensive use in cancer treatment has not been achieved because of the nondegradable risks of photosensitizing drugs and limits of light penetration and instrumentation. Here, we present bioluminescence (BL)-induced proteinaceous PDT (BLiP-PDT), through the combination of luciferase and a reactive oxygen species (ROS)-generating protein (Luc-RGP), which is self-luminescent and degradable. After exposure to coelenterazine-h as a substrate for luciferase without external light irradiation, Luc-RGP fused with a small lead peptide-induced breast cancer cell death through the generation of BL-sensitive ROS in the plasma membrane. Even with extremely low light energy, BLiP-PDT exhibited targeted effects in primary breast cancer cells from patients and in in vivo tumor xenograft mouse models. These findings suggest that BLiP-PDT is immediately useful as a promising theranostic approach against various cancers.
Collapse
Affiliation(s)
- Eun Hye Kim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Sangwoo Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea
| | - Yun Kyu Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Minwoo Moon
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Jeongwon Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea.
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
12
|
Goyal R, Jerath G, Chandrasekharan A, Kumar TRS, Ramakrishnan V. Peptide-based delivery vectors with pre-defined geometrical locks. RSC Med Chem 2020; 11:1303-1313. [PMID: 34095842 DOI: 10.1039/d0md00229a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Design of peptide-based targeted delivery vectors with attributes of specificity and selective cellular targeting by fixing their topology and resulting electrostatic fingerprint is the objective of this study. We formulated our peptide design platform by utilizing the possibilities of side-chain induced geometric restrictions in a typical peptide molecule. Conceptually, we locked the conformation of the RGD/NGR motif of tumor homing peptides (THPs) by mutating glycine in these motifs with d-proline and tailed the peptides with a syndiotactic amphipathic segment for cellular penetration. The designed peptides were synthesized, characterized, and tested in vitro on various cell lines, including breast cancer (MDA-MB-231), cervical cancer (HeLa), osteosarcoma (U2-OS) and non-cancer mammary epithelial cells (MCF-10A), by flow cytometry and confocal microscopy. The results showed differential cellular uptake in different cell types, as a result of the distinct electrostatic fingerprint encoded in their design. The uptake of serum pre-treated peptides by cells reveals the retention of peptide activity even after the incubation with serum. In addition, peptide-methotrexate (MTX) conjugates compared to the methotrexate drug showed enhanced apoptotic cell death in MTX-resistant MDA-MB-231 cells, indicating the increase in MTX bioavailability.
Collapse
Affiliation(s)
- Ruchika Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati-781039 Assam India
| | - Gaurav Jerath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati-781039 Assam India
| | - Aneesh Chandrasekharan
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram-695014 Kerala India
| | - T R Santhosh Kumar
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram-695014 Kerala India
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati-781039 Assam India
| |
Collapse
|
13
|
Ziaei E, Saghaeidehkordi A, Dill C, Maslennikov I, Chen S, Kaur K. Targeting Triple Negative Breast Cancer Cells with Novel Cytotoxic Peptide-Doxorubicin Conjugates. Bioconjug Chem 2019; 30:3098-3106. [PMID: 31715102 DOI: 10.1021/acs.bioconjchem.9b00755] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we have designed and synthesized two novel peptide-drug conjugates (PDCs) where the drug, doxorubicin (Dox), is linked to the peptide via a succinimidyl thioether bond or a hydrazone linker. A highly specific and proteolytically stable breast cancer cell targeting peptide (WxEAAYQrFL) is conjugated to Dox to synthesize peptide-Dox thioether (1) or hydrazone (2) conjugate. The evaluation of the stability in water, media, and human serum showed that the conjugate 1 with the succinimidyl thioether linkage is more stable compared to the acid-sensitive hydrazone containing conjugate 2. The cytotoxicity studies showed that the two PDCs were as toxic as free Dox toward the triple negative breast cancer (TNBC) cells and were 7-30 times less toxic (IC50 1.2-4.7 μM for TNBC cells versus 15-39 μM for noncancerous cells) toward the noncancerous breast cells compared to the free doxorubicin (IC50 0.35-1.5 μM for TNBC cells versus 0.24 μM for noncancerous cells). The results from the comparative study of the two PDCs suggest that both may have translational potential for TNBC treatment.
Collapse
Affiliation(s)
- Elmira Ziaei
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| | - Azam Saghaeidehkordi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| | - Cassandra Dill
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| | - Innokentiy Maslennikov
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| | - Shiuan Chen
- Department of Cancer Biology , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| |
Collapse
|
14
|
Short amylin receptor antagonist peptides improve memory deficits in Alzheimer's disease mouse model. Sci Rep 2019; 9:10942. [PMID: 31358858 PMCID: PMC6662706 DOI: 10.1038/s41598-019-47255-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Recent evidence supports involvement of amylin and the amylin receptor in the pathogenesis of Alzheimer’s disease (AD). We have previously shown that amylin receptor antagonist, AC253, improves spatial memory in AD mouse models. Herein, we generated and screened a peptide library and identified two short sequence amylin peptides (12–14 aa) that are proteolytically stable, brain penetrant when administered intraperitoneally, neuroprotective against Aβ toxicity and restore diminished levels of hippocampal long term potentiation in AD mice. Systemic administration of the peptides for five weeks in aged 5XFAD mice improved spatial memory, reduced amyloid plaque burden, and neuroinflammation. The common residue SQELHRLQTY within the peptides is an essential sequence for preservation of the beneficial effects of the fragments that we report here and constitutes a new pharmacological target. These findings suggest that the amylin receptor antagonism may represent a novel therapy for AD.
