1
|
Huang SH, Parandhaman M, Jyothi Ravi M, Janda DC, Amemiya S. Nanoscale Hydrophobicity of Transport Barriers in the Nuclear Pore Complex as Compared with the Liquid/Liquid Interface by Scanning Electrochemical Microscopy. Anal Chem 2025; 97:2745-2753. [PMID: 39878353 PMCID: PMC11822746 DOI: 10.1021/acs.analchem.4c04861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
The nuclear pore complex (NPC) is the proteinous nanopore that solely regulates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. Hypothetically, the NPC utilizes the hydrophobic barriers based on the repeats of phenylalanine-glycine (FG) units to selectively and efficiently transport macromolecules. Herein, we quantitatively assess the hydrophobicity of transport barriers confined in the nanopore by applying scanning electrochemical microscopy (SECM). The hypothesis deduced from studies of isolated FG-rich nucleoporins is supported quantitatively by investigating the authentic NPC for the first time. Specifically, we employ the n repeats of neurotoxic glycine-arginine dipeptide, GRn, as the molecular probes that engage in hydrophobic interactions with transport barriers in the NPC. We apply ion-transfer voltammetry at a micropipet-supported interface between aqueous and organic electrolyte solutions to confirm that larger GRn among n = 5-25 is more hydrophobic, as expected theoretically. The micropipet also serves as the tip of transient SECM to demonstrate that the NPC interacts more strongly with larger GRn, which supports the hydrophobicity of transport barriers. Kinetically, larger GRn stays in the NPC for longer to clog the nanopore, thereby expressing neurotoxicity. Significantly, this work implies that the efficient and safe nuclear import of genetic therapeutics requires an optimum balance between strong association with and fast dissociation from the NPC. Interestingly, this work represents the unexplored utility of liquid/liquid interfaces as models of hydrophobic protein condensates based on liquid-liquid phase separation as exemplified by nanoscale transport barriers in the NPC.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Moghitha Parandhaman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Manu Jyothi Ravi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Donald C. Janda
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Huang SH, Parandhaman M, Jyothi Ravi M, Janda DC, Amemiya S. Nanoscale interactions of arginine-containing dipeptide repeats with nuclear pore complexes as measured by transient scanning electrochemical microscopy. Chem Sci 2024; 15:d4sc05063k. [PMID: 39246336 PMCID: PMC11375788 DOI: 10.1039/d4sc05063k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
The nuclear pore complex (NPC) plays imperative biological and biomedical roles as the sole gateway for molecular transport between the cytoplasm and nucleus of eukaryotic cells. The proteinous nanopore, however, can be blocked by arginine-containing polydipeptide repeats (DPRs) of proteins resulting from the disordered C9orf72 gene as a potential cause of serious neurological diseases. Herein, we report the new application of transient scanning electrochemical microscopy (SECM) to quantitatively characterize DPR-NPC interactions for the first time. Twenty repeats of neurotoxic glycine-arginine and proline-arginine in the NPC are quantified to match the number of phenylalanine-glycine (FG) units in hydrophobic transport barriers of the nanopore. The 1 : 1 stoichiometry supports the hypothesis that the guanidinium residue of a DPR molecule engages in cation-π interactions with the aromatic residue of an FG unit. Cation-π interactions, however, are too weak to account for the measured free energy of DPR transfer from water into the NPC. The DPR transfer is thermodynamically as favorable as the transfer of nuclear transport receptors, which is attributed to hydrophobic interactions as hypothesized generally for NPC-mediated macromolecular transport. Kinetically, the DPRs are trapped by FG units for much longer than the physiological receptors, thereby blocking the nanopore. Significantly, the novel mechanism of toxicity implies that the efficient and safe nuclear import of genetic therapeutics requires strong association with and fast dissociation from the NPC. Moreover, this work demonstrates the unexplored power of transient SECM to determine the thermodynamics and kinetics of biological membrane-molecule interactions.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Moghitha Parandhaman
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Manu Jyothi Ravi
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Donald C Janda
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
3
|
McCloskey MC, Kasap P, Trempel M, Widom LP, Kuebel J, Chen K, Gaborski TR, Engelhardt B, McGrath JL. Use of the MicroSiM (µSiM) Barrier Tissue Platform for Modeling the Blood-Brain Barrier. J Vis Exp 2024:10.3791/65258. [PMID: 38284519 PMCID: PMC11293877 DOI: 10.3791/65258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
The microSiM (µSiM) is a membrane-based culture platform for modeling the blood-brain barrier (BBB). Unlike conventional membrane-based platforms, the µSiM provides experimentalists with new capabilities, including live cell imaging, unhindered paracrine signaling between 'blood' and 'brain' chambers, and the ability to directly image immunofluorescence without the need for the extraction/remounting of membranes. Here we demonstrate the basic use of the platform to establish monoculture (endothelial cells) and co-culture (endothelial cells and pericytes) models of the BBB using ultrathin nanoporous silicon-nitride membranes. We demonstrate compatibility with both primary cell cultures and human induced pluripotent stem cell (hiPSC) cultures. We provide methods for qualitative analysis of BBB models via immunofluorescence staining and demonstrate the use of the µSiM for the quantitative assessment of barrier function in a small molecule permeability assay. The methods provided should enable users to establish their barrier models on the platform, advancing the use of tissue chip technology for studying human tissues.
