1
|
Yang H, Liu Y, Wang C, Hussain M, Ettayri K, Chen Y, Wang K, Long L, Qian J. Ultrastable NAC-Capped CdZnTe Quantum Dots Encapsulated within Dendritic Mesoporous Silica As an Exceptional Tag for Anti-Interference Fluorescence Aptasensor with Signal Amplification. Anal Chem 2024; 96:14550-14559. [PMID: 39180519 DOI: 10.1021/acs.analchem.4c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
In this work, we explored the potential of thiol-capped CdZnTe quantum dots (QDs) as an exceptional signal tag for fluorescence aptasensing applications. Employing a one-pot hydrothermal approach, we modulated the terminal functional groups of CdZnTe QDs using l-cysteine (Lcys), 3-mercaptopropionic acid (MPA), and N-acetyl-l-cysteine (NAC) as ligands. Our comparative analysis revealed that NAC-capped CdZnTe QDs (NAC-CdZnTe QDs) exhibited superior anti-interference capabilities and storage stability across various temperatures, pH levels, and storage durations. Encouraged by these promising results, we further optimized the use of ultrastable NAC-CdZnTe QDs encapsulated in dendritic mesoporous silica nanoparticles (DMSN@QDs) as an exceptional tag for the development of an advanced anti-interference fluorescence aptasensor for aflatoxin B1 (AFB1) detection. The developed aptasensor using DMSN@QDs as signal tags achieved a remarkable signal amplification of approximately 10.2 fold compared to the NAC-CdZnTe QDs coated silica (SiO2@QDs) labeled fluorescence aptasensor. This aptasensor was able to detect AFB1 within a wide range of 1 pg mL-1 to 200 ng mL-1, achieving a limit of detection as low as 0.41 pg mL-1 (S/N = 3). Crucially, the specific binding affinity between the aptamer and the target enabled the aptasensor to be easily customized for various targets by simply replacing the aptamer sequence with the desired one. The exceptional potential of NAC-CdZnTe QDs, particularly when encapsulated in DMSNs, leads to the development of highly sensitive and selective anti-interference fluorescence aptasensors for various targets, thereby, paving the way for advancements in a diverse range of applications.
Collapse
Affiliation(s)
- Huiyuan Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yue Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mustafa Hussain
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Kawtar Ettayri
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yu Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
2
|
Xu N, Xiao M, Yu Z, Jin B, Yang M, Yi C. On-site quantitation of xanthine in fish and serum using a smartphone-based spectrophotometer integrated with a dual-readout nanosensing assay. Food Chem 2024; 431:137107. [PMID: 37562333 DOI: 10.1016/j.foodchem.2023.137107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Rapid and quantitative biochemical analysis at points-of-need is imperative for food safety inspection. This work reports on: 1) a stand-alone smartphone-based "two-in-one" spectrophotometer (the SAFS) installed with a self-developed application (the SAFS-App) which can precisely collect both absorption spectra and fluorescence spectra in a reproducible manner within 5 s; and 2) a straightforward protocol for xanthine detection using fluorescent carbon nanodots and silver nanoparticles. The assay performed with the SAFS demonstrates high specificity towards xanthine, and a linear range of 1-60 μM with LODs of 0.38 and 0.58 μM for colorimetric and fluorometric readouts, respectively. The reliability and robustness of the SAFS are validated by on-site quantitation of xanthine in fish and serum samples, with comparable accuracy to HPLC method. More importantly, the SAFS presents itself as an appealing device which is accessible to everyone through the Internet of Things and can be tailored for diverse point-of-care testing applications.
