1
|
Claus Henn B, Leonard ER, Doherty BT, Byrne S, Hartmann N, Ptolemy AS, Ayanian S, Crawford KA. Serum per- and polyfluoroalkyl substance (PFAS) levels and health-related biomarkers in a pilot study of skiers in New England. ENVIRONMENTAL RESEARCH 2024; 263:120122. [PMID: 39389198 DOI: 10.1016/j.envres.2024.120122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), synthetic chemicals with adverse health effects, are used extensively in consumer products. Ski waxes, applied to the base of skis, contain up to 100% PFAS by mass, but exposure and health effects are poorly characterized. OBJECTIVES Our objectives were to quantify serum PFAS concentrations among skiers and explore associations with reported ski wax use and biomarkers of cardiometabolic, thyroid, and immune health. METHODS We recruited 30 active adult skiers to provide non-fasting blood samples and complete questionnaires. We quantified 18 PFAS using mass spectrometry, and measured serum lipids, thyroid hormones, and immunoglobulins. We explored associations of individual and aggregate measures of serum PFAS with wax use indicators and health biomarkers using multivariable regression models, adjusted for age and gender identity. RESULTS Nine PFAS (PFBS, PFHpS, PFHxS, Sm-PFOS, n-PFOS, PFDA, PFNA, PFUnDA, n-PFOA) were detected in 100% of participants, and MeFOSAA in 93%. Compared to NHANES, median serum concentrations (ng/ml) were similar, but higher in coaches (e.g., PFOAall: 1.1, PFOAcoaches: 2.7, PFOANHANES: 1.2; PFNAall: 0.5, PFNAcoaches: 1.7, PFNANHANES: 0.4). Factors reflecting wax exposure were positively associated with PFAS: e.g., >10 years as a snow sport athlete, compared to ≤10 years, was associated with 3.2 (95% CI: 0.7, 5.6) ng/ml higher aggregate PFAS, as defined by National Academies of Science, Engineering, and Medicine (NASEM). An IQR (6.3 ng/ml) increase in NASEM PFAS was associated with 32.1 (95% CI: 7.0, 57.2), 35.5 (13.5, 57.5), and 12.8 (0.6, 25.1) mg/dl higher total cholesterol, LDL-C, and sdLDL-C, respectively. DISCUSSION Our study provides early evidence that recreational skiers, particularly coaches, are exposed to PFAS through ski wax. Several PFAS were associated with higher serum lipids among these physically active adults. Interventions to remove PFAS from fluorinated wax could decrease direct exposure to skiers and reduce PFAS release into the environment.
Collapse
Affiliation(s)
- Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Emily R Leonard
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Sam Byrne
- Biology Department, Middlebury College, Middlebury, VT, USA; Global Health Program, Middlebury College, Middlebury, VT, USA
| | - Nicola Hartmann
- Global Health Program, Middlebury College, Middlebury, VT, USA; Program in Molecular Biology & Biochemistry, Middlebury College, Middlebury, VT, USA
| | - Adam S Ptolemy
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Shaké Ayanian
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
2
|
Gonzalez de Vega R, Plassmann M, Clases D, Zangger K, Müller V, Rosenberg E, Reimann A, Skedung L, Benskin JP, Feldmann J. A multi-platform approach for the comprehensive analysis of per- and polyfluoroalkyl substances (PFAS) and fluorine mass balance in commercial ski wax products. Anal Chim Acta 2024; 1314:342754. [PMID: 38876512 DOI: 10.1016/j.aca.2024.342754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
The unique properties of per- and polyfluoroalkyl substances (PFAS) have led to their extensive use in consumer products, including ski wax. Based on the risks associated with PFAS, and to align with PFAS regulations, the international ski federation (FIS) implemented a ban on products containing "C8 fluorocarbons/perfluorooctanoate (PFOA)" at all FIS events from the 2021/2022 season, leading manufactures to shift their formulations towards short-chain PFAS chemistries. To date, most studies characterising PFAS in ski waxes have measured a suite of individual substances using targeted analytical approaches. However, the fraction of total fluorine (TF) in the wax accounted for by these substances remains unclear. In this study, we sought to address this question by applying a multi-platform, fluorine mass balance approach to a total of 10 commercially available ski wax products. Analysis of TF by combustion ion chromatography (CIC) revealed concentrations of 1040-51700 μg F g-1 for the different fluorinated waxes. In comparison, extractable organic fluorine (EOF) determined in methanol extracts by CIC (and later confirmed by inductively-coupled plasma-mass spectrometry and 19F- nuclear magnetic resonance spectroscopy) ranged from 92 to 3160 μg g-1, accounting for only 3-8.8 % of total fluorine (TF). Further characterisation of extracts by cyclic ion mobility-mass spectrometry (IMS) revealed 15 individual PFAS with perfluoroalkyl carboxylic acid concentrations up to 33 μg F g-1, and 3 products exceeding the regulatory limit for PFOA (0.025 μg g-1) by a factor of up to 100. The sum of all PFAS accounted for only 0.01-1.0 % of EOF, implying a high percentage of unidentified PFAS, thus, pyrolysis gas chromatography-mass spectrometry was used to provide evidence of the nature of the non-extractable fluorine present in the ski wax products.