Collapse
Affiliation(s)
| | - Pelin Kasap
- Theodor Kocher Institute, University of Bern
| | | | - Louis P Widom
- Department of Biomedical Engineering, Rochester Institute of Technology
| | - Julia Kuebel
- Department of Biomedical Engineering, University of Rochester
| | - Kaihua Chen
- Department of Biomedical Engineering, University of Rochester
| | - Thomas R Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology
| | | | - James L McGrath
- Department of Biomedical Engineering, University of Rochester;
| |
Collapse
|
4
|
Huang SH, Parandhaman M, Farnia S, Kim J, Amemiya S. Nanoelectrochemistry at liquid/liquid interfaces for analytical, biological, and material applications. Chem Commun (Camb) 2023; 59:9575-9590. [PMID: 37458703 PMCID: PMC10416082 DOI: 10.1039/d3cc01982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we feature our recent efforts toward the development and application of nanoelectrochemistry at liquid/liquid interfaces, which are also known as interfaces between two immiscible electrolyte solutions (ITIES). Nanopipets, nanopores, and nanoemulsions are developed to create the nanoscale ITIES for the quantitative electrochemical measurement of ion transfer, electron transfer, and molecular transport across the interface. The nanoscale ITIES serves as an electrochemical nanosensor to enable the selective detection of various ions and molecules as well as high-resolution chemical imaging based on scanning electrochemical microscopy. The powerful nanoelectroanalytical methods will be useful for biological and material applications as illustrated by in situ studies of solid-state nanopores, nuclear pore complexes, living bacteria, and advanced nanoemulsions. These studies provide unprecedented insights into the chemical reactivity of important biological and material systems even at the single nanostructure level.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | | | - Solaleh Farnia
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Jiyeon Kim
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
5
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
6
|
Ishimatsu R, Furukawa Y, Nakano K. Development of a facile time-resolved spectroelectrochemical method: An application to determine the rate constant of protonation for anions of 9,10-diphenylanthracene, biphenyl, and p-quaterphenyl. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Enhanced electrochemiluminescence at silica nanochannel membrane studied by scanning electrochemical microscopy. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Amemiya S. Nanoelectrochemical Study of Molecular Transport through the Nuclear Pore Complex. CHEM REC 2021; 21:1430-1441. [PMID: 33502100 PMCID: PMC8217113 DOI: 10.1002/tcr.202000175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/10/2022]
Abstract
The nuclear pore complex (NPC) is the proteinaceous nanopore that solely mediates the transport of both small molecules and macromolecules between the nucleus and cytoplasm of a eukaryotic cell to regulate gene expression. In this personal account, we introduce recent progress in our nanoelectrochemical study of molecular transport through the NPC. Our work represents the importance of chemistry in understanding and controlling of NPC-mediated molecular transport to enable the efficient and safe delivery of genetic therapeutics into the nucleus, thereby fundamentally contributing to human health. Specifically, we employ nanoscale scanning electrochemical microscopy to test our hypothesis that the nanopore of the NPC is divided by transport barriers concentrically into peripheral and central routes to efficiently mediate the bimodal traffic of protein transport and RNA export, respectively, through cooperative hydrophobic and electrostatic interactions.
Collapse
Affiliation(s)
- Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, 15260, PA
| |
Collapse
|
9
|
Khire TS, Salminen AT, Swamy H, Lucas KS, McCloskey MC, Ajalik RE, Chung HH, Gaborski TR, Waugh RE, Glading AJ, McGrath JL. Microvascular Mimetics for the Study of Leukocyte-Endothelial Interactions. Cell Mol Bioeng 2020; 13:125-139. [PMID: 32175026 DOI: 10.1007/s12195-020-00611-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction The pathophysiological increase in microvascular permeability plays a well-known role in the onset and progression of diseases like sepsis and atherosclerosis. However, how interactions between neutrophils and the endothelium alter vessel permeability is often debated. Methods In this study, we introduce a microfluidic, silicon-membrane enabled vascular mimetic (μSiM-MVM) for investigating the role of neutrophils in inflammation-associated microvascular permeability. In utilizing optically transparent silicon nanomembrane technology, we build on previous microvascular models by enabling in situ observations of neutrophil-endothelium interactions. To evaluate the effects of neutrophil transmigration on microvascular model permeability, we established and validated electrical (transendothelial electrical resistance and impedance) and small molecule permeability assays that allow for the in situ quantification of temporal changes in endothelium junctional integrity. Results Analysis of neutrophil-expressed β1 integrins revealed a prominent role of neutrophil transmigration and basement membrane interactions in increased microvascular permeability. By utilizing blocking antibodies specific to the β1 subunit, we found that the observed increase in microvascular permeability due to neutrophil transmigration is constrained when neutrophil-basement membrane interactions are blocked. Having demonstrated the value of in situ measurements of small molecule permeability, we then developed and validated a quantitative framework that can be used to interpret barrier permeability for comparisons to conventional Transwell™ values. Conclusions Overall, our results demonstrate the potential of the μSiM-MVM in elucidating mechanisms involved in the pathogenesis of inflammatory disease, and provide evidence for a role for neutrophils in inflammation-associated endothelial barrier disruption.
Collapse
Affiliation(s)
- Tejas S Khire
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Alec T Salminen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14627 USA
| | - Kilean S Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Molly C McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Raquel E Ajalik
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Henry H Chung
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623 USA
| | - Thomas R Gaborski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA.,Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623 USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14627 USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| |
Collapse
|
10
|
Pathirathna P, Balla RJ, Meng G, Wei Z, Amemiya S. Nanoscale electrostatic gating of molecular transport through nuclear pore complexes as probed by scanning electrochemical microscopy. Chem Sci 2019; 10:7929-7936. [PMID: 31673318 PMCID: PMC6788534 DOI: 10.1039/c9sc02356a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
The nuclear pore complex (NPC) is a large protein nanopore that solely mediates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. There is a long-standing consensus that selective transport barriers of the NPC are exclusively based on hydrophobic repeats of phenylalanine and glycine (FG) of nucleoporins. Herein, we reveal experimentally that charged residues of amino acids intermingled between FG repeats can modulate molecular transport through the NPC electrostatically and in a pathway-dependent manner. Specifically, we investigate the NPC of the Xenopus oocyte nucleus to find that excess positive charges of FG-rich nucleoporins slow down passive transport of a polycationic peptide, protamine, without affecting that of a polyanionic pentasaccharide, Arixtra, and small monovalent ions. Protamine transport is slower with a lower concentration of electrolytes in the transport media, where the Debye length becomes comparable to the size of water-filled spaces among the gel-like network of FG repeats. Slow protamine transport is not affected by the binding of a lectin, wheat germ agglutinin, to the peripheral route of the NPC, which is already blocked electrostatically by adjacent nucleoporins that have more cationic residues than anionic residues and even FG dipeptides. The permeability of NPCs to the probe ions is measured by scanning electrochemical microscopy using ion-selective tips based on liquid/liquid microinterfaces and is analysed by effective medium theory to determine the sizes of peripheral and central routes with distinct protamine permeability. Significantly, nanoscale electrostatic gating at the NPC can be relevant not only chemically and biologically, but also biomedically for efficient nuclear import of genetically therapeutic substances.