Collapse
Affiliation(s)
- Ningxia Xu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-Sen University, Guangzhou 510275, China; Department of Medical Equipment, Hospital of Jiangxi University of Traditional Chinese Medicine (Jiangxi Provincial Hospital of Traditional Chinese Medicine), Nanchang, Jiangxi 330000, China
| | - Meng Xiao
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-Sen University, Guangzhou 510275, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Zipei Yu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-Sen University, Guangzhou 510275, China
| | - Baohui Jin
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen 518033, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Changqing Yi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-Sen University, Guangzhou 510275, China; Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China.
| |
Collapse
|
3
|
Wang Y, Li MH, Wen XH, Liu MY, Lu YW, Gu Y, Zeng G, Zhao XF, Liu BH, Ji XM, Lu HL. Study of an Ultrasensitive Label-Free Electrochemiluminescent Immunosensor Fabricated with a Composite Electrode for Detecting the Glutamate Decarboxylase Antibody. ACS Sens 2023. [PMID: 37364058 DOI: 10.1021/acssensors.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Antibody testing for the glutamic acid decarboxylase 65 antibody (GADA) is widely used as a golden standard for autoimmune diabetes diagnosis, while current methods for antibody testing are not sensitive enough for clinical usage. Here, a label-free electrochemiluminescent (ECL) immunosensor for detecting GADA in autoimmune diabetes is fabricated and investigated. In the designed immunosensor, a composite film including the multiwalled carbon nanotubes (MWCNTs), zinc oxide (ZnO), and Au nanoparticles (AuNPs) was prepared through nanofabrication processes to improve the performance of sensor. The MWCNTs, which can provide a larger specific surface area, ZnO as a good photocatalytic material, and AuNPs that can enhance the ECL signal of luminol and immobilize the GAD65 antigen were applied to prefunctionalize indium tin oxide (ITO) glass based on a nanofabrication process. The GADA concentration was detected using the ECL immunosensor after incubating with GAD65 antigen-coated prefunctionalized ITO glass. After a direct immunoreaction, it is found that the degree of decreased ECL intensity has a good linear regression toward the logarithm of the GADA concentration in the range of 0.01 to 50 ng mL-1 with a detection limit down to 10 pg mL-1. Human serum samples positive or negative for GADA all nicely fell in the expected area. The fabricated immunosensor with excellent sensitivity, specificity, and stability has potential capability for clinical usage in GADA detection.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Mei-Hang Li
- Department of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xiao-Hong Wen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Meng-Yang Liu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Yan-Wei Lu
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yang Gu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Guang Zeng
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xue-Feng Zhao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Bao-Hong Liu
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xin-Ming Ji
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Muttaqien SE, Khoris IM, Pambudi S, Park EY. Nanosphere Structures Using Various Materials: A Strategy for Signal Amplification for Virus Sensing. SENSORS (BASEL, SWITZERLAND) 2022; 23:160. [PMID: 36616758 PMCID: PMC9824175 DOI: 10.3390/s23010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials have been explored in the sensing research field in the last decades. Mainly, 3D nanomaterials have played a vital role in advancing biomedical applications, and less attention was given to their application in the field of biosensors for pathogenic virus detection. The versatility and tunability of a wide range of nanomaterials contributed to the development of a rapid, portable biosensor platform. In this review, we discuss 3D nanospheres, one of the classes of nanostructured materials with a homogeneous and dense matrix wherein a guest substance is carried within the matrix or on its surface. This review is segmented based on the type of nanosphere and their elaborative application in various sensing techniques. We emphasize the concept of signal amplification strategies using different nanosphere structures constructed from a polymer, carbon, silica, and metal-organic framework (MOF) for rendering high-level sensitivity of virus detection. We also briefly elaborate on some challenges related to the further development of nanosphere-based biosensors, including the toxicity issue of the used nanomaterial and the commercialization hurdle.