Collapse
Affiliation(s)
| | - Merle Plassmann
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - David Clases
- Analytical Chemistry, Institute of Chemistry, University of Graz, Graz, Austria
| | - Klaus Zangger
- Analytical Chemistry, Institute of Chemistry, University of Graz, Graz, Austria
| | - Viktoria Müller
- Analytical Chemistry, Institute of Chemistry, University of Graz, Graz, Austria; The James Hutton Institute, Aberdeen, United Kingdom
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, TU Wien, Wien, Austria
| | - Anders Reimann
- Department Materials and Surface Design, RISE Research Institutes of Sweden, Stockholm, Sweden
| | - Lisa Skedung
- Department Materials and Surface Design, RISE Research Institutes of Sweden, Stockholm, Sweden
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Jörg Feldmann
- Analytical Chemistry, Institute of Chemistry, University of Graz, Graz, Austria
| |
Collapse
|
3
|
Schröder T, Müller V, Preihs M, Borovička J, Gonzalez de Vega R, Kindness A, Feldmann J. Fluorine mass balance analysis in wild boar organs from the Bohemian Forest National Park. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171187. [PMID: 38408678 DOI: 10.1016/j.scitotenv.2024.171187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Wild boars have been reported as bioindicators for per- and polyfluoroalkyl substances (PFAS) in a variety of studies. However, data about PFAS levels in wild boars from sites with limited industrial and general human activity is scarce. In this study, wild boar (Sus scrofa) organs from the Bohemian Forest National Park (Czech Republic) were used as bioindicators for PFAS pollution. In this work, 29 livers and 24 kidneys from 30 wild boars (0.5-5 years) were investigated using a fluorine mass balance approach. For this, the samples were measured using high performance liquid chromatography with electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS/MS), targeting 30 PFAS, including legacy and replacement PFAS, direct total oxidisable precursor assay (dTOPA) and combustion ion chromatography (CIC). Perfluorocarboxylic acids (PFCAs) from C7 to C14 and perfluorooctanesulfonic acid (PFOS) were detected in >50 % of samples. In the livers, PFCAs dominated the profile with median concentrations of 230 μg/kg for perfluorononanoic acid (PFNA) and 75 μg/kg perfluorooctanoic acid (PFOA). PFOA and PFNA concentrations in the livers were one order of magnitude higher than in livers from wild boars caught in rural NE Germany considered as background concentration. PFOS in liver contributed only 30 % to the Σc(PFASTarget) with a median concentration of 170 μg/kg. Kidneys and livers contain an average of 2460 μg F/kg and 6800 μg F/kg extractable organic fluorine (EOF) respectively. Σc(PFASTarget) add up to a maximum of 10 % of the extractable organic fluorine. After oxidisation of the samples, PFOA, PFNA and Σc(PFASdTOPA) increased in livers, but could not explain the EOF. The elevated concentration of PFOA and PFNA may indicate differences in biomagnification for different habitats or an unidentified PFAS source in proximity to the national park.
Collapse
Affiliation(s)
- Till Schröder
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Viktoria Müller
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Marc Preihs
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Jan Borovička
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, CZ-16500 Prague, Czech Republic
| | - Raquel Gonzalez de Vega
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Andrew Kindness
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom; University of KwaZulu Natal, School of Chemistry & Physics, Private Bag X54001, Westville Campus, ZA-4000 Durban, South Africa
| | - Jörg Feldmann
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria.
| |
Collapse
|
4
|
Crawford KA, Hartmann N. Respiratory Exposure to Highly Fluorinated Chemicals via Application of Ski Wax and Related Health Effects. Curr Environ Health Rep 2024; 11:39-45. [PMID: 38216812 PMCID: PMC10907454 DOI: 10.1007/s40572-023-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/14/2024]
Abstract
PURPOSE Waxes containing per- and polyfluoroalkyl substances (PFAS) are applied to the base of skis and snowboards ("skis") to reduce friction with the snow surface and improve glide. PFAS exposure can adversely impact cardiometabolic, thyroid, liver, kidney, reproductive, and immune health and are associated with increased risk of certain cancers. In the present review, we summarize the state of the science on PFAS exposure from fluorinated ski wax use, including acute respiratory health effects and PFAS concentrations in biological and environmental media collected from ski waxing settings. RECENT FINDINGS Perfluoroalkyl carboxylic acid (PFCA) concentrations in serum and air collected from professional wax technicians and the rooms where waxes are applied are among the highest of any occupation investigated to date, including the fluorochemical industry. High airborne concentrations of fluorotelomer alcohols contribute to high body burdens of certain PFCAs among ski waxers. Fluorinated ski waxes are a significant source of PFAS exposure for people waxing skis and/or spending time in areas where waxing occurs. We highlight recommendations for future research, policy, and technologies needed to address PFAS exposures from fluorinated wax use.