Collapse
Affiliation(s)
- Pavithra Pathirathna
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| | - Ryan J Balla
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| | - Guanqun Meng
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| | - Zemeng Wei
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| | - Shigeru Amemiya
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , USA .
| |
Collapse
|
11
|
Pathirathna P, Balla RJ, Jantz DT, Kurapati N, Gramm ER, Leonard KC, Amemiya S. Probing High Permeability of Nuclear Pore Complexes by Scanning Electrochemical Microscopy: Ca 2+ Effects on Transport Barriers. Anal Chem 2019; 91:5446-5454. [PMID: 30907572 PMCID: PMC6535230 DOI: 10.1021/acs.analchem.9b00796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nuclear pore complex (NPC) solely mediates molecular transport between the nucleus and cytoplasm of a eukaryotic cell to play important biological and biomedical roles. However, it is not well-understood chemically how this biological nanopore selectively and efficiently transports various substances, including small molecules, proteins, and RNAs by using transport barriers that are rich in highly disordered repeats of hydrophobic phenylalanine and glycine intermingled with charged amino acids. Herein, we employ scanning electrochemical microscopy to image and measure the high permeability of NPCs to small redox molecules. The effective medium theory demonstrates that the measured permeability is controlled by diffusional translocation of probe molecules through water-filled nanopores without steric or electrostatic hindrance from hydrophobic or charged regions of transport barriers, respectively. However, the permeability of NPCs is reduced by a low millimolar concentration of Ca2+, which can interact with anionic regions of transport barriers to alter their spatial distributions within the nanopore. We employ atomic force microscopy to confirm that transport barriers of NPCs are dominantly recessed (∼80%) or entangled (∼20%) at the high Ca2+ level in contrast to authentic populations of entangled (∼50%), recessed (∼25%), and "plugged" (∼25%) conformations at a physiological Ca2+ level of submicromolar. We propose a model for synchronized Ca2+ effects on the conformation and permeability of NPCs, where transport barriers are viscosified to lower permeability. Significantly, this result supports a hypothesis that the functional structure of transport barriers is maintained not only by their hydrophobic regions, but also by charged regions.
Collapse
Affiliation(s)
- Pavithra Pathirathna
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Ryan J. Balla
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Dylan T. Jantz
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
| | - Niraja Kurapati
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Erin R. Gramm
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Kevin C. Leonard
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| |
Collapse
|
12
|
Salminen AT, Zhang J, Madejski GR, Khire TS, Waugh RE, McGrath JL, Gaborski TR. Ultrathin Dual-Scale Nano- and Microporous Membranes for Vascular Transmigration Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804111. [PMID: 30632319 PMCID: PMC6530565 DOI: 10.1002/smll.201804111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/26/2018] [Indexed: 05/21/2023]
Abstract
Selective cellular transmigration across the microvascular endothelium regulates innate and adaptive immune responses, stem cell localization, and cancer cell metastasis. Integration of traditional microporous membranes into microfluidic vascular models permits the rapid assay of transmigration events but suffers from poor reproduction of the cell permeable basement membrane. Current microporous membranes in these systems have large nonporous regions between micropores that inhibit cell communication and nutrient exchange on the basolateral surface reducing their physiological relevance. Here, the use of 100 nm thick continuously nanoporous silicon nitride membranes as a base substrate for lithographic fabrication of 3 µm pores is presented, resulting in a highly porous (≈30%), dual-scale nano- and microporous membrane for use in an improved vascular transmigration model. Ultrathin membranes are patterned using a precision laser writer for cost-effective, rapid micropore design iterations. The optically transparent dual-scale membranes enable complete observation of leukocyte egress across a variety of pore densities. A maximal density of ≈14 micropores per cell is discovered beyond which cell-substrate interactions are compromised giving rise to endothelial cell losses under flow. Addition of a subluminal extracellular matrix rescues cell adhesion, allowing for the creation of shear-primed endothelial barrier models on nearly 30% continuously porous substrates.
Collapse
Affiliation(s)
- Alec T Salminen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Jingkai Zhang
- Institute of Optics, University of Rochester, Rochester, NY, 14627, USA
| | - Gregory R Madejski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Tejas S Khire
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Thomas R Gaborski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
13
|
Puri SR, Kim J. Kinetics of Antimicrobial Drug Ion Transfer at a Water/Oil Interface Studied by Nanopipet Voltammetry. Anal Chem 2019; 91:1873-1879. [DOI: 10.1021/acs.analchem.8b03593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Surendra Raj Puri
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jiyeon Kim
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
14
|
Yao L, Filice FP, Yang Q, Ding Z, Su B. Quantitative Assessment of Molecular Transport through Sub-3 nm Silica Nanochannels by Scanning Electrochemical Microscopy. Anal Chem 2018; 91:1548-1556. [DOI: 10.1021/acs.analchem.8b04795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lina Yao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310012, China
- Department of Chemistry, Western University, London N6A 5B7, Canada
| | - Fraser P. Filice
- Department of Chemistry, Western University, London N6A 5B7, Canada
| | - Qian Yang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310012, China
| | - Zhifeng Ding
- Department of Chemistry, Western University, London N6A 5B7, Canada
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310012, China
| |
Collapse
|
15
|
ISHIMATSU R. An Analytical Approach for Electrogenerated Chemiluminescence Based on the Electronic States of Light Emitting Materials. BUNSEKI KAGAKU 2018. [DOI: 10.2116/bunsekikagaku.67.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ryoichi ISHIMATSU
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| |
Collapse
|
16
|
Zhang S, Li M, Su B, Shao Y. Fabrication and Use of Nanopipettes in Chemical Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:265-286. [PMID: 29894227 DOI: 10.1146/annurev-anchem-061417-125840] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This review summarizes progress in the fabrication, modification, characterization, and applications of nanopipettes since 2010. A brief history of nanopipettes is introduced, and the details of fabrication, modification, and characterization of nanopipettes are provided. Applications of nanopipettes in chemical analysis are the focus in several cases, including recent progress in imaging; in the study of single molecules, single nanoparticles, and single cells; in fundamental investigations of charge transfer (ion and electron) reactions at liquid/liquid interfaces; and as hyphenated techniques combined with other methods to study the mechanisms of complicated electrochemical reactions and to conduct bioanalysis.
Collapse
Affiliation(s)
- Shudong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Mingzhi Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| |
Collapse
|
17
|
Advances and Perspectives in Chemical Imaging in Cellular Environments Using Electrochemical Methods. CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6020024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Abstract
Silicon nanomembranes are ultrathin, highly permeable, optically transparent and biocompatible substrates for the construction of barrier tissue models. Trans-epithelial/endothelial electrical resistance (TEER) is often used as a non-invasive, sensitive and quantitative technique to assess barrier function. The current study characterizes the electrical behavior of devices featuring silicon nanomembranes to facilitate their application in TEER studies. In conventional practice with commercial systems, raw resistance values are multiplied by the area of the membrane supporting cell growth to normalize TEER measurements. We demonstrate that under most circumstances, this multiplication does not 'normalize' TEER values as is assumed, and that the assumption is worse if applied to nanomembrane chips with a limited active area. To compare the TEER values from nanomembrane devices to those obtained from conventional polymer track-etched (TE) membranes, we develop finite element models (FEM) of the electrical behavior of the two membrane systems. Using FEM and parallel cell-culture experiments on both types of membranes, we successfully model the evolution of resistance values during the growth of endothelial monolayers. Further, by exploring the relationship between the models we develop a 'correction' function, which when applied to nanomembrane TEER, maps to experiments on conventional TE membranes. In summary, our work advances the the utility of silicon nanomembranes as substrates for barrier tissue models by developing an interpretation of TEER values compatible with conventional systems.