Collapse
Affiliation(s)
- Sjaikhurrizal El Muttaqien
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Indra Memdi Khoris
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Sabar Pambudi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Enoch Y. Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
5
|
Zhang W, Cui C, Chen H, Liu H, Bin S, Wang D, Wang Y. Advances in Electrochemical Aptamer Biosensors for the Detection of Food‐borne Pathogenic Bacteria. ChemistrySelect 2022. [DOI: 10.1002/slct.202202190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wensi Zhang
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Chuanjin Cui
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Hongshuo Chen
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Haibin Liu
- North China University of Science and Technology College Of Life Sciences Tangshan 063210, P.R.China
| | - Shao Bin
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Dengling Wang
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Yitao Wang
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| |
Collapse
|
6
|
Arshad R, Sargazi S, Fatima I, Mobashar A, Rahdar A, Ajalli N, Kyzas GZ. Nanotechnology for Therapy of Zoonotic Diseases: A Comprehensive Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202201271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 98167-43463 Iran
| | - Iqra Fatima
- Department of Pharmacy Quaid-i-Azam University Islamabad Islamabad Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol P. O. Box. 98613–35856 Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering University of Tehran Tehran Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
7
|
Soldado A, Barrio LC, Díaz-Gonzalez M, de la Escosura-Muñiz A, Costa-Fernandez JM. Advances in quantum dots as diagnostic tools. Adv Clin Chem 2022; 107:1-40. [PMID: 35337601 DOI: 10.1016/bs.acc.2021.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Quantum dots (QDs) are crystalline inorganic semiconductor nanoparticles a few nanometers in size that possess unique optical electronic properties vs those of larger materials. For example, QDs usually exhibit a strong and long-lived photoluminescence emission, a feature dependent on size, shape and composition. These special optoelectronic properties make them a promising alternative to conventional luminescent dyes as optical labels in biomedical applications including biomarker quantification, biomolecule targeting and molecular imaging. A key parameter for use of QDs is to functionalize their surface with suitable (bio)molecules to provide stability in aqueous solutions and efficient and selective tagging biomolecules of interest. Researchers have successfully developed biocompatible QDs and have linked them to various biomolecule recognition elements, i.e., antibodies, proteins, DNA, etc. In this chapter, QD synthesis and characterization strategies are reviewed as well as the development of nanoplatforms for luminescent biosensing and imaging-guided targeting. Relevant biomedical applications are highlighted with a particular focus on recent progress in ultrasensitive detection of clinical biomarkers. Finally, key future research goals to functionalize QDs as diagnostic tools are explored.
Collapse
Affiliation(s)
- Ana Soldado
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Laura Cid Barrio
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - María Díaz-Gonzalez
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | | | | |
Collapse
|
8
|
Hui N, Wang J, Wang D, Wang P, Luo X, Lv S. An ultrasensitive biosensor for prostate specific antigen detection in complex serum based on functional signal amplifier and designed peptides with both antifouling and recognizing capabilities. Biosens Bioelectron 2022; 200:113921. [PMID: 34973567 DOI: 10.1016/j.bios.2021.113921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022]
Abstract
The development of biosensors capable of averting biofouling and detecting biomarkers in complex biological media remains a challenge. Herein, an ultralow fouling and highly sensitive biosensor based on specifically designed antifouling peptides and a signal amplification strategy was designed for prostate specific antigen (PSA) detection in human serum. A low fouling layer of poly(ethylene glycol) (PEG) doped the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was electrodeposited on the electrode surface, followed by the immobilization of streptavidin and further attachment of biotin-labelled peptides. The peptide was designed to include PSA specific recognition domain (HSSKLQK) and antifouling domain (PPPPEKEKEKE), and the terminal of the peptide was functionalized with -SH group. DNA functionalized gold nanorods (DNA/AuNRs) were then attached to the electrode, and methylene blue (MB) molecules were adsorbed to the DNA to form the signal amplifier. In the presence of PSA, the peptide was specifically cleaved and resulted in the loss of AuNRs together with DNA and MB, and thus significant decrease of the current signal. The biosensor exhibited a low limit of detection (LOD) of 0.035 pg mL-1 (S/N = 3), with a wide linear range from 0.10 pg mL-1 to 10.0 ng mL-1, and it was able to detect PSA in real human serum owing to the presence of the antifouling peptides, indicating great potential of the constructed biosensor for practical application.