Collapse
|
15
|
Hossein-Nejad-Ariani H, Althagafi E, Kaur K. Small Peptide Ligands for Targeting EGFR in Triple Negative Breast Cancer Cells. Sci Rep 2019; 9:2723. [PMID: 30804365 PMCID: PMC6389950 DOI: 10.1038/s41598-019-38574-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/28/2018] [Indexed: 11/09/2022] Open
Abstract
The efficacy of chemotherapy for cancer treatment can be increased by targeted drug delivery to the cancer cells. This is particularly important for triple negative breast cancer (TNBC) for which chemotherapy is a major form of treatment. Here we designed and screened a library of 30 peptides starting with a previously reported epidermal growth factor receptor (EGFR) targeting peptide GE11 (YHWYGYTPQNVI). A direct peptide array-whole cell binding assay, where the peptides are conjugated to a cellulose membrane, was used to identify four peptides with enhanced binding to TNBC cells. Next, the four peptides were synthesized as FITC-labelled soluble peptides to study their direct uptake by TNBC cells using flow cytometry. The results showed that peptide analogue 22 had several fold higher uptake by the TNBC cells compared to the lead peptide GE11. The specific uptake of the peptide analogue 22 was confirmed by competition experiment using pure EGF protein. Further, peptide 22 showed dose dependent uptake by the TNBC MDA-MB-231 cells (105) with uptake saturating at around 2 μM peptide concentration. Thus, peptide 22 is a promising EGFR specific TNBC cell binding peptide that can be conjugated directly to a chemotherapeutic drug or to nanoparticles for targeted drug delivery to enhance the efficacy of chemotherapy for TNBC treatment.
Collapse
Affiliation(s)
- Hanieh Hossein-Nejad-Ariani
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| | - Emad Althagafi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA.
| |
Collapse
|
16
|
Schwaminger S, Blank‐Shim SA, Borkowska‐Panek M, Anand P, Fraga‐García P, Fink K, Wenzel W, Berensmeier S. Experimental characterization and simulation of amino acid and peptide interactions with inorganic materials. Eng Life Sci 2018; 18:84-100. [PMID: 32624891 PMCID: PMC6999452 DOI: 10.1002/elsc.201700019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/02/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Inspired by nature, many applications and new materials benefit from the interplay of inorganic materials and biomolecules. A fundamental understanding of complex organic-inorganic interactions would improve the controlled production of nanomaterials and biosensors to the development of biocompatible implants for the human body. Although widely exploited in applications, the interaction of amino acids and peptides with most inorganic surfaces is not fully understood. To date, precisely characterizing complex surfaces of inorganic materials and analyzing surface-biomolecule interactions remain challenging both experimentally and computationally. This article reviews several approaches to characterizing biomolecule-surface interactions and illustrates the advantages and disadvantages of the methods presented. First, we explain how the adsorption mechanism of amino acids/peptides to inorganic surfaces can be determined and how thermodynamic and kinetic process constants can be obtained. Second, we demonstrate how this data can be used to develop models for peptide-surface interactions. The understanding and simulation of such interactions constitute a basis for developing molecules with high affinity binding domains in proteins for bioprocess engineering and future biomedical technologies.
Collapse
Affiliation(s)
| | | | | | - Priya Anand
- Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Paula Fraga‐García
- Bioseparation Engineering GroupTechnical University of MunichMünchenGermany
| | - Karin Fink
- Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Wolfgang Wenzel
- Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Sonja Berensmeier
- Bioseparation Engineering GroupTechnical University of MunichMünchenGermany
| |
Collapse
|
17
|
Affiliation(s)
- Lindsey C. Szymczak
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hsin-Yu Kuo
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Blank-Shim SA, Schwaminger SP, Borkowska-Panek M, Anand P, Yamin P, Fraga-García P, Fink K, Wenzel W, Berensmeier S. Binding patterns of homo-peptides on bare magnetic nanoparticles: insights into environmental dependence. Sci Rep 2017; 7:14047. [PMID: 29070786 PMCID: PMC5656586 DOI: 10.1038/s41598-017-13928-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022] Open
Abstract
Magnetic nanoparticles (MNP) are intensively investigated for applications in nanomedicine, catalysis and biotechnology, where their interaction with peptides and proteins plays an important role. However, the characterisation of the interaction of individual amino acids with MNP remains challenging. Here, we classify the affinity of 20 amino acid homo-hexamers to unmodified iron oxide nanoparticles using peptide arrays in a variety of conditions as a basis to identify and rationally design selectively binding peptides. The choice of buffer system is shown to strongly influence the availability of peptide binding sites on the MNP surface. We find that under certain buffer conditions peptides of different charges can bind the MNP and that the relative strength of the interactions can be modulated by changing the buffer. We further present a model for the competition between the buffer and the MNP's electrostatically binding to the adsorption sites. Thereby, we demonstrate that the charge distribution on the surface can be used to correlate the binding of positively and negatively charged peptides to the MNP. This analysis enables us to engineer the binding of MNP on peptides and contribute to better understand the bio-nano interactions, a step towards the design of affinity tags for advanced biomaterials.