Collapse
|
19
|
Tetraalkylammonium Cations Conduction through a Single Nanofluidic Diode: Experimental and Theoretical Studies. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Chen R, Balla RJ, Lima A, Amemiya S. Characterization of Nanopipet-Supported ITIES Tips for Scanning Electrochemical Microscopy of Single Solid-State Nanopores. Anal Chem 2017; 89:9946-9952. [PMID: 28819966 PMCID: PMC5683184 DOI: 10.1021/acs.analchem.7b02269] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoscale scanning electrochemical microscopy (SECM) is a powerful scanning probe technique that enables high-resolution imaging of chemical processes at single nanometer-sized objects. However, it has been a challenging task to quantitatively understand nanoscale SECM images, which requires accurate characterization of the size and geometry of nanoelectrode tips. Herein, we address this challenge through transmission electron microscopy (TEM) of quartz nanopipets for SECM imaging of single solid-state nanopores by using nanopipet-supported interfaces between two immiscible electrolyte solutions (ITIES) as tips. We take advantage of the high resolution of TEM to demonstrate that laser-pulled quartz nanopipets reproducibly yield not only an extremely small tip diameter of ∼30 nm, but also a substantial tip roughness of ∼5 nm. The size and roughness of a nanopipet can be reliably determined by optimizing the intensity of the electron beam not to melt or deform the quartz nanotip without a metal coating. Electrochemically, the nanoscale ITIES supported by a rough nanotip gives higher amperometric responses to tetrabutylammonium than expected for a 30 nm diameter disc tip. The finite element simulation of sphere-cap ITIES tips accounts for the high current responses and also reveals that the SECM images of 100 nm diameter Si3N4 nanopores are enlarged along the direction of the tip scan. Nevertheless, spatial resolution is not significantly compromised by a sphere-cap tip, which can be scanned in closer proximity to the substrate. This finding augments the utility of a protruded tip, which can be fabricated and miniaturized more readily to facilitate nanoscale SECM imaging.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Ryan J. Balla
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Alex Lima
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| |
Collapse
|
21
|
Arrigan DWM, Liu Y. Electroanalytical Ventures at Nanoscale Interfaces Between Immiscible Liquids. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:145-161. [PMID: 27049634 DOI: 10.1146/annurev-anchem-071015-041415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ion transfer at the interface between immiscible electrolyte solutions offers many benefits to analytical chemistry, including the ability to detect nonredox active ionized analytes, to detect ions whose redox electrochemistry is accompanied by complications, and to separate ions based on electrocontrolled partition. Nanoscale miniaturization of such interfaces brings the benefits of enhanced mass transport, which in turn leads to improved analytical performance in areas such as sensitivity and limits of detection. This review discusses the development of such nanoscale interfaces between immiscible liquids and examines the analytical advances that have been made to date, including prospects for trace detection of ion concentrations.
Collapse
Affiliation(s)
- Damien W M Arrigan
- Nanochemistry Research Institute and Department of Chemistry, Curtin University, Perth, Western Australia 6845, Australia;
| | - Yang Liu
- Nanochemistry Research Institute and Department of Chemistry, Curtin University, Perth, Western Australia 6845, Australia;
| |
Collapse
|
22
|
|
23
|
Merkl JP, Wolter C, Flessau S, Schmidtke C, Ostermann J, Feld A, Mews A, Weller H. Investigations of ion transport through nanoscale polymer membranes by fluorescence quenching of CdSe/CdS quantum dot/quantum rods. NANOSCALE 2016; 8:7402-7407. [PMID: 26987974 DOI: 10.1039/c5nr08318d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Detailed steady-state and time-resolved fluorescence quenching measurements give deep insight into ion transport through nanometer thick diblock copolymer membranes, which were assembled as biocompatible shell material around CdSe/CdS quantum dot in quantum rods. We discuss the role of polymer chain length, intermolecular cross-linking and nanopore formation by analysing electron transfer processes from the photoexcited QDQRs to Cu(II) ions, which accumulate in the polymer membrane. Fluorescence investigations on single particle level additionally allow identifying ensemble inhomogeneities.
Collapse
Affiliation(s)
- Jan-Philip Merkl
- Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, and the Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Christopher Wolter
- Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, and the Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Sandra Flessau
- Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, and the Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Christian Schmidtke
- Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, and the Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Johannes Ostermann
- Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, and the Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. and Center for Applied Nanotechnology (CAN) GmbH, Grindelallee 117, 20146 Hamburg, Germany
| | - Artur Feld
- Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, and the Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Alf Mews
- Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, and the Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Horst Weller
- Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, and the Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. and Center for Applied Nanotechnology (CAN) GmbH, Grindelallee 117, 20146 Hamburg, Germany and Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O BOX 80203 Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Zhang MN, Ding Z, Long YT. Sensing cisplatin-induced permeation of single live human bladder cancer cells by scanning electrochemical microscopy. Analyst 2016; 140:6054-60. [PMID: 26194058 DOI: 10.1039/c5an01148e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cisplatin is a widely used anti-cancer agent, which was believed to trigger apoptosis of cancer cells by forming DNA adducts. However, recent studies evidenced a cisplatin-induced extrinsic apoptotic pathway through interaction with plasma membranes. We present quantitative time-course imaging of cisplatin-induced permeation of ferrocenemethanol to single live human bladder cancer cells (T24) using scanning electrochemical microscopy (SECM). Simultaneous quantification of cellular topography and membrane permeability was realized by running SECM in the depth scan mode. It was demonstrated that the acute addition of cisplatin to the outer environment of T24 cells immediately induced membrane permeability change in 5 min, which indicated a loosened structure of the cellular membrane upon cisplatin dosage. The cisplatin-induced permeation of T24 cells might be a one-step action, an extrinsic mechanism, since the cell response was quick, and no continuous increase in the membrane permeability was observed. The time-lapse SECM depth scan method provided a simple and facile way of monitoring cisplatin-induced membrane permeability changes. Our study is anticipated to lead to a methodology of screening anti-cancer drugs through their interactions with live cells.