Collapse
Affiliation(s)
- Kathryn A Crawford
- Environmental Studies Program, Middlebury College, 276 Bicentennial Way, Middlebury, VT, 05753, USA.
| | | |
Collapse
|
5
|
Müller V, Andrade Costa LC, Rondan FS, Matic E, Mesko MF, Kindness A, Feldmann J. Per and polyfluoroalkylated substances (PFAS) target and EOF analyses in ski wax, snowmelts, and soil from skiing areas. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1926-1936. [PMID: 37853802 DOI: 10.1039/d3em00375b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Per and polyfluoroalkylated substances (PFAS) are common additives in ski waxes for their water repellent characteristic. Abrasion of ski wax leaves PFAS on the snow surface, however, little is known about the distribution and concentration of PFAS in snow and soil due to skiing. In this study we analysed different ski waxes, snowmelts and soil from family skiing areas from Alpine locations using targeted high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) to understand more about PFAS distribution in the environment. In general, we found a very diverse PFAS pattern in the analysed media. PFAS level was higher in skiing areas compared to the non-skiing ones that were used as control. ∑target PFAS ranged between <1.7 ng L-1 and 143 ng L-1 in snowmelt, <0.62 ng g-1 and 5.35 ng g-1 in soil and <1.89 and 874 ± 240 ng g-1 in ski wax samples. Snowmelt was dominated by short-chained PFAS, while soil and wax contained both short and long-chained PFAS. Extractable organic fluorine (EOF) was several orders of magnitude higher for waxes (0.5-2 mg g-1) than for soils (up to 0.3 μg g-1), while total fluorine (TF) content of the waxes was even higher, up to 31 210 ± 420 μg g-1. We also showed that the ∑ target PFAS accounts for up to 1.5% in EOF content, showing that targeted LC-MS/MS gives a limited measure of the pollution originated from ski waxes and non-targeted analysis and EOF is necessary for a better overview on PFAS distribution.
Collapse
Affiliation(s)
- Viktoria Müller
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| | - Larissa Cristine Andrade Costa
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Filipe Soares Rondan
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Eleonora Matic
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| | - Marcia Foster Mesko
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Andrew Kindness
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
- University of KwaZulu Natal, School of Chemistry & Physics, Private Bag X54001, Westville Campus, ZA-4000 Durban, South Africa
| | - Jörg Feldmann
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| |
Collapse
|
6
|
Ionization of semi-fluorinated n-alkanes in controlled atmosphere using flexible micro-tube plasma (FμTP) ionization source with square- and sine-wave voltage. Talanta 2022; 249:123662. [PMID: 35691129 DOI: 10.1016/j.talanta.2022.123662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/10/2022] [Accepted: 06/04/2022] [Indexed: 11/21/2022]
Abstract
Non-thermal plasma-based ionization sources have been widely used and shown excellent soft ionization performance in mass spectrometry. Despite their extensive application, the ionization mechanisms of these sources are of great interest for further exploring their full potential. A controlled atmosphere can provide a clean and controllable ionization environment and is beneficial for studying the ionization mechanism. The plasma source itself also has a significant impact on the ionization mechanism of the analyte, and the voltage waveform is one of the key parameters for controlling the plasma source. In this paper, a miniature flexible micro-tube plasma (FμTP) ionization source was sustained using both square and sine-wave voltage. The ionization processes of typical semi-fluorinated n-alkanes (SFAs) were investigated in the controlled atmosphere filled with 80% N2 and 20% O2. The main mass peaks using both square and sine-wave voltages are found to be [M-mH]+ and [M-mH+nO]+ (m = 1, 3; n = 0, 1, 2). However, for the square-wave voltage, the [M-H+O]+ species are the most abundant while [M-H]+ species are dominant for the sine-wave voltage, showing that the plasma generated with sine-wave voltage is somewhat "softer" than the one with square-wave voltage for SFAs. With the assistance of optical spectroscopy, the plasma developments in one discharge cycle for both voltage waveforms were obtained. Only one discharge can be found in each half cycle for square-wave voltage while several for the sine-wave voltage. These would be responsible for the different ionization behaviors in these two cases. This work provides more insight into the ionization mechanism of SFAs and more understanding of plasma-based soft ionization. In addition, the analytical performance was evaluated to be comparable when using these two voltage generators with a big difference in cost, which will benefit the instrumental development.