Collapse
Affiliation(s)
- Ni Hui
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, PR China
| | - Jiasheng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, PR China
| | - Dongwei Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, PR China
| | - Peipei Wang
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Shaoping Lv
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China.
| |
Collapse
|
9
|
Chang Z, Zhang C, Yao B. Novel dual-sensitization electrochemiluminescence immunosensor using photopermeable Ru(bpy) 3 2+ -doped chitosan/SiO 2 nanoparticles as labels and chitosan-decorated Nafion/MWNTs composites as enhancer. LUMINESCENCE 2021; 37:58-71. [PMID: 34633751 DOI: 10.1002/bio.4146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022]
Abstract
A novel dual-sensitization electrochemiluminescence (ECL) immunosensor for the detection of tumour protein prostate specific antigen (PSA) at trace level using Ru(bpy)3 2+ -doped chitosan/SiO2 nanoparticles (Ru(bpy)3 2+ /chitosan/SiO2 NPs) as the first signal enhancers was fabricated. Due to chitosan with excellent pore forming capacity, these nanoparticles possess porous structures and better photopermeability, and therefore have higher luminescence efficiencies compared with Ru(bpy)3 2+ /SiO2 NPs reported in previous publications. Conversely, chitosan with good biocompatibility and high hydrophilicity was electrochemically decorated onto a Nafion/multiwall carbon nanotubes (Nafion/MWNTs) modified electrode surface and used as the second sensitizing matrix to seize large amounts of prostate specific capture antibody (Ab1 ). The chitosan-decorated Nafion/MWNTs composites exhibited a 5.5-times higher ECL intensity than the unadorned Nafion/MWNTs films. Also, without additional reagents, such as (3-aminopropyl)triethoxysilane (APTS), the one-step functionalized Ru(bpy)3 2+ /chitosan/SiO2 NPs provided a large number of active arms to connect with PSA-detected antibodies (Ab2 ) through the amino groups in chitosan. After a sandwich immunoreaction, the PSA antigen and Ru(bpy)3 2+ /chitosan/SiO2 NPs-labelled Ab2 were sequentially captured onto the Ab1 /chitosan/Nafion/MWNTs-modified electrode surface. The ECL signal increases were linearly related to the PSA antigen concentrations and ranged from 0.01 pg·mLl-1 to 10.0 pg·mLl-1 . Under the optimized experimental conditions, the immunosensor displayed excellent sensitivity and selectivity. The detection limit was as low as 3.4 fg·mLl-1 , equivalent to, or better than, those of the reported ECL immunosensors for PSA.