Collapse
Affiliation(s)
- Meng-Ni Zhang
- Department of Chemistry, The University of Western Ontario, London, ON, Canada N6A 5B7.
| | | | | |
Collapse
|
25
|
Winans J, Smith K, Gaborski T, Roussie J, McGrath J. Membrane capacity and fouling mechanisms for ultrathin nanomembranes in dead-end filtration. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.10.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Rastgar S, Pilarski M, Wittstock G. A polarized liquid–liquid interface meets visible light-driven catalytic water oxidation. Chem Commun (Camb) 2016; 52:11382-11385. [DOI: 10.1039/c6cc04275a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A nanostructured BiVO4photocatalyst assembled at a chemically polarized liquid–liquid interface generates an efficient amount of O2with a [Co(bpy)3]3+scavenger in the organic phase.
Collapse
Affiliation(s)
- Shokoufeh Rastgar
- Institute of Chemistry
- Carl von Ossietzky University of Oldenburg
- D-26111 Oldenburg
- Germany
- Hanse-Wissenschaftskolleg
| | - Martin Pilarski
- Institute of Chemistry
- Carl von Ossietzky University of Oldenburg
- D-26111 Oldenburg
- Germany
| | - Gunther Wittstock
- Institute of Chemistry
- Carl von Ossietzky University of Oldenburg
- D-26111 Oldenburg
- Germany
| |
Collapse
|
27
|
Zhou M, Yu Y, Blanchard PY, Mirkin MV. Surface Patterning Using Diazonium Ink Filled Nanopipette. Anal Chem 2015; 87:10956-62. [DOI: 10.1021/acs.analchem.5b02784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Min Zhou
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Yun Yu
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Pierre-Yves Blanchard
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Michael V. Mirkin
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| |
Collapse
|
28
|
Poltorak L, Morakchi K, Herzog G, Walcarius A. Electrochemical characterization of liquid-liquid micro-interfaces modified with mesoporous silica. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Zhang Z, Shi J, Huang W. Study of the ion-channel behavior on glassy carbon electrode supported bilayer lipid membranes stimulated by perchlorate anion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:431-5. [PMID: 26117774 DOI: 10.1016/j.msec.2015.05.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/09/2015] [Accepted: 05/25/2015] [Indexed: 01/18/2023]
Abstract
In this paper, a kind of didodecyldimethylammonium bromide (DDAB) layer membranes was supported on a glassy carbon electrode (GCE). We studied the ion channel behavior of the supported bilayer lipid membrane by scanning electrochemical microscopy (SCEM) in tris(2,2'-bipyridine) ruthenium(II) solution. Perchlorate anion was used as a presence of stimulus and ruthenium(II) complex cations as the probing ions for the measurement of SECM, the lipid membrane channel was opened and exhibited the behavior of distinct SECM positive feedback curve. The channel was in a closed state in the absence of perchlorate anions while reflected the behavior of SECM negative feedback curve. The rates of electron transfer reaction in the lipid membranes surface were detected and it was dependant on the potential of SECM.
Collapse
Affiliation(s)
- Zhiquan Zhang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Jun Shi
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Weimin Huang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| |
Collapse
|
30
|
Leïchlé T, Bourrier D. Integration of lateral porous silicon membranes into planar microfluidics. LAB ON A CHIP 2015; 15:833-8. [PMID: 25483271 DOI: 10.1039/c4lc01094a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this work, we present a novel fabrication process that enables the monolithic integration of lateral porous silicon membranes into single-layer planar microchannels. This fabrication technique relies on the patterning of local electrodes to guide pore formation horizontally within the membrane and on the use of silicon-on-insulator substrates to spatially localize porous silicon within the channel depth. The feasibility of our approach is studied by current flow analysis using the finite element method and supported by creating 10 μm long mesoporous membranes within 20 μm deep microchannels. The fabricated membranes are demonstrated to be potentially useful for dead-end microfiltration by adequately retaining 300 nm diameter beads while macromolecules such as single-stranded DNA and immunoglobulin G permeate the membrane. The experimentally determined fluidic resistance is in accordance with the theoretical value expected from the estimated pore size and porosity. The work presented here is expected to greatly simplify the integration of membranes capable of size exclusion based separation into fluidic devices and opens doors to the use of porous silicon in planar lab on a chip devices.
Collapse
Affiliation(s)
- Thierry Leïchlé
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France.
| | | |
Collapse
|
31
|
Tian H, Li Y, Shao H, Yu HZ. Thin-film voltammetry and its analytical applications: A review. Anal Chim Acta 2015; 855:1-12. [DOI: 10.1016/j.aca.2014.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/19/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
|
32
|
Cao F, Kim J, Bard AJ. Detection of the Short-Lived Cation Radical Intermediate in the Electrochemical Oxidation of N,N-Dimethylaniline by Scanning Electrochemical Microscopy. J Am Chem Soc 2014; 136:18163-9. [DOI: 10.1021/ja511602v] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Fahe Cao
- Center for Electrochemistry,
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiyeon Kim
- Center for Electrochemistry,
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Allen J. Bard
- Center for Electrochemistry,
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
33
|
Poltorak L, Herzog G, Walcarius A. Electrochemically assisted generation of silica deposits using a surfactant template at liquid/liquid microinterfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11453-63. [PMID: 25229369 DOI: 10.1021/la501938g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The electrochemically assisted generation of mesoporous silica deposits at arrays of microscopic liquid/liquid interfaces was investigated. Ion transfer voltammetry was used in order to initiate the formation of silica material by electrochemical transfer of template species (cetyltrimethylammonium, CTA(+)), initially present in the organic phase, to the aqueous phase containing the hydrolyzed silica precursors (tetraethoxysilane, TEOS). The deposition mechanism was investigated using cyclic voltammetry, based on the analysis of diffusion layer profiles of CTA(+) species from the organic side of the interface. The morphology of the deposits varied from hemispherical to almost flat with the potential scan rate, the spacing factor of the microinterfaces array supporting the liquid/liquid interfaces, or the initial CTA(+) and TEOS concentrations, as evidenced by scanning electron microscopy and profilometry analyses. The amount of deposited material can be related to the amount of CTA(+) species passing across the liquid/liquid interfaces. Confocal Raman spectroscopy was used to confirm the presence of surfactant-templated silica deposits and to analyze the effectiveness of calcination in removing the organic molecules filling the interior of the pores. After template removal, the mesoporous network became accessible to external reagents, as checked by interfacial alkylammonium cation transfer, suggesting a possible analytical interest of such modified micro-liquid/liquid interfaces.