Collapse
|
7
|
Li X, Chevez T, De Silva AO, Muir DCG, Kleywegt S, Simpson A, Simpson MJ, Jobst KJ. Which of the (Mixed) Halogenated n-Alkanes Are Likely To Be Persistent Organic Pollutants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15912-15920. [PMID: 34802231 DOI: 10.1021/acs.est.1c05465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Short-chain polychlorinated n-alkanes are ubiquitous industrial chemicals widely recognized as persistent organic pollutants. They represent only a small fraction of the 184,600 elemental compositions (C10-25) and the myriad isomers of all possible (mixed) halogenated n-alkanes (PXAs). This study prioritizes the PXAs on the basis of their potential to persist, bioaccumulate, and undergo long-range transport guided by quantitative structure-property relationships (QSPRs), density functional theory (DFT), chemical fate models, and partitioning space. The QSPR results narrow the list to 966 elemental compositions, of which 352 (23 Br, 83 Cl/F, 119 Br/Cl, and 127 Br/F) are likely constituents of substances used as lubricants, plasticizers, and flame retardants. Complementary DFT calculations suggest that an additional 1367 elemental compositions characterized by a greater number of carbon and fluorine atoms but fewer chlorine and bromine atoms may also pose a risk. The results of this study underline the urgent need to identify and monitor these suspected pollutants, most appropriately using mass spectrometry. We estimate that the resolving power required to distinguish ∼74% of the prioritized elemental compositions from the most likely interferents, i.e., chlorinated alkanes, is approximately 60,000 (full width at half-maximum). This indicates that accurate identification of the PXAs is achievable using most high-resolution mass spectrometers.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Tannia Chevez
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Amila O De Silva
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
- Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Derek C G Muir
- Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Andre Simpson
- Departments of Chemistry and Physical & Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Departments of Chemistry and Physical & Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
8
|
Grønnestad R, Johanson SM, Müller MHB, Schlenk D, Tanabe P, Krøkje Å, Jaspers VLB, Jenssen BM, Ræder EM, Lyche JL, Shi Q, Arukwe A. Effects of an environmentally relevant PFAS mixture on dopamine and steroid hormone levels in exposed mice. Toxicol Appl Pharmacol 2021; 428:115670. [PMID: 34371090 DOI: 10.1016/j.taap.2021.115670] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
In the present study, we investigated the dopaminergic and steroid hormone systems of A/J mice fed environmentally relevant concentrations of a perfluoroalkyl substance (PFAS) mixture over a period of 10 weeks. The PFAS mixture was chosen based on measured PFAS concentrations in earthworms at a Norwegian skiing area (Trondheim) and consisted of eight different PFAS. Dietary exposure to PFAS led to lower total brain dopamine (DA) concentrations in male mice, as compared to control. On the transcript level, brain tyrosine hydroxylase (th) of PFAS exposed males was reduced, compared to the control group. No significant differences were observed on the transcript levels of enzymes responsible for DA metabolism, namely - monoamine oxidase (maoa and maob) and catechol-O methyltransferase (comt). We detected increased transcript level for DA receptor 2 (dr2) in PFAS exposed females, while expression of DA receptor 1 (dr1), DA transporter (dat) and vesicular monoamine transporter (vmat) were not affected by PFAS exposure. Regarding the steroid hormones, plasma and muscle testosterone (T), 11-ketotestosterone (11-KT) and 17β-estradiol (E2) levels, as well as transcripts for estrogen receptors (esr1 and esr2), gonadotropin releasing hormone (gnrh) and aromatase (cyp19) were unaltered by the PFAS treatment. These results indicate that exposure to PFAS doses, comparable to previous observation in earthworms at a Norwegian skiing area, may alter the dopaminergic system of mice with overt consequences for health, general physiology, cognitive behavior, reproduction and metabolism.
Collapse
Affiliation(s)
- Randi Grønnestad
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Silje Modahl Johanson
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Mette H B Müller
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway; Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Philip Tanabe
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Åse Krøkje
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biosciences, Aarhus University, Roskilde, Denmark
| | - Erik M Ræder
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Jan L Lyche
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Carlson GL, Tupper S. Ski wax use contributes to environmental contamination by per- and polyfluoroalkyl substances. CHEMOSPHERE 2020; 261:128078. [PMID: 33113667 DOI: 10.1016/j.chemosphere.2020.128078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are used in a wide variety of consumer products, including ski waxes, and are widespread persistent and hazardous environmental contaminants. We examined the environmental impact of ski wax use at an outdoor recreation area with significant cross-country ski activity by measuring PFAS levels in melted snow, soil and water following a collegiate ski race. We found extremely high levels of long- and short-chain PFAS (C4-C14) contamination in snow at the race start line (∑[PFAS] 7600-10,700 ng/L), with the longer-chain analytes (C10-C14) predominating. The complement of 14 PFAS detected in snow matched what has been found in ski wax. This snow contamination was greatly reduced at a point 3.9 km into the race. Soil at the start line contained the four most predominant PFAS in snow at a mean individual concentration of 2.81 ng/g dry weight. Control soil contained only perfluorooctane sulfonic acid (PFOS), not found in other soil samples, at a concentration of 2.80 ng/g. Shallow groundwater from an on-site well contained only the shorter-chain PFAS (C4-C8), with a mean individual concentration of 4.95 ng/L. Our results suggest that ski wax use, from which fluorocarbons abrade at very high levels onto snow during a ski race, are the main source of PFAS contamination at our site. Regulation of ski wax use is warranted to reduce PFAS pollution.