Collapse
Affiliation(s)
- Silvia A Blank-Shim
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching b. München, Germany
| | - Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching b. München, Germany
| | - Monika Borkowska-Panek
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Priya Anand
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peyman Yamin
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching b. München, Germany
| | - Karin Fink
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching b. München, Germany.
| |
Collapse
|
19
|
Raghuwanshi Y, Etayash H, Soudy R, Paiva I, Lavasanifar A, Kaur K. Proteolytically Stable Cyclic Decapeptide for Breast Cancer Cell Targeting. J Med Chem 2017; 60:4893-4903. [PMID: 28520410 DOI: 10.1021/acs.jmedchem.7b00163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Starting with a previously reported linear breast cancer targeting decapeptide WxEAAYQkFL, here we report the synthesis of a novel cyclic peptide analogue cyclic WXEAAYQkFL. The N- to C-terminus amide cyclized peptide with one d-amino acid (k) displayed higher uptake by breast cancer cells, with minimal uptake by the noncancerous cells compared to the linear peptide with two d-amino acids (x and k), and was stable toward proteolytic degradation. When immobilized on gold microcantilever surface, the cyclic peptide was able to capture breast cancer cells specifically and sense samples with ≥25 cancer cells/mL. Animal studies using mice carrying orthotopic breast MDA-MB-231 tumors showed that the cyclic peptide preferentially accumulates in tumor (2 h after injection) and is rapidly cleared from all other organs except kidneys and liver. The study highlights the discovery of a novel proteolytically stable cyclic peptide that can be used for targeted drug delivery or for enumerating circulating breast tumor cells.
Collapse
Affiliation(s)
- Yogita Raghuwanshi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Hashem Etayash
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Rania Soudy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Igor Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada.,Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University , Irvine, California 92618-1908, United States
| |
Collapse
|
20
|
Ahmed S, Kaur K. Design, synthesis, and validation of an in vitro platform peptide-whole cell screening assay using MTT reagent. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2017. [DOI: 10.1016/j.jtusci.2016.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sahar Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah UniversityAl-Madinah Al-munawarah, P.O. Box 344, 41411, Saudi Arabia
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA, 92618-1908, USA
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| |
Collapse
|
21
|
Zhang L, Wang Y, Tian Q, Liu Y, Li J. Multienzyme decorated polysaccharide amplified electrogenerated chemiluminescence biosensor for cytosensing and cell surface carbohydrate profiling. Biosens Bioelectron 2017; 89:1013-1019. [DOI: 10.1016/j.bios.2016.10.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/02/2016] [Accepted: 10/18/2016] [Indexed: 01/20/2023]
|
22
|
Soudy R, Etayash H, Bahadorani K, Lavasanifar A, Kaur K. Breast Cancer Targeting Peptide Binds Keratin 1: A New Molecular Marker for Targeted Drug Delivery to Breast Cancer. Mol Pharm 2017; 14:593-604. [PMID: 28157321 DOI: 10.1021/acs.molpharmaceut.6b00652] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biomarkers or receptors expressed on cancer cells and the targeting ligands with high binding affinity for biomarkers play a key role in early detection and treatment of breast cancer. The breast cancer targeting peptide p160 (12-mer) and its enzymatically stable analogue 18-4 (10-mer) showed marked potential for breast cancer drug delivery using cell studies and animal models. Herein, we used affinity purification, liquid chromatography-tandem mass spectrometry, and proteomics to identify keratin 1 (KRT1) as the target receptor highly expressed on breast cancer cells for p160 peptide(s). Western blot and immunocytochemistry in MCF-7 breast cancer cells confirmed the identity of KRT1. We demonstrate that the p160 or 18-4 binding to MCF-7 breast cancer cells is dependent on the expression of KRT1, and we confirm peptide-KRT1 binding specificity using SPR experiments (Kd ∼ 1.1 μM and 0.98 μM for p160 and 18-4, respectively). Furthermore, we assessed the ability of peptide 18-4 to improve the cellular uptake and anticancer activity of a pro-apoptotic antimicrobial peptide, microcin J25 (MccJ25), in breast cancer cells. A covalent conjugate of peptide 18-4 with MccJ25 showed preferential cytotoxicity toward breast cancer cells with minimal cytotoxicity against normal HUVEC cells. The conjugate inhibited the growth of MDA-MB-435 MDR multidrug-resistant cells with an IC50 comparable to that of nonresistant cells. Conjugation improved selective cellular uptake of MccJ25, and the conjugate triggered cancer cell death by apoptosis. Our findings establish KRT1 as a new marker for breast cancer targeting. Additionally, it pinpoints the potential use of antimicrobial lasso peptides as a novel class of anticancer therapeutics.
Collapse
Affiliation(s)
- Rania Soudy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada.,Department of Medicine, University of Alberta , Edmonton, Alberta T6G 2B7, Canada.,Faculty of Pharmacy, Cairo University , Giza, Egypt
| | - Hashem Etayash
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Kamran Bahadorani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada.,Department of Chemical and Material Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada.,Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University , Irvine, California 92618-1908, United States
| |
Collapse
|
23
|
Aghebati-Maleki L, Bakhshinejad B, Baradaran B, Motallebnezhad M, Aghebati-Maleki A, Nickho H, Yousefi M, Majidi J. Phage display as a promising approach for vaccine development. J Biomed Sci 2016; 23:66. [PMID: 27680328 PMCID: PMC5041315 DOI: 10.1186/s12929-016-0285-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Bacteriophages are specific antagonists to bacterial hosts. These viral entities have attracted growing interest as optimal vaccine delivery vehicles. Phages are well-matched for vaccine design due to being highly stable under harsh environmental conditions, simple and inexpensive large scale production, and potent adjuvant capacities. Phage vaccines have efficient immunostimulatory effects and present a high safety profile because these viruses have made a constant relationship with the mammalian body during a long-standing evolutionary period. The birth of phage display technology has been a turning point in the development of phage-based vaccines. Phage display vaccines are made by expressing multiple copies of an antigen on the surface of immunogenic phage particles, thereby eliciting a powerful and effective immune response. Also, the ability to produce combinatorial peptide libraries with a highly diverse pool of randomized ligands has transformed phage display into a straightforward, versatile and high throughput screening methodology for the identification of potential vaccine candidates against different diseases in particular microbial infections. These libraries can be conveniently screened through an affinity selection-based strategy called biopanning against a wide variety of targets for the selection of mimotopes with high antigenicity and immunogenicity. Also, they can be panned against the antiserum of convalescent individuals to recognize novel peptidomimetics of pathogen-related epitopes. Phage display has represented enormous promise for finding new strategies of vaccine discovery and production and current breakthroughs promise a brilliant future for the development of different phage-based vaccine platforms.