Collapse
Affiliation(s)
- Lukasz Poltorak
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| | | | | |
Collapse
|
34
|
Qi C, Striemer CC, Gaborski TR, McGrath JL, Fauchet PM. Highly porous silicon membranes fabricated from silicon nitride/silicon stacks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2946-2953. [PMID: 24623562 DOI: 10.1002/smll.201303447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/25/2014] [Indexed: 06/03/2023]
Abstract
Nanopore formation in silicon films has previously been demonstrated using rapid thermal crystallization of ultrathin (15 nm) amorphous Si films sandwiched between nm-thick SiO2 layers. In this work, the silicon dioxide barrier layers are replaced with silicon nitride, resulting in nanoporous silicon films with unprecedented pore density and novel morphology. Four different thin film stack systems including silicon nitride/silicon/silicon nitride (NSN), silicon dioxide/silicon/silicon nitride (OSN), silicon nitride/silicon/silicon dioxide (NSO), and silicon dioxide/silicon/silicon dioxide (OSO) are tested under different annealing temperatures. Generally the pore size, pore density, and porosity positively correlate with the annealing temperature for all four systems. The NSN system yields substantially higher porosity and pore density than the OSO system, with the OSN and NSO stack characteristics fallings between these extremes. The higher porosity of the Si membrane in the NSN stack is primarily due to the pore formation enhancement in the Si film. It is hypothesized that this could result from the interfacial energy difference between the silicon/silicon nitride and silicon/silicon dioxide, which influences the Si crystallization process.
Collapse
Affiliation(s)
- Chengzhu Qi
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37235, United States; Materials Science Program, University of Rochester, Rochester, NY, 14627, United States
| | | | | | | | | |
Collapse
|
35
|
Chung HH, Chan CK, Khire TS, Marsh GA, Clark A, Waugh RE, McGrath JL. Highly permeable silicon membranes for shear free chemotaxis and rapid cell labeling. LAB ON A CHIP 2014; 14:2456-68. [PMID: 24850320 PMCID: PMC4540053 DOI: 10.1039/c4lc00326h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microfluidic systems are powerful tools for cell biology studies because they enable the precise addition and removal of solutes in small volumes. However, the fluid forces inherent in the use of microfluidics for cell cultures are sometimes undesirable. An important example is chemotaxis systems where fluid flow creates well-defined and steady chemotactic gradients but also pushes cells downstream. Here we demonstrate a chemotaxis system in which two chambers are separated by a molecularly thin (15 nm), transparent, and nanoporous silicon membrane. One chamber is a microfluidic channel that carries a flow-generated gradient while the other chamber is a shear-free environment for cell observation. The molecularly thin membranes provide effectively no resistance to molecular diffusion between the two chambers, making them ideal elements for creating flow-free chambers in microfluidic systems. Analytical and computational flow models that account for membrane and chamber geometry, predict shear reduction of more than five orders of magnitude. This prediction is confirmed by observing the pure diffusion of nanoparticles in the cell-hosting chamber despite high input flow (Q = 10 μL min(-1); vavg ~ 45 mm min(-1)) in the flow chamber only 15 nm away. Using total internal reflection fluorescence (TIRF) microscopy, we show that a flow-generated molecular gradient will pass through the membrane into the quiescent cell chamber. Finally we demonstrate that our device allows us to expose migrating neutrophils to a chemotactic gradient or fluorescent label without any influence from flow.
Collapse
Affiliation(s)
- Henry H Chung
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Li B, Qiao Y, Gu J, Zhu X, Yin X, Li Q, Zhu Z, Li M, Jing P, Shao Y. Electrochemical behaviors of protonated diamines at the micro-water/1,2-dichloroethane interface. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Kim J, Izadyar A, Shen M, Ishimatsu R, Amemiya S. Ion permeability of the nuclear pore complex and ion-induced macromolecular permeation as studied by scanning electrochemical and fluorescence microscopy. Anal Chem 2014; 86:2090-8. [PMID: 24460147 PMCID: PMC3955255 DOI: 10.1021/ac403607s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/25/2014] [Indexed: 12/20/2022]
Abstract
Efficient delivery of therapeutic macromolecules and nanomaterials into the nucleus is imperative for gene therapy and nanomedicine. Nucleocytoplasmic molecular transport, however, is tightly regulated by the nuclear pore complex (NPC) with the hydrophobic transport barriers based on phenylalanine and glycine repeats. Herein, we apply scanning electrochemical microscopy (SECM) to quantitatively study the permeability of the NPCs to small probe ions with a wide range of hydrophobicity as a measure of their hydrophobic interactions with the transport barriers. Amperometric detection of the redox-inactive probe ions is enabled by using the ion-selective SECM tips based on the micropipet- or nanopipet-supported interfaces between two immiscible electrolyte solutions. The remarkably high ion permeability of the NPCs is successfully measured by SECM and theoretically analyzed. This analysis demonstrates that the ion permeability of the NPCs is determined by the dimensions and density of the nanopores without a significant effect of the transport barriers on the transported ions. Importantly, the weak ion-barrier interactions become significant at sufficiently high concentrations of extremely hydrophobic ions, i.e., tetraphenylarsonium and perfluorobutylsulfonate, to permeabilize the NPCs to naturally impermeable macromolecules. Dependence of ion-induced permeabilization of the NPC on the pathway and mode of macromolecular transport is studied by using fluorescence microscopy to obtain deeper insights into the gating mechanism of the NPC as the basis of a new transport model.
Collapse
Affiliation(s)
| | | | | | | | - Shigeru Amemiya
- Department of Chemistry, University
of Pittsburgh, 219 Parkman
Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
38
|
Abstract
Here we review the recent applications of ion transfer (IT) at the interface between two immiscible electrolyte solutions (ITIES) for electrochemical sensing and imaging. In particular, we focus on the development and recent applications of the nanopipet-supported ITIES and double-polymer-modified electrode, which enable the dynamic electrochemical measurements of IT at nanoscopic and macroscopic ITIES, respectively. High-quality IT voltammograms are obtainable using either technique to quantitatively assess the kinetics and dynamic mechanism of IT at the ITIES. Nanopipet-supported ITIES serves as an amperometric tip for scanning electrochemical microscopy to allow for unprecedentedly high-resolution electrochemical imaging. Voltammetric ion sensing at double-polymer-modified electrodes offers high sensitivity and unique multiple-ion selectivity. The promising future applications of these dynamic approaches for bioanalysis and electrochemical imaging are also discussed.