Collapse
Affiliation(s)
- Gail L Carlson
- Environmental Studies Program, Colby College, Waterville, ME, USA.
| | - Skylar Tupper
- Environmental Studies Program, Colby College, Waterville, ME, USA
| |
Collapse
|
10
|
Fang S, Plassmann MM, Cousins IT. Levels of per- and polyfluoroalkyl substances (PFAS) in ski wax products on the market in 2019 indicate no changes in formulation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2142-2146. [PMID: 33000820 DOI: 10.1039/d0em00357c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the summer of 2019, eleven of the best-selling fluorinated ski wax products were purchased from one of Norway's largest sports stores and soon after analysed for a suite of 26 per- and polyfluoroalkyl substances (PFAS). The waxes were shown to contain a wide range of perfluoroalkyl acids, including perfluoroalkyl carboxylic acids with up to 25 carbons. Of particular concern was the finding that perfluorooctanoic acid (PFOA) levels in nine of the eleven ski lubrication products analysed were above the EU limit values of 25 ng g-1, which came into force on 4th July 2020. The ski wax with the highest PFOA levels had a concentration that was 1215 times higher than the EU restrictions. Although some of the ski wax manufacturers have indicated that they have switched to formulations that contain chemistries based on shorter perfluoroalkyl chains, the analytical results show that this is not the case.
Collapse
Affiliation(s)
- Shuhong Fang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | | | | |
Collapse
|
11
|
Grønnestad R, Vázquez BP, Arukwe A, Jaspers VLB, Jenssen BM, Karimi M, Lyche JL, Krøkje Å. Levels, Patterns, and Biomagnification Potential of Perfluoroalkyl Substances in a Terrestrial Food Chain in a Nordic Skiing Area. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13390-13397. [PMID: 31691564 DOI: 10.1021/acs.est.9b02533] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Perfluoroalkyl substances (PFASs) are used in a wide range of consumer products, including ski products, such as ski waxes. However, there is limited knowledge on the release of PFASs from such products into the environment and the resultant uptake in biota and transport in food webs. We investigated levels, patterns, and biomagnification of PFASs in soil, earthworms (Eisenia fetida), and Bank voles (Myodes glareolus) from a skiing area in Trondheim, Norway. In general, there was higher PFAS levels in the skiing area compared to the reference area with no skiing activities. The skiing area was dominated by long-chained perfluorocarboxylic acids (PFCAs, ≥70%), while the reference area was dominated by short-chained PFCAs (>60%). The soil PFAS pattern in the skiing area was comparable to analyzed ski waxes, indicating that ski products are important sources of PFASs in the skiing area. A biomagnification factor (BMF) > 1 was detected for Bank volewhole/earthwormwhole for perfluorooctansulfonate in the skiing area. All other PFASs showed a BMF < 1. However, it should be noted that these organisms represent the base of the terrestrial food web, and PFASs originating from ski wax may result to higher exposure in organisms at the top of the food chain.
Collapse
Affiliation(s)
- Randi Grønnestad
- Department of Biology , Norwegian University of Science and Technology (NTNU) , NO-7491 Trondheim , Norway
| | - Berta Pérez Vázquez
- Department of Biology , Norwegian University of Science and Technology (NTNU) , NO-7491 Trondheim , Norway
| | - Augustine Arukwe
- Department of Biology , Norwegian University of Science and Technology (NTNU) , NO-7491 Trondheim , Norway
| | - Veerle L B Jaspers
- Department of Biology , Norwegian University of Science and Technology (NTNU) , NO-7491 Trondheim , Norway
| | - Bjørn Munro Jenssen
- Department of Biology , Norwegian University of Science and Technology (NTNU) , NO-7491 Trondheim , Norway
| | - Mahin Karimi
- Department of Food Safety and Infection Biology , Norwegian University of Life Sciences (NMBU) , NO-0033 Oslo , Norway
| | - Jan L Lyche
- Department of Food Safety and Infection Biology , Norwegian University of Life Sciences (NMBU) , NO-0033 Oslo , Norway
| | - Åse Krøkje
- Department of Biology , Norwegian University of Science and Technology (NTNU) , NO-7491 Trondheim , Norway
| |
Collapse
|
12
|
Hagenhoff S, Korf A, Markgraf U, Brandt S, Schütz A, Franzke J, Hayen H. Screening of semifluorinated n-alkanes by gas chromatography coupled to dielectric barrier discharge ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1092-1098. [PMID: 29660193 DOI: 10.1002/rcm.8139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE The potential of an atmospheric pressure ionization source based on a dielectric barrier discharge in helium for the hyphenation of gas chromatography and mass spectrometry (GC/DBDI-MS) has been demonstrated only recently and for a limited range of compounds. Due to its 'soft' ionization properties and the possibility to choose from a variety of atmospheric pressure ionization MS instruments, GC/DBDI-MS has the potential to be an interesting alternative to 'classic' GC/MS techniques. METHODS The hyphenation of GC with DBDI-MS at atmospheric pressure is used for the determination of semifluorinated n-alkanes in ski wax samples. RESULTS Different to perfluorinated n-alkanes, which are typically detected as [M - F + O]- and [M - F]- , semifluorinated n-alkanes can be detected both in positive mode as [M - 3H + nO]+ and [M - H + nO]+ (n = 0, 1, 2, and 3) ions, as well as in negative mode as a fragment ion representing the fluorinated part of the respective semifluorinated n-alkane. The method allowed the sensitive detection of semifluorinated n-alkanes with achievable limits of detection (LODs) in the single digit pg range injected on column. To examine the applicability of the GC/DBDI-MS method, semifluorinated n-alkanes were determined in fluorinated ski waxes. Results were confirmed by complimentary GC/electron ionization MS measurements. CONCLUSIONS The unique SFA ionization patterns serve for complementary unambiguous identification of semifluorinated n-alkane species in positive mode and screening of contained n-alkanes fluorinated chain lengths in negative mode.