Collapse
Affiliation(s)
- Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Hamid Nickho
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Galbiati E, Gambini L, Civitarese V, Bellini M, Ambrosini D, Allevi R, Avvakumova S, Romeo S, Prosperi D. Blind targeting in action: From phage display to breast cancer cell targeting with peptide-gold nanoconjugates. Pharmacol Res 2016; 111:155-162. [DOI: 10.1016/j.phrs.2016.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/30/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
|
25
|
Deiss F, Yang Y, Matochko WL, Derda R. Heat-enhanced peptide synthesis on Teflon-patterned paper. Org Biomol Chem 2016; 14:5148-56. [DOI: 10.1039/c6ob00898d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we describe the methodology for 96 parallel organic syntheses of peptides on Teflon-patterned paper assisted by heating with an infra-red lamp.
Collapse
Affiliation(s)
- Frédérique Deiss
- Department of Chemistry and Alberta Glycomics Centre
- University of Alberta
- Edmonton
- Canada
| | - Yang Yang
- Department of Chemistry and Alberta Glycomics Centre
- University of Alberta
- Edmonton
- Canada
| | - Wadim L. Matochko
- Department of Chemistry and Alberta Glycomics Centre
- University of Alberta
- Edmonton
- Canada
| | - Ratmir Derda
- Department of Chemistry and Alberta Glycomics Centre
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
26
|
Etayash H, Jiang K, Azmi S, Thundat T, Kaur K. Real-time Detection of Breast Cancer Cells Using Peptide-functionalized Microcantilever Arrays. Sci Rep 2015; 5:13967. [PMID: 26434765 PMCID: PMC4593050 DOI: 10.1038/srep13967] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/12/2015] [Indexed: 12/26/2022] Open
Abstract
Ligand-directed targeting and capturing of cancer cells is a new approach for detecting circulating tumor cells (CTCs). Ligands such as antibodies have been successfully used for capturing cancer cells and an antibody based system (CellSearch(®)) is currently used clinically to enumerate CTCs. Here we report the use of a peptide moiety in conjunction with a microcantilever array system to selectively detect CTCs resulting from cancer, specifically breast cancer. A sensing microcantilever, functionalized with a breast cancer specific peptide 18-4 (WxEAAYQrFL), showed significant deflection on cancer cell (MCF7 and MDA-MB-231) binding compared to when exposed to noncancerous (MCF10A and HUVEC) cells. The peptide-functionalized microcantilever allowed efficient capture and detection of cancer cells in MCF7 spiked human blood samples emulating CTCs in human blood. A detection limit of 50-100 cancer cells mL(-1) from blood samples was achieved with a capture yield of 80% from spiked whole blood samples. The results emphasize the potential of peptide 18-4 as a novel peptide for capturing and detecting cancer cells in conjunction with nanomechanical cantilever platform. The reported peptide-based cantilever platform represents a new analytical approach that can lead to an alternative to the various detection platforms and can be leveraged to further study CTCs.
Collapse
Affiliation(s)
- Hashem Etayash
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Keren Jiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Sarfuddin Azmi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Thomas Thundat
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| |
Collapse
|
27
|
Trzeciakiewicz H, Esteves-Villanueva J, Soudy R, Kaur K, Martic-Milne S. Electrochemical Characterization of Protein Adsorption onto YNGRT-Au and VLGXE-Au Surfaces. SENSORS 2015; 15:19429-42. [PMID: 26262621 PMCID: PMC4570378 DOI: 10.3390/s150819429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 11/16/2022]
Abstract
The adsorption of the proteins CD13, mucin and bovine serum albumin on VLGXE-Au and YNGRT-Au interfaces was monitored by electrochemical impedance spectroscopy in the presence of [Fe(CN)6]3−/4−. The hydrophobicity of the Au surface was tailored using specific peptides, blocking agents and diluents. The combination of blocking agents (ethanolamine or n-butylamine) and diluents (hexanethiol or 2-mercaptoethanol) was used to prepare various peptide-modified Au surfaces. Protein adsorption onto the peptide-Au surfaces modified with the combination of n-butylamine and hexanethiol produced a dramatic decrease in the charge transfer resistance, Rct, for all three proteins. In contrast, polar peptide-surfaces induced a minimal change in Rct for all three proteins. Furthermore, an increase in Rct was observed with CD13 (an aminopeptidase overexpressed in certain cancers) in comparison to the other proteins when the VLGXE-Au surface was modified with n-butylamine as a blocking agent. The electrochemical data indicated that protein adsorption may be modulated by tailoring the peptide sequence on Au surfaces and that blocking agents and diluents play a key role in promoting or preventing protein adsorption. The peptide-Au platform may also be used for targeting cancer biomarkers with designer peptides.