Collapse
|
39
|
High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes. Proc Natl Acad Sci U S A 2013; 110:18425-30. [PMID: 24167263 DOI: 10.1073/pnas.1308109110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures.
Collapse
|
40
|
Arrigan D, Herzog G, Scanlon M, Strutwolf J. Bioanalytical Applications of Electrochemistry at Liquid-Liquid Microinterfaces. ELECTROANALYTICAL CHEMISTRY: A SERIES OF ADVANCES 2013. [DOI: 10.1201/b15576-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Wegner LH. Cation selectivity of the plasma membrane of tobacco protoplasts in the electroporated state. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1828:1973-81. [PMID: 23603222 DOI: 10.1016/j.bbamem.2013.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 11/21/2022]
Abstract
Cation selectivity of the cellular membrane of tobacco culture cells (cell line 'bright yellow-2') exposed to pulsed electric fields in the millisecond range was investigated. The whole cell configuration of the patch clamp technique was established on protoplasts prepared from these cells. Ion selectivity of the electroporated membrane was investigated by measuring the reversal potential of currents passing through field-induced pores. To this end the membrane was hyper- or depolarized for 10ms (prepulse); subsequently the voltage was driven to opposite polarity at a constant rate (+40 or -40mV/ms, respectively). The experiment was started by polarizing the membrane to moderately negative or positive voltages (prepulse potential ±150mV) that would not induce pore formation. Subsequently, an extended voltage range was scanned in the porated state of the membrane (prepulse potential ±600mV). IV curves in the porated and the non-porated state (obtained at the same prepulse polarity) were superimposed to determine the voltage at which both curves intersected ('Intersection potential'). Using a modified version of the Goldmann-Hodgkin-Katz equation relative permeabilities to Ca(2+) and various monovalent alkali and organic cations were calculated. Pores were found to be fairly cation selective, with a selectivity sequence determined to be Ca(2+)>Li(+)>Rb(+)≈K(+)≈Na(+)>TEA(+)≈TBA(+)>Cl(-). Relative permeability to monovalent cations was inversely related to the ionic diameter. By fitting a formalism suggested by Dwyer at al. (J. Gen. Physiol. 75 (1980), 469-492) the effective average diameter of field induced pores was estimated to be about 1.8nm. Implications of these results for biotechnology and electroporation theory are discussed.
Collapse
Affiliation(s)
- Lars H Wegner
- Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
42
|
Kim J, Izadyar A, Nioradze N, Amemiya S. Nanoscale mechanism of molecular transport through the nuclear pore complex as studied by scanning electrochemical microscopy. J Am Chem Soc 2013; 135:2321-9. [PMID: 23320434 PMCID: PMC3572272 DOI: 10.1021/ja311080j] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The nuclear pore complex (NPC) is the proteinaceous nanopore that solely mediates molecular transport across the nuclear envelope between the nucleus and cytoplasm of a eukaryotic cell. Small molecules (<40 kDa) diffuse through the large pore of this multiprotein complex. A passively impermeable macromolecule tagged with a signal peptide is chaperoned through the nanopore by nuclear transport receptors (e.g., importins) owing to their interactions with barrier-forming proteins. Presently, this bimodal transport mechanism is not well understood and is described by controversial models. Herein, we report on a dynamic and spatially resolved mechanism for NPC-mediated molecular transport through nanoscale central and peripheral routes with distinct permeabilities. Specifically, we develop a nanogap-based approach of scanning electrochemical microscopy to precisely measure the extremely high permeability of the nuclear envelope to a small probe molecule, (ferrocenylmethyl)trimethylammonium. Effective medium theories indicate that the passive permeability of 5.9 × 10(-2) cm/s corresponds to the free diffusion of the probe molecule through ~22 nanopores with a radius of 24 nm and a length of 35 nm. Peripheral routes are blocked by wheat germ agglutinin to yield 2-fold lower permeability for 17 nm-radius central routes. This lectin is also used in fluorescence assays to find that importins facilitate the transport of signal-tagged albumin mainly through the 7 nm-thick peripheral route rather than through the sufficiently large central route. We propose that this spatial selectivity is regulated by the conformational changes in barrier-forming proteins that transiently and locally expand the impermeably thin peripheral route while blocking the central route.
Collapse
Affiliation(s)
- Jiyeon Kim
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260
| | | | - Nikoloz Nioradze
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260
| |
Collapse
|
43
|
Boateng A, Irague F, Brajter-Toth A. Low nM Detection Limits at Porous 1-3 nm Thick Membrane-Coated Nanostructured Microdisk Electrodes. ELECTROANAL 2013. [DOI: 10.1002/elan.201200489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Shen M, Ishimatsu R, Kim J, Amemiya S. Quantitative imaging of ion transport through single nanopores by high-resolution scanning electrochemical microscopy. J Am Chem Soc 2012; 134:9856-9. [PMID: 22655578 PMCID: PMC3380141 DOI: 10.1021/ja3023785] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report on the unprecedentedly high resolution imaging of ion transport through single nanopores by scanning electrochemical microscopy (SECM). The quantitative SECM image of single nanopores allows for the determination of their structural properties, including their density, shape, and size, which are essential for understanding the permeability of the entire nanoporous membrane. Nanoscale spatial resolution was achieved by scanning a 17 nm radius pipet tip at a distance as low as 1.3 nm from a highly porous nanocrystalline silicon membrane in order to obtain the peak current response controlled by the nanopore-mediated diffusional transport of tetrabutylammonium ions to the nanopipet-supported liquid-liquid interface. A 280 nm × 500 nm image resolved 13 nanopores, which corresponds to a high density of 93 nanopores/μm(2). A finite element simulation of the SECM image was performed to assess quantitatively the spatial resolution limited by the tip diameter in resolving two adjacent pores and to determine the actual size of a nanopore, which was approximated as an elliptical cylinder with a depth of 30 nm and major and minor axes of 53 and 41 nm, respectively. These structural parameters were consistent with those determined by transmission electron microscopy, thereby confirming the reliability of quantitative SECM imaging at the nanoscale level.