Collapse
Affiliation(s)
- Sebastian Hagenhoff
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| | - Ansgar Korf
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| | - Ullrich Markgraf
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany
| | - Sebastian Brandt
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany
| | - Alexander Schütz
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany
| | - Joachim Franzke
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany
| | - Heiko Hayen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| |
Collapse
|
13
|
Gobelius L, Hedlund J, Dürig W, Tröger R, Lilja K, Wiberg K, Ahrens L. Per- and Polyfluoroalkyl Substances in Swedish Groundwater and Surface Water: Implications for Environmental Quality Standards and Drinking Water Guidelines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4340-4349. [PMID: 29527894 DOI: 10.1021/acs.est.7b05718] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The aim of this study was to assess per- and polyfluoroalkyl substances (PFASs) in the Swedish aquatic environment, identify emission sources, and compare measured concentrations with environmental quality standards (EQS) and (drinking) water guideline values. In total, 493 samples were analyzed in 2015 for 26 PFASs (∑26PFASs) in surface water, groundwater, landfill leachate, sewage treatment plant effluents and reference lakes, focusing on hot spots and drinking water sources. Highest ∑26PFAS concentrations were detected in surface water (13 000 ng L-1) and groundwater (6400 ng L-1). The dominating fraction of PFASs in surface water were perfluoroalkyl carboxylates (PFCAs; 64% of ∑26PFASs), with high contributions from C4-C8 PFCAs (94% of ∑PFCAs), indicating high mobility of shorter chain PFCAs. In inland surface water, the annual average (AA)-EQS of the EU Water Framework Directive of 0.65 ng L-1 for ∑PFOS (linear and branched isomers) was exceeded in 46% of the samples. The drinking water guideline value of 90 ng L-1 for ∑11PFASs recommended by the Swedish EPA was exceeded in 3% of the water samples from drinking water sources ( n = 169). The branched isomers had a noticeable fraction in surface- and groundwater for perfluorooctanesulfonamide, perfluorohexanesulfonate, and perfluorooctanesulfonate, highlighting the need to include branched isomers in future guidelines.
Collapse
Affiliation(s)
- Laura Gobelius
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-750 07 Uppsala , Sweden
| | - Johanna Hedlund
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-750 07 Uppsala , Sweden
| | - Wiebke Dürig
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-750 07 Uppsala , Sweden
| | - Rikard Tröger
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-750 07 Uppsala , Sweden
| | - Karl Lilja
- Swedish Environmental Protection Agency (Naturvårdsverket) , Valhallavägen 195 , 115 53 Stockholm , Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-750 07 Uppsala , Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-750 07 Uppsala , Sweden
| |
Collapse
|
14
|
Nakajima Y, Arinami Y, Yamamoto K. Selective separation of fluorinated compounds from complex organic mixtures by pyrolysis-comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry. J Chromatogr A 2014; 1374:231-237. [DOI: 10.1016/j.chroma.2014.11.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 11/16/2022]
|
15
|
Wang Z, Cousins IT, Scheringer M, Buck RC, Hungerbühler K. Global emission inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part II: the remaining pieces of the puzzle. ENVIRONMENT INTERNATIONAL 2014; 69:166-76. [PMID: 24861268 DOI: 10.1016/j.envint.2014.04.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 05/17/2023]
Abstract
We identify eleven emission sources of perfluoroalkyl carboxylic acids (PFCAs) that have not been discussed in the past. These sources can be divided into three groups: [i] PFCAs released as ingredients or impurities, e.g., historical and current use of perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA) and their derivatives; [ii] PFCAs formed as degradation products, e.g., atmospheric degradation of some hydrofluorocarbons (HFCs) and hydrofluoroethers (HFEs); and [iii] sources from which PFCAs are released as both impurities and degradation products, e.g., historical and current use of perfluorobutane sulfonyl fluoride (PBSF)- and perfluorohexane sulfonyl fluoride (PHxSF)-based products. Available information confirms that these sources were active in the past or are still active today, but due to a lack of information, it is not yet possible to quantify emissions from these sources. However, our review of the available information on these sources shows that some of the sources may have been significant in the past (e.g., the historical use of PFBA-, PFHxA-, PBSF- and PHxSF-based products), whereas others can be significant in the long-term (e.g., (bio)degradation of various side-chain fluorinated polymers where PFCA precursors are chemically bound to the backbone). In addition, we summarize critical knowledge and data gaps regarding these sources as a basis for future research.
Collapse
Affiliation(s)
- Zhanyun Wang
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Ian T Cousins
- Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden
| | - Martin Scheringer
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland.
| | - Robert C Buck
- E.I. du Pont de Nemours & Co. Inc., DuPont Chemicals and Fluoroproducts, 974 Centre Road, CRP 702-2211B, Wilmington, DE 19880-0702, USA
| | - Konrad Hungerbühler
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| |
Collapse
|
16
|
Plassmann MM, Berger U. Perfluoroalkyl carboxylic acids with up to 22 carbon atoms in snow and soil samples from a ski area. CHEMOSPHERE 2013; 91:832-837. [PMID: 23466094 DOI: 10.1016/j.chemosphere.2013.01.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 12/17/2012] [Accepted: 01/16/2013] [Indexed: 06/01/2023]
Abstract
The use of fluorinated ski waxes as a direct input route of perfluoroalkyl carboxylic acids (PFCAs) to the environment was investigated. PFCA homologues with 6-22 carbon atoms (C6-22 PFCAs) were detected in fluorinated ski waxes and their raw materials by liquid chromatography coupled to tandem mass spectrometry. Snow and soil samples from a ski area in Sweden were taken after a skiing competition and after snowmelt, respectively. In both snow and soil samples C6-22 PFCAs were detected, representing the first report of PFCAs with up to 22 carbon atoms in environmental samples. Single analyte concentrations in snow (analyzed as melt water) and soil ranged up to 0.8μgL(-1) and 5ngg(-1) dry weight, respectively. ∑PFCA concentrations in snow and soil decreased from the start to the finish of the ski trail. Distinct differences in PFCA patterns between snow (prevalence of C14-20 PFCAs) and soil samples (C6-14 PFCAs dominating) were observed. Additionally, a PFCA pattern change from the start to about two third of the distance of the ski trail was found both for snow and soil, with a larger fraction of longer chain homologues present in samples from the start. These observations are probably a result of differences in PFCA homologue patterns present in different types of waxes. The calculated PFCA input from snow affected by the skiing competition was smaller than the PFCA inventory in soil for all chain lengths and markedly smaller for C6-15 PFCAs, presenting evidence for long-term accumulation in soil.
Collapse
Affiliation(s)
- Merle M Plassmann
- Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
17
|
Plassmann MM, Denninger A, Berger U. Environmental occurrence and fate of semifluorinated n-alkanes in snow and soil samples from a ski area. CHEMOSPHERE 2011; 85:1458-1463. [PMID: 21907386 DOI: 10.1016/j.chemosphere.2011.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 05/31/2023]
Abstract
Semifluorinated n-alkanes (SFAs) with carbon chain lengths of 22 to approximately 36 atoms are present in fluorinated ski waxes to reduce the friction between ski base and snow, resulting in a better glide. Semifluorinated n-alkenes (SFAenes) are byproducts in the production process of SFAs and are also found in ski waxes. Snow and soil samples from a ski area in Sweden were taken after a large skiing competition and after snowmelt, respectively, and analyzed for SFAs and SFAenes. Single analyte concentrations in snow (analyzed as melt water) ranged from a few ng L(-1) up to 300 μg L(-1). ∑SFA concentrations decreased significantly from the start to the finish of the ski trail. Single analyte concentrations in soil ranged up to 9 ng g(-1)dw. ∑SFA concentrations in soil did not show a trend along the ski trail. This may be due to the fact that concentrations in soil, although strongly influenced by the competition, reflect inputs during the whole skiing season. The chemical inventory in snow was greater than the inventory in soil for shorter chain SFAs (C(22)C(28)) and for all SFAenes. Additionally, a significant change in SFA patterns between snow and soil samples was found. These observations suggested volatilization of shorter chain SFAs and of SFAenes during snowmelt. Evidence for long-term accumulation of SFAs in surface soil over several skiing seasons was not found.
Collapse
Affiliation(s)
- Merle M Plassmann
- Department of Applied Environmental Science (ITM), Stockholm University, Svante Arrhenius Väg 8, Stockholm, Sweden
| | | | | |
Collapse
|
18
|
Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SPJ. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2011; 7:513-41. [PMID: 21793199 PMCID: PMC3214619 DOI: 10.1002/ieam.258] [Citation(s) in RCA: 2255] [Impact Index Per Article: 173.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/26/2011] [Accepted: 07/05/2011] [Indexed: 05/18/2023]
Abstract
The primary aim of this article is to provide an overview of perfluoroalkyl and polyfluoroalkyl substances (PFASs) detected in the environment, wildlife, and humans, and recommend clear, specific, and descriptive terminology, names, and acronyms for PFASs. The overarching objective is to unify and harmonize communication on PFASs by offering terminology for use by the global scientific, regulatory, and industrial communities. A particular emphasis is placed on long-chain perfluoroalkyl acids, substances related to the long-chain perfluoroalkyl acids, and substances intended as alternatives to the use of the long-chain perfluoroalkyl acids or their precursors. First, we define PFASs, classify them into various families, and recommend a pragmatic set of common names and acronyms for both the families and their individual members. Terminology related to fluorinated polymers is an important aspect of our classification. Second, we provide a brief description of the 2 main production processes, electrochemical fluorination and telomerization, used for introducing perfluoroalkyl moieties into organic compounds, and we specify the types of byproducts (isomers and homologues) likely to arise in these processes. Third, we show how the principal families of PFASs are interrelated as industrial, environmental, or metabolic precursors or transformation products of one another. We pay particular attention to those PFASs that have the potential to be converted, by abiotic or biotic environmental processes or by human metabolism, into long-chain perfluoroalkyl carboxylic or sulfonic acids, which are currently the focus of regulatory action. The Supplemental Data lists 42 families and subfamilies of PFASs and 268 selected individual compounds, providing recommended names and acronyms, and structural formulas, as well as Chemical Abstracts Service registry numbers.
Collapse
Affiliation(s)
- Robert C Buck
- E.I. du Pont de Nemours & Co., Inc., DuPont Chemicals and FluoroproductsWilmington, Delaware, USA
| | - James Franklin
- CLF-Chem Consulting3 Clos du Châtaignier, BE-1390 Grez-Doiceau, Belgium
| | - Urs Berger
- Department of Applied Environmental Science (ITM), Stockholm UniversityStockholm, Sweden
| | | | - Ian T Cousins
- Department of Applied Environmental Science (ITM), Stockholm UniversityStockholm, Sweden
| | - Pim de Voogt
- Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, The Netherlands
| | - Allan Astrup Jensen
- Nordic Institute for Product Sustainability, Environmental Chemistry and Toxicology (NIPSECT)Frederiksberg, Denmark
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at AlbanyAlbany, New York, USA
| | - Scott A Mabury
- Department of Chemistry, University of TorontoToronto, Ontario, Canada
| | | |
Collapse
|
19
|
Nilsson H, Kärrman A, Rotander A, van Bavel B, Lindström G, Westberg H. Inhalation exposure to fluorotelomer alcohols yield perfluorocarboxylates in human blood? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7717-7722. [PMID: 20828202 DOI: 10.1021/es101951t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Levels of perfluorinated carboxylates (PFCAs) in different environmental and biological compartments have been known for some time, but the routes of exposure still remain unclear. The opinions are divergent whether the exposure to general populations occurs mainly indirect through precursor compounds or direct via PFCAs. Previous results showed elevated blood levels of PFCAs in ski wax technicians compared to a general population. The objective of this follow-up study was to determine concentrations of PFCAs, perfluorosulfonates (PFSAs), and fluorotelomer alcohols (FTOHs), precursor compounds that are known to degrade to PFCAs, in air collected in the breathing zone of ski wax technicians during work. We collected air samples by using ISOLUTE ENV+ cartridges connected to portable air pumps with an air flow of 2.0 L min(-1). PFCAs C5-C11 and PFSAs C4, C6, C8, and C10 were analyzed using LC-MS/MS and FTOHs 6:2, 8:2, and 10:2 with GC-MS/MS. The results show daily inhalation exposure of 8:2 FTOH in μg/m(3) air which is up to 800 times higher than levels of PFOA with individual levels ranging between 830-255000 ng/m(3) air. This suggests internal exposure of PFOA through biotransformation of 8:2 FTOH to PFOA and PFNA in humans.
Collapse
Affiliation(s)
- Helena Nilsson
- Man-Technology-Environment MTM Research Centre, Orebro University, SE-701 82 Orebro, Sweden.
| | | | | | | | | | | |
Collapse
|
20
|
Plassmann MM, Meyer T, Lei YD, Wania F, McLachlan MS, Berger U. Theoretical and experimental simulation of the fate of semifluorinated n-alkanes during snowmelt. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:6692-6697. [PMID: 20704285 DOI: 10.1021/es101562w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Semifluorinated n-alkanes (SFAs) are highly fluorinated anthropogenic chemicals that are released into the environment through their use in ski waxes. Nothing is known about their environmental partitioning in general and their fate during snowmelt in particular. Properties were estimated for a range of SFAs with different chain lengths and degrees of fluorination using the SPARC calculator and poly parameter linear free energy relationships (ppLFERs). The calculations resulted in very low water solubility and vapor pressures and, consequently, high log KOW and log KOA values. Artificially produced snow in a cold room was spiked with a range of SFAs and subsequently melted with infrared lamps. Melt water, particles, and air samples taken during melting were analyzed. Both calculations and experiments showed that SFAs used in ski waxes will bind to particles or snow grain surfaces during snowmelt and thus are predicted to end up on the soil surface in skiing areas.
Collapse
Affiliation(s)
- Merle M Plassmann
- Department of Applied Environmental Science (ITM), Stockholm University, 10691 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|