Collapse
Affiliation(s)
- Hanna Trzeciakiewicz
- Department of Chemistry, Oakland University, 2200 North Squirrel Road, Rochester, MI 48309, USA; E-Mails: (H.T.); (J.E.-V.)
| | - Jose Esteves-Villanueva
- Department of Chemistry, Oakland University, 2200 North Squirrel Road, Rochester, MI 48309, USA; E-Mails: (H.T.); (J.E.-V.)
| | - Rania Soudy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 87 Avenue, Edmonton, AB T6G 2E1, Canada; E-Mails: (R.S.); (K.K.)
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 87 Avenue, Edmonton, AB T6G 2E1, Canada; E-Mails: (R.S.); (K.K.)
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618-1908, USA
| | - Sanela Martic-Milne
- Department of Chemistry, Oakland University, 2200 North Squirrel Road, Rochester, MI 48309, USA; E-Mails: (H.T.); (J.E.-V.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-248-370-3088; Fax: +1-248-370-2321
| |
Collapse
|
28
|
Azmi S, Jiang K, Stiles M, Thundat T, Kaur K. Detection of Listeria monocytogenes with short peptide fragments from class IIa bacteriocins as recognition elements. ACS COMBINATORIAL SCIENCE 2015; 17:156-63. [PMID: 25548942 DOI: 10.1021/co500079k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We employed a direct peptide-bacteria binding assay to screen peptide fragments for high and specific binding to Listeria monocytogenes. Peptides were screened from a peptide array library synthesized on cellulose membrane. Twenty four peptide fragments (each a 14-mer) were derived from three potent anti-listerial peptides, Leucocin A, Pediocin PA1, and Curvacin A, that belong to class IIa bacteriocins. Fragment Leu10 (GEAFSAGVHRLANG), derived from the C-terminal region of Leucocin A, displayed the highest binding among all of the library fragments toward several pathogenic Gram-positive bacteria, including L. monocytogenes, Enterococcus faecalis, and Staphylococcus aureus. The specific binding of Leu10 to L. monocytogenes was further validated using microcantilever (MCL) experiments. Microcantilevers coated with gold were functionalized with peptides by chemical conjugation using a cysteamine linker to yield a peptide density of ∼4.8×10(-3) μmol/cm2 for different peptide fragments. Leu10 (14-mer) functionalized MCL was able to detect Listeria with same sensitivity as that of Leucocin A (37-mer) functionalized MCL, validating the use of short peptide fragments in bacterial detection platforms. Fragment Leu10 folded into a helical conformation in solution, like that of native Leucocin A, suggesting that both Leu10 and Leucocin A may employ a similar mechanism for binding target bacteria. The results show that peptide-conjugated microcantilevers can function as highly sensitive platforms for Listeria detection and hold potential to be developed as biosensors for pathogenic bacteria.
Collapse
Affiliation(s)
- Sarfuddin Azmi
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Keren Jiang
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | | | - Thomas Thundat
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Kamaljit Kaur
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Chapman
University School of Pharmacy (CUSP), Harry and Diane Rinker Health
Science Campus, Chapman University, Irvine, California 92618-1908, United States
| |
Collapse
|
29
|
Kaur K, Ahmed S, Soudy R, Azmi S. Screening peptide array library for the identification of cancer cell-binding peptides. Methods Mol Biol 2015; 1248:239-247. [PMID: 25616337 DOI: 10.1007/978-1-4939-2020-4_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The identification of cancer cell-specific ligands is a key requirement for the targeted delivery of chemotherapeutic agents. Usually phage display system is employed to discover cancer-specific peptides through a biopanning process. Synthetic peptide array libraries can be used as a complementary method to phage display for screening and identifying cancer cell-specific ligands. Here, we describe a peptide array-whole cell binding assay to identify cancer cell-specific peptides. A peptide array library based on a lead dodecapeptide, p160, is synthesized on a functionalized cellulose membrane using solid phase chemistry and a robotic synthesizer. The relative binding affinity of the peptide library is evaluated by incubating the library with fluorescently labeled cancerous or non-cancerous cells. Thereby the assay allows picking peptides that show selective and high binding to cancerous cells. These peptides represent potential candidates for use in cancer-targeted drug delivery, imaging, and diagnosis.
Collapse
Affiliation(s)
- Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, 2-142K Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, 11361-87 Ave, Edmonton, AB, Canada, T6G 2E1,
| | | | | | | |
Collapse
|
30
|
Zhang MZ, Li C, Fang BY, Yao MH, Ren QQ, Zhang L, Zhao YD. High transfection efficiency of quantum dot-antisense oligonucleotide nanoparticles in cancer cells through dual-receptor synergistic targeting. NANOTECHNOLOGY 2014; 25:255102. [PMID: 24896735 DOI: 10.1088/0957-4484/25/25/255102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Incorporating ligands with nanoparticle-based carriers for specific delivery of therapeutic nucleic acids (such as antisense oligonucleotides and siRNA) to tumor sites is a promising approach in anti-cancer strategies. However, nanoparticle-based carriers remain insufficient in terms of the selectivity and transfection efficiency. In this paper, we designed a dual receptor-targeted QDs gene carrier QD-(AS-ODN+GE11+c(RGDfK)) which could increase the cellular uptake efficiency and further enhance the transfection efficiency. Here, the targeting ligands used were peptides GE11 and c(RGDfK) which could recognize epidermal growth factor receptors (EGFR) and integrin ανβ3 receptors, respectively. Quantitative flow cytometry and ICP/MS showed that the synergistic effect between EGFR and integrin ανβ3 increased the cellular uptake of QDs carriers. The effects of inhibition agents showed the endocytosis pathway of QD-(AS-ODN+GE11+c(RGDfK)) probe was mainly clathrin-mediated. Western blot confirmed that QD-(AS-ODN+GE11+c(RGDfK)) could further enhance gene silencing efficiency compared to QD-(AS-ODN+GE11) and QD-(AS-ODN+c(RGDfK)), suggesting this dual receptor-targeted gene carrier achieved desired transfection efficiency. In this gene delivery system, QDs could not only be used as a gene vehicle but also as fluorescence probe, allowing for localization and tracking during the delivery process. This transport model is very well referenced for non-viral gene carriers to enhance the targeting ability and transfection efficiency.