Collapse
Affiliation(s)
- Mei Shen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Jiyeon Kim
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
45
|
Patten HV, Lai SCS, Macpherson JV, Unwin PR. Active sites for outer-sphere, inner-sphere, and complex multistage electrochemical reactions at polycrystalline boron-doped diamond electrodes (pBDD) revealed with scanning electrochemical cell microscopy (SECCM). Anal Chem 2012; 84:5427-32. [PMID: 22607491 DOI: 10.1021/ac3010555] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The local rate of heterogeneous electron transfer (HET) at polycrystalline boron-doped diamond (pBDD) electrodes has been visualized at high spatial resolution for various aqueous electrochemical reactions, using scanning electrochemical cell microscopy (SECCM), which is a technique that uses a mobile pipet-based electrochemical cell as an imaging probe. As exemplar systems, three important classes of electrode reactions have been investigated: outer-sphere (one-electron oxidation of ferrocenylmethyltrimethylammonium (FcTMA(+))), inner-sphere (one-electron oxidation of Fe(2+)), and complex processes with coupled electron transfer and chemical reactions (oxidation of serotonin). In all cases, the pattern of reactivity is similar: the entire pBDD surface is electroactive, but there are variations in activity between different crystal facets which correlate directly with differences in the local dopant level, as visualized qualitatively by field-emission scanning electron microscopy (FE-SEM). No evidence was found for enhanced activity at grain boundaries for any of the reactions. The case of serotonin oxidation is particularly interesting, as this process is known to lead to deterioration of the electrodes, because of blocking by reaction products, and therefore cannot be studied with conventional scanning electrochemical probe microscopy (SEPM) techniques. Yet, we have found this system nonproblematic to study, because the meniscus of the scanning pipet is only in contact with the surface investigated for a brief time and any blocking product is left behind as the pipet moves to a new location. Thus, SECCM opens up the possibility of investigating and visualizing much more complex heterogeneous electrode reactions than possible presently with other SEPM techniques.
Collapse
Affiliation(s)
- Hollie V Patten
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | |
Collapse
|
46
|
Hossain MM, Girault HH, Lee HJ. Voltammetric Studies of Anion Transfer Reactions Across a Microhole Array-Water/PVC-NPOE Gel Interface. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.5.1734] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Kim J, Shen M, Nioradze N, Amemiya S. Stabilizing nanometer scale tip-to-substrate gaps in scanning electrochemical microscopy using an isothermal chamber for thermal drift suppression. Anal Chem 2012; 84:3489-92. [PMID: 22462610 DOI: 10.1021/ac300564g] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The control of a nanometer-wide gap between tip and substrate is critical for nanoscale applications of scanning electrochemical microscopy (SECM). Here, we demonstrate that the stability of the nanogap in ambient conditions is significantly compromised by the thermal expansion and contraction of components of an SECM stage upon a temperature change and can be dramatically improved by suppressing the thermal drift in a newly developed isothermal chamber. Air temperature in the chamber changes only at ~.2 mK/min to remarkably and reproducibly slow down the drift of tip-substrate distance to ~0.4 nm/min in contrast to 5-150 nm/min without the chamber. Eventually, the stability of the nanogap in the chamber is limited by its fluctuation with a standard deviation of ±0.9 nm, which is mainly ascribed to the instability of a piezoelectric positioner. The subnanometer scale drift and fluctuation are measured by forming a ~20 nm-wide gap under the 12 nm-radius nanopipet tip based on ion transfer at the liquid/liquid interface. The isothermal chamber is useful for SECM and, potentially, for other scanning probe microscopes, where thermal-drift errors in vertical and lateral probe positioning are unavoidable by the feedback-control of the probe-substrate distance.
Collapse
|
48
|
Zhurov K, Dickinson EJF, Compton RG. Dynamics of Ion Transfer Potentials at Liquid–Liquid Interfaces: The Case of Multiple Species. J Phys Chem B 2011; 115:12429-40. [DOI: 10.1021/jp204826y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Konstantin Zhurov
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Edmund J. F. Dickinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Richard G. Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, United Kingdom OX1 3QZ
| |
Collapse
|
49
|
Ishimatsu R, Izadyar A, Kabagambe B, Kim Y, Kim J, Amemiya S. Electrochemical mechanism of ion-ionophore recognition at plasticized polymer membrane/water interfaces. J Am Chem Soc 2011; 133:16300-8. [PMID: 21882873 DOI: 10.1021/ja207297q] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report on the first electrochemical study that reveals the kinetics and molecular level mechanism of heterogeneous ion-ionophore recognition at plasticized polymer membrane/water interfaces. The new kinetic data provide greater understanding of this important ion-transfer (IT) process, which determines various dynamic characteristics of the current technologies that enable highly selective ion sensing and separation. The theoretical assessment of the reliable voltammetric data confirms that the dynamics of the ionophore-facilitated IT follows the one-step electrochemical (E) mechanism controlled by ion-ionophore complexation at the very interface in contrast to the thermodynamically equivalent two-step electrochemical-chemical (EC) mechanism based on the simple transfer of an aqueous ion followed by its complexation in the bulk membrane. Specifically, cyclic voltammograms of Ag(+), K(+), Ca(2+), Ba(2+), and Pb(2+) transfers facilitated by highly selective ionophores are measured and analyzed numerically using the E mechanism to obtain standard IT rate constants in the range of 10(-2) to 10(-3) cm/s at both plasticized poly(vinyl chloride) membrane/water and 1,2-dichloroethane/water interfaces. We demonstrate that these strongly facilitated IT processes are too fast to be ascribed to the EC mechanism. Moreover, the little effect of the viscosity of nonaqueous media on the IT kinetics excludes the EC mechanism, where the kinetics of simple IT is viscosity-dependent. Finally, we employ molecular level models for the E mechanism to propose three-dimensional ion-ionophore complexation at the two-dimensional interface as the unique kinetic requirement for the thermodynamically facilitated IT.
Collapse
Affiliation(s)
- Ryoichi Ishimatsu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
50
|
McKelvey K, Snowden ME, Peruffo M, Unwin PR. Quantitative Visualization of Molecular Transport through Porous Membranes: Enhanced Resolution and Contrast Using Intermittent Contact-Scanning Electrochemical Microscopy. Anal Chem 2011; 83:6447-54. [DOI: 10.1021/ac201489c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kim McKelvey
- MOAC Doctoral Training Centre and ‡Department of Chemistry, University of Warwick, Coventry, U.K. CV4 7AL
| | - Michael E. Snowden
- MOAC Doctoral Training Centre and ‡Department of Chemistry, University of Warwick, Coventry, U.K. CV4 7AL
| | - Massimo Peruffo
- MOAC Doctoral Training Centre and ‡Department of Chemistry, University of Warwick, Coventry, U.K. CV4 7AL
| | - Patrick R. Unwin
- MOAC Doctoral Training Centre and ‡Department of Chemistry, University of Warwick, Coventry, U.K. CV4 7AL
| |
Collapse
|