Collapse
Affiliation(s)
- Zheng Chang
- Department of Applied Chemistry of College of Science, Xi'an University of Technology, Xi'an, China
| | - Chao Zhang
- Department of Applied Chemistry of College of Science, Xi'an University of Technology, Xi'an, China
| | - Binghua Yao
- Department of Applied Chemistry of College of Science, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
10
|
Li D, Xiong Q, Lu D, Chen Y, Liang L, Duan H. Magnetic nanochains-based dynamic ELISA for rapid and ultrasensitive detection of acute myocardial infarction biomarkers. Anal Chim Acta 2021; 1166:338567. [PMID: 34022991 DOI: 10.1016/j.aca.2021.338567] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality globally. The serum levels of a group of cardiac biomarkers have been regarded as important indicators in the routine diagnosis of AMI. The development of rapid, sensitive, and accurate detection methods of AMI biomarkers is urgently needed for the early diagnosis of AMI. Here, a dynamic and pseudo-homogeneous enzyme-linked immunosorbent assay (ELISA) was reported based on the combined use of bioconjugated magnetic nanochains (MNCs) and gold nanoparticles (AuNPs) probes. The capture antibodies-conjugated MNCs served as dynamic nano-mixers to facilitate liquid mixing and as homogeneously dispersed capturing agents to capture and separate specific targets. The AuNPs probes were prepared by co-immobilization of detection antibodies and horseradish peroxidase (HRP) for signals amplification. The design of bioconjugated MNCs and AuNPs probes significantly increased the assay kinetics and improves the assay sensitivity. This novel ELISA strategy realized accurate detection of a panel of AMI biomarkers within 35 min, leading to considerably improved sensitivities compared to that of conventional ELISA method.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Derong Lu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yonghao Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| |
Collapse
|
11
|
Meng W, Li M, Zhang Y. Adriamycin coated silica microspheres as labels for cancer biomarker alpha-fetoprotein detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2665-2670. [PMID: 34046653 DOI: 10.1039/d1ay00655j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adriamycin (ADM)-coated silica microspheres as a label for the sensitive detection of a cancer biomarker alpha-fetoprotein (AFP) was reported. Silica microspheres (SiO2 MSs) were employed as the carrier for the immobilization of gold nanoparticles (Au NPs), secondary antibody (Ab2) and ADM (denote: ADM@Au NPs@SiO2 MS/Ab2) as labels. In the presence of AFP, the labels were captured on the surface of the Au NP-reduced graphene oxide (rGO) (Au NP-rGO) nanocomposites to form a sandwich structure vs. the specific recognition of antibody-antigen. In a pH 7.4 phosphate buffer solution, a well-defined peak of ADM at about -0.70 V (vs. SCE) was recorded via differential pulse voltammetry, the peak intensity of which was related to the concentration of AFP. Under optimal experimental conditions, the immunoassay exhibited a wide linear range (0.5 pg mL-1 to 75 ng mL-1) and low limit of detection (0.17 pg mL-1). Further, the immunoassay was evaluated for serum samples, which gave satisfactory results.
Collapse
Affiliation(s)
- Wenwen Meng
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| | - Mengyao Li
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| | - Yuzhong Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| |
Collapse
|
12
|
Yan W, Fan L, Li J, Wang Y, Han H, Tan F, Zhang P. Bimodal size distribution immuno-quantum dots for fluorescent western blotting assay with high sensitivity and extended dynamic range. Mikrochim Acta 2020; 187:598. [PMID: 33034772 DOI: 10.1007/s00604-020-04578-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
A highly sensitive quantum dot (QD)-based western blot assay with extended dynamic range was developed. Bimodal size distribution QD (BQ) immunoprobes composed of small size single QD (7.3 nm) and big size QD nanobead (QB) (82.9 nm) were employed for fluorescent western blot immunoassay on a membrane. Small size QD immunoprobes contributed to wider dynamic range of assay, while big size QB immunoprobes provided higher detection sensitivity. This BQ-based western blot assay can achieve a wide dynamic range (from 7.8 to 4000 ng IgG) and is nearly as sensitive as commercial available ultrasensitive chemiluminescent methods, just using a simple gel imager with UV light (365 nm) excitation and red light filter (610 nm). The fluorescent signals of BQ western blot were stable for 10 min, while chemiluminescent signals faded after 1 min. Moreover, this BQ immunoprobe was utilized for the detection of housekeeping protein and specific target proteins in complex cell lysate samples. The limit of detection of housekeeping protein is 0.25 μg of cell lysate, and the signal intensities were proportional to loading protein amount in a wide range from 0.61 to 80 μg. We believe that this new strategy of bimodal size distribution nanoparticles can also be expanded for other functional nanoparticle-based biological assays to improve the sensitivity and extend the dynamic range. Graphical abstract.