Collapse
Affiliation(s)
- Ming-Zhen Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
31
|
Yang Y, Wang A, Jia Y, Brezesinski G, Dai L, Zhao J, Li J. Peptide p160-Coated Silica Nanoparticles Applied in Photodynamic Therapy. Chem Asian J 2014; 9:2126-31. [DOI: 10.1002/asia.201402141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 11/08/2022]
|
32
|
Deiss F, Matochko WL, Govindasamy N, Lin EY, Derda R. Flow‐Through Synthesis on Teflon‐Patterned Paper To Produce Peptide Arrays for Cell‐Based Assays. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Frédérique Deiss
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 (Canada)
| | - Wadim L. Matochko
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 (Canada)
| | - Natasha Govindasamy
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 (Canada)
| | - Edith Y. Lin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 (Canada)
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 (Canada)
| |
Collapse
|
33
|
Flow‐Through Synthesis on Teflon‐Patterned Paper To Produce Peptide Arrays for Cell‐Based Assays. Angew Chem Int Ed Engl 2014; 53:6374-7. [DOI: 10.1002/anie.201402037] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 11/07/2022]
|
34
|
Kaur K, Bhattacharjee S, Pillai RG, Ahmed S, Azmi S. Peptide arrays for detecting naphthenic acids in oil sands process affected water. RSC Adv 2014. [DOI: 10.1039/c4ra10981c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peptide arrays as sensors for naphthenic acids (NAs) detection in contaminated water samples.
Collapse
Affiliation(s)
- Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences
- University of Alberta
- Edmonton, Canada
- Chapman University School of Pharmacy (CUSP)
- Harry and Diane Rinker Health Science Campus
| | - Subir Bhattacharjee
- Department of Mechanical Engineering
- University of Alberta
- Edmonton, Canada
- Water Planet Engineering
- Inglewood, USA
| | - Rajesh G. Pillai
- Department of Mechanical Engineering
- University of Alberta
- Edmonton, Canada
| | - Sahar Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences
- University of Alberta
- Edmonton, Canada
- Medicinal Chemistry Department
- Faculty of Pharmacy
| | - Sarfuddin Azmi
- Faculty of Pharmacy and Pharmaceutical Sciences
- University of Alberta
- Edmonton, Canada
| |
Collapse
|
35
|
Zhang MZ, Yu Y, Yu RN, Wan M, Zhang RY, Zhao YD. Tracking the down-regulation of folate receptor-α in cancer cells through target specific delivery of quantum dots coupled with antisense oligonucleotide and targeted peptide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:4183-4193. [PMID: 23828664 DOI: 10.1002/smll.201300994] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Indexed: 06/02/2023]
Abstract
Based on the multivalent binding capability of streptavidin (SA) to biotin, a multifunctional quantum dot probe (QD-(AS-ODN+p160)) coupled with antisense oligonucleotide (AS-ODN) and peptide p160 is designed for real-time tracking of targeted delivery of AS-ODN and regulation of folate receptor-α (hFR-α) in MCF-7 breast cancer cells. Fluorescence spectra, capillary electrophoresis (CE) and dynamic light scattering (DLS) are used to characterize the conjugation of AS-ODN and p160 with quantum dots (QDs), DLS results confirm the well stability of the probe in aqueous media. Confocal imaging and quantitative flow cytometry show that QD-(AS-ODN+p160) is able to specifically target human breast cancer MCF-7 cells. Low temperature and ATP depletion treatments reveal the cellular uptake of QD-(AS-ODN+p160) is energy-dependent, and the effects of inhibition agents and co-localization imaging further confirm the endocytic pathway is mainly receptor-mediated. Transmission electron microscopy (TEM) shows the intracellular delivery and endosomal escape of QD probe along with incubation time extended. Two transfection concentrations of QD probe (10 nM and 50 nM) below half inhibitory concentration (IC50 ) value are chosen according to MTT assay. Real-time PCR shows at these two concentration cases the relative mRNA expression levels of hFR-α reduce to 72.5 ± 3.9% and 17.6 ± 1.0%, respectively. However, western blot and quantitative ELISA analysis show the expression level of hFR-α protein has a significant decrease only at 50 nM, indicating that gene silence is concentration-dependent. These results demonstrate that the QD-(AS-ODN+p160) probe not only achieves gene silence in a cell-specific manner but also achieves real-time tracking during AS-ODN intracellular delivery.
Collapse
Affiliation(s)
- Ming-Zhen Zhang
- Britton Chance Center for Biomedical Photonics at, Wuhan National Laboratory for Optoelectronics-Hubei, Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074, PR China
| | | | | | | | | | | |
Collapse
|
36
|
Mathews AS, Ahmed S, Shahin M, Lavasanifar A, Kaur K. Peptide modified polymeric micelles specific for breast cancer cells. Bioconjug Chem 2013; 24:560-70. [PMID: 23514428 DOI: 10.1021/bc3004364] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The specific targeting ability of novel breast cancer targeting peptides as ligands coupled to polymeric micelles was evaluated in the present study. In this context, engineered breast cancer cell targeting peptides, denoted as peptide 11 (RGDPAYQGRFL) and peptide 18 (WXEAAYQRFL), were compared with the lead 12-mer p160 peptide and cyclic RGDfK peptide. All four peptides were conjugated individually to poly(ethylene oxide)-b-poly(caprolactone) (PEO-b-PCL) diblock polymeric micelles to obtain targeted carrier systems PM11, PM18, PM 160, and PM c-RGD. Physical blending of the peptides 11 and 18 with PEO-b-PCL was also done to yield combination micelles, comPM11 and comPM18. The structural confirmation of polymer was carried out using (1)H NMR and MALDI-TOF, and the size distribution and zeta potential of the micelles were determined using dynamic light scattering. Lipophilic cyanine fluorescent probe DiI was physically incorporated in the polymeric micelles to imitate the hydrophobic drug loaded in the micellar core. The cellular uptake of DiI-loaded peptide-containing polymeric micelles by MDA-MB-435, MDA-MB-231, and MCF7 breast cancer cell lines, as well as HUVEC and MCF10A noncancerous cells, were analyzed using flow cytometry and confocal microscopy techniques. Modification of polymeric micelles with peptide 11 or 18 led to an increase in micellar uptake specifically in breast cancer cells compared to p160, c-RGD modified, or naked micelles. The peptide-micelle combinations (comPM11 and comPM18) displayed better uptake by the cells compared to the covalently conjugated PM11 and PM18 micelles; however, the combinations were less selective toward cancer cells. The results point to a potential for peptides 11- and 18-micelle conjugates as attractive platforms for improved performance of a wide range of chemotherapeutic drugs and/or imaging agents in cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Anu Stella Mathews
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | | | | | | | | |
Collapse
|
37
|
Soudy R, Ahmed S, Kaur K. NGR peptide ligands for targeting CD13/APN identified through peptide array screening resemble fibronectin sequences. ACS COMBINATORIAL SCIENCE 2012; 14:590-9. [PMID: 23030271 DOI: 10.1021/co300055s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peptides containing the Asn-Gly-Arg (NGR) motif are known to bind CD13 isoforms expressed in tumor vessels and have been widely used for tumor targeting. Residues flanking the NGR sequence play an important role in modulating the binding affinity and specificity of NGR for the CD13 receptor. Herein, we have used a rapid, easy, and reliable peptide array-whole cell binding assay for screening a library of NGR peptides with different flanking residues. A peptide array consisting of forty-five NGR containing peptides was synthesized on a cellulose membrane, followed by screening against CD13 positive (HUVEC and HT-1080) and CD13 negative cell lines (MDA-MB-435 and MDA-MB-231). The library screening led to the identification of five cyclic and acyclic NGR peptides that display higher binding (up to 5-fold) to CD13 positive cells with negligible binding to CD13 negative cell lines when compared to the lead sequence cyclic CVLNGRMEC. Peptides with high binding affinity for the CD13 positive cells also showed improved in vitro cellular uptake and specificity using flow cytometry and fluorescence microscopy. Interestingly, the identified peptides resemble the NGR sequences present in the human fibronectin protein. These NGR peptides are promising new ligands for developing tumor vasculature targeted drugs, delivery systems and imaging agents with reduced systemic toxicity.
Collapse
Affiliation(s)
- Rania Soudy
- Faculty of
Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G
2E1
| | - Sahar Ahmed
- Faculty of
Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G
2E1
| | - Kamaljit Kaur
- Faculty of
Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G
2E1
| |
Collapse
|
38
|
Binding of the phage display derived peptide CaIX-P1 on human colorectal carcinoma cells correlates with the expression of carbonic anhydrase IX. Int J Mol Sci 2012. [PMID: 23202936 PMCID: PMC3497310 DOI: 10.3390/ijms131013030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phage display represents an attractive screening strategy for the identification of novel, specific binding ligands that could be used for tumor targeting. Recently, a new peptide (CaIX-P1) with affinity for human carbonic anhydrase IX (CAIX) was identified and evaluated. The aim of the present study is to characterize the properties of CaIX-P1 for targeting human colorectal carcinoma and investigate the correlation of peptide binding with the expression of carbonic anhydrase IX. Human colorectal carcinoma HCT116 and HT29 cells were investigated for CAIX expression using Western Blot analysis. Binding and competition studies of 125I-radiolabeled CaIX-P1 were performed on HCT116 cells in vitro. FACS analysis and fluorescence microscopy studies were carried out after cell incubation with fluorescein-labeled CaIX-P1 and rhodamine-labeled anti-human CAIX-mAb. Our studies revealed an enhanced in vitro expression of carbonic anhydrase IX in HCT116 and HT29 cells with increasing cell density. Binding of 125I-labeled-CaIX-P1 on HCT116 cells increased with increasing cell density and correlated to the CAIX expression. FACS analysis demonstrated a correlation of cell labeling between FITC-CaIX-P1 and rhodamine-labeled anti-CAIX-mAb in both HCT116 and HT29 cells. The results of our study indicate that the phage display identified peptide CaIX-P1 might be an attractive candidate for the development of a ligand targeting CAIX in colorectal cancer.
Collapse
|
39
|
Vendrell M, Zhai D, Er JC, Chang YT. Combinatorial strategies in fluorescent probe development. Chem Rev 2012; 112:4391-420. [PMID: 22616565 DOI: 10.1021/cr200355j] [Citation(s) in RCA: 463] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marc Vendrell
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, 138667 Singapore.
| | | | | | | |
Collapse
|
40
|
Peptide Arrays. MICROARRAYS IN DIAGNOSTICS AND BIOMARKER DEVELOPMENT 2012. [PMCID: PMC7193736 DOI: 10.1007/978-3-642-28203-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite the concern over the potential loss of structural information as a result of the use of peptides as opposed to proteins as molecular probes, peptide arrays have been implemented in a broad range of applications including antibody screening and epitope mapping, characterization of molecular interactions, and enzymatic activity profiling, and they have become a valuable tool for proteomics research. In this chapter, we first (Sect. 7.1) recapitulate the development of these arrays and highlight a couple of key improvements in the array production and the application in proteomics research. For clinical and biomarker development applications, it is important to measure entities that are directly related to physiological function (and dysfunction). In this respect, the assessment of enzymatic activities is obviously preferable to genotyping, expression profiling, or even measurement of protein amounts. In Sect. 7.2, an original technology based on peptides arrayed onto a porous support allows detailed profiling of kinase activities in a biological sample. The applications described range from kinase characterization to inhibition profiles, detection of off-target effects, and drug response prediction in a clinical setting, allowing rational choice of the drug to be used. Such directly functional approaches will have an important role in the transition to more personalized medicine. Finally, in Sect. 7.3, a recently developed method for “laser printing” of peptide arrays that will make these approaches much more practical is presented.
Collapse
|
41
|
Soudy R, Gill A, Sprules T, Lavasanifar A, Kaur K. Proteolytically Stable Cancer Targeting Peptides with High Affinity for Breast Cancer Cells. J Med Chem 2011; 54:7523-34. [DOI: 10.1021/jm200750x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rania Soudy
- Faculty of Pharmacy and Pharmaceutical
Sciences, University of Alberta, Edmonton,
Alberta, T6G 2N8, Canada
| | - Avneet Gill
- Faculty of Pharmacy and Pharmaceutical
Sciences, University of Alberta, Edmonton,
Alberta, T6G 2N8, Canada
| | - Tara Sprules
- Quebec/Eastern Canada High Field
NMR Facility, McGill University, Montreal,
Quebec, H3A 2A7, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical
Sciences, University of Alberta, Edmonton,
Alberta, T6G 2N8, Canada
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical
Sciences, University of Alberta, Edmonton,
Alberta, T6G 2N8, Canada
| |
Collapse
|
42
|
Renard BY, Löwer M, Kühne Y, Reimer U, Rothermel A, Türeci O, Castle JC, Sahin U. rapmad: Robust analysis of peptide microarray data. BMC Bioinformatics 2011; 12:324. [PMID: 21816082 PMCID: PMC3174949 DOI: 10.1186/1471-2105-12-324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 08/04/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peptide microarrays offer an enormous potential as a screening tool for peptidomics experiments and have recently seen an increased field of application ranging from immunological studies to systems biology. By allowing the parallel analysis of thousands of peptides in a single run they are suitable for high-throughput settings. Since data characteristics of peptide microarrays differ from DNA oligonucleotide microarrays, computational methods need to be tailored to these specifications to allow a robust and automated data analysis. While follow-up experiments can ensure the specificity of results, sensitivity cannot be recovered in later steps. Providing sensitivity is thus a primary goal of data analysis procedures. To this end we created rapmad (Robust Alignment of Peptide MicroArray Data), a novel computational tool implemented in R. RESULTS We evaluated rapmad in antibody reactivity experiments for several thousand peptide spots and compared it to two existing algorithms for the analysis of peptide microarrays. rapmad displays competitive and superior behavior to existing software solutions. Particularly, it shows substantially improved sensitivity for low intensity settings without sacrificing specificity. It thereby contributes to increasing the effectiveness of high throughput screening experiments. CONCLUSIONS rapmad allows the robust and sensitive, automated analysis of high-throughput peptide array data. The rapmad R-package as well as the data sets are available from http://www.tron-mz.de/compmed.
Collapse
Affiliation(s)
- Bernhard Y Renard
- The Institute for Translational Oncology and Immunology (TrOn), 55131 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Challenges in optimizing a prostate carcinoma binding peptide, identified through the phage display technology. Molecules 2011; 16:1559-78. [PMID: 21321528 PMCID: PMC6259618 DOI: 10.3390/molecules16021559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/09/2011] [Accepted: 02/11/2011] [Indexed: 11/17/2022] Open
Abstract
The transfer of peptides identified through the phage display technology to clinical applications is difficult. Major drawbacks are the metabolic degradation and label instability. The aim of our work is the optimization of DUP-1, a peptide which was identified by phage display to specifically target human prostate carcinoma. To investigate the influence of chelate conjugation, DOTA was coupled to DUP-1 and labeling was performed with ¹¹¹In. To improve serum stability cyclization of DUP-1 and targeted D-amino acid substitution were carried out. Alanine scanning was performed for identification of the binding site and based on the results peptide fragments were chemically synthesized. The properties of modified ligands were investigated in in vitro binding and competition assays. In vivo biodistribution studies were carried out in mice, carrying human prostate tumors subcutaneously. DOTA conjugation resulted in different cellular binding kinetics, rapid in vivo renal clearance and increased tumor-to-organ ratios. Cyclization and D-amino acid substitution increased the metabolic stability but led to binding affinity decrease. Fragment investigation indicated that the sequence NRAQDY might be significant for target-binding. Our results demonstrate challenges in optimizing peptides, identified through phage display libraries, and show that careful investigation of modified derivatives is necessary in order to improve their characteristics.
Collapse
|