Collapse
Affiliation(s)
- Wannian Yan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Lingzhi Fan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Jin Li
- Shandong Zhifu Hospital, Yantai, 26400, Shandong, China
| | - Yijiang Wang
- Department of Periodontology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, 200072, China
| | - Huanxing Han
- Department of Pharmacy, Changzheng Hospital, The Second Military Medical University, Shanghai, 200433, China
- Aliex Technology Group Co., Ltd, No. 152, Lane 468, North Hengshahe Road, Shanghai, China
| | - Fei Tan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
13
|
Electrochemiluminescence behaviour of silver/ZnIn2S4/reduced graphene oxide composites quenched by Au@SiO2 nanoparticles for ultrasensitive insulin detection. Biosens Bioelectron 2020; 162:112235. [DOI: 10.1016/j.bios.2020.112235] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
|
14
|
Zhou J, Ren M, Wang W, Huang L, Lu Z, Song Z, Foda MF, Zhao L, Han H. Pomegranate-Inspired Silica Nanotags Enable Sensitive Dual-Modal Detection of Rabies Virus Nucleoprotein. Anal Chem 2020; 92:8802-8809. [PMID: 32450687 DOI: 10.1021/acs.analchem.0c00200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The outbreak of rabies virus (RABV) in Asia and Africa has attracted widespread concern due to its 100% mortality rate, and RABV detection is crucial to its diagnosis and treatment. Herein, we report a sensitive and reliable strategy for the dual-modal RABV detection using pomegranate-shaped dendritic silica nanospheres fabricated with densely incorporated quantum dots (QDs) and horseradish peroxidase (HRP)-labeled antibody. The immunoassay involves the specific interaction between virus and nanospheres-conjugated antibody coupled with robust fluorescence signal originating from QDs and naked-eye discernible colorimetric signal on the oxTMB. The ultrahigh loading capacity of QDs enables the detection limit down to 8 pg/mL via fluorescence modality, a 348-fold improvement as compared with conventional enzyme-linked immunosorbent assay (ELISA). In addition, the detection range was from 1.20 × 102 to 2.34 × 104 pg/mL by plotting the absorbance at 652 nm with RABV concentrations with a detection limit of 91 pg/mL, which is nearly 2 order of magnitude lower than that of the conventional ELISA. Validated with 12 brain tissue samples, our immunoassay results are completely consistent with polymerase chain reaction (PCR) results. Compared with the PCR assay, our approach requires no complex sample pretreatments or expensive instruments. This is the first report on RABV diagnosis using nanomaterials for colorimetry-based prescreening and fluorescence-based quantitative detection, which may pave the way for virus-related disease diagnosis and clinical analysis.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Meishen Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohamed F Foda
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, 13736, Egypt.,State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Khan MS, Ameer H, Ali A, Manzoor R, Yang L, Feng R, Jiang N, Wei Q. Electrochemiluminescence behaviour of silver/silver orthophosphate/graphene oxide quenched by Pd@Au core-shell nanoflowers for ultrasensitive detection of insulin. Biosens Bioelectron 2020; 147:111767. [DOI: 10.1016/j.bios.2019.111767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022]
|
16
|
Wang C, Qian J, An K, Lu X, Huang X. A semiconductor quantum dot-based ratiometric electrochemical aptasensor for the selective and reliable determination of aflatoxin B1. Analyst 2019; 144:4772-4780. [PMID: 31268094 DOI: 10.1039/c9an00825j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, a ratiometric electrochemical method has been investigated due to its ability to effectively reduce the background electrical signals via the introduction of an internal calibration mechanism, which has great practical significance in the detection of mycotoxins in foods. Herein, we report a ratiometric electrochemical aptasensor based on two semiconductor quantum dots (i.e. CdTe and PbS QDs) for the detection of aflatoxin B1 (AFB1). The aptasensor was fabricated by immobilizing PbS QD-coated silica hybrid spheres (SiO2@PbS) onto CdTe QD-modified Fe3O4@SiO2 (Fe3O4@SiO2/CdTe) surface through biorecognition between the aptamer and complementary DNAs, where PbS QDs acted as external signal labels and CdTe QDs acted as internal reference labels. In the presence of AFB1, the aptamer connected to SiO2@PbS preferred to form an aptamer/AFB1 complex, which brought about the separation of SiO2@PbS linked with the CdTe QDs; with the addition of more AFB1 to the solution, the amount of SiO2@PbS present on the Fe3O4@SiO2/CdTe surface reduced. After several steps of endonuclease cleavage, magnetic separation, and dissolution with acid, the square wave voltammetry signals of Pb2+ and Cd2+ maintained an inverse relationship with the target content based on the SWV stripping measurements; the proposed method had the wide linear range of 5 pg mL-1-50 ng mL-1 and the determination limit of 4.5 pg mL-1 (S/N = 3) and was applied for the detection of AFB1 in peanuts. The proposed aptasensor has an important practical significance for the development of food safety.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | | | | | | | | |
Collapse
|
17
|
Jian X, Li Y, Zhao C, Chang Y, Gao Z, Song YY. Introducing graphitic carbon nitride nanosheets as supersandwich-type assembly on porous electrode for ultrasensitive electrochemiluminescence immunosensing. Anal Chim Acta 2019; 1097:62-70. [PMID: 31910970 DOI: 10.1016/j.aca.2019.10.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/19/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Abstract
Biomarkers in blood or tissue provide essential information for clinical screening and early disease diagnosis. However, increasing the sensitivity of detecting biomarkers remains a major challenge in a wide variety of electrochemical immunoassays. Herein, we present an electrochemiluminescence (ECL) immunosensing strategy with 1: Nn amplification ratio (target-to-signal probe) for biomarkers detection on a porous gold electrode. The high porosity of the electrode surface provides enough bonding sites for capturing the target biomolecules and thus many DNA labels can be introduced. On the basis of this concept, a great number of graphitic carbon nitride (g-C3N4) nanosheets are employed to create a supersandwich-type assembly on a porous electrode via the DNA hybridization process. Furthermore, compared with the traditional sandwich immunoassay (the ratio of target-to-signal probe is 1 : 1), the supersandwich construction can introduce a large number of signal probes, thus resulting in a highly improved sensitivity. The proposed ECL immunosensor exhibits an excellent performance in a concentration range from 0.01 fg mL-1 to 1 μg mL-1 with an ultralow detection limit of 0.001 fg mL-1 (S/N = 3) and excellent selectivity. This sensing strategy could be developed into a real-time assay for the disease-related molecular targets, with many practical applications in biotechnology and life science.
Collapse
Affiliation(s)
- Xiaoxia Jian
- College of Science, Northeastern University, Shenyang, 110004, China
| | - Yahang Li
- College of Science, Northeastern University, Shenyang, 110004, China
| | - Chenxi Zhao
- College of Science, Northeastern University, Shenyang, 110004, China
| | - Yaya Chang
- College of Science, Northeastern University, Shenyang, 110004, China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang, 110004, China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang, 110004, China.
| |
Collapse
|
18
|
Label-free electrochemiluminescent immunosensor for prostate specific antigen ultrasensitive detection based on novel luminophore Ag3PO4 decorated GO. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
CdS nanocrystals/graphene oxide-AuNPs based electrochemiluminescence immunosensor in sensitive quantification of a cancer biomarker: p53. Biosens Bioelectron 2019; 126:7-14. [DOI: 10.1016/j.bios.2018.10.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
|
20
|
Simultaneous detection of three biomarkers related to acute myocardial infarction based on immunosensing biochip. Biosens Bioelectron 2018; 126:767-772. [PMID: 30554098 DOI: 10.1016/j.bios.2018.11.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/03/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
An immunosensing biochip for simultaneous detection of three biomarkers related to acute myocardial infarction (AMI) was developed based on anionic soybean peroxidase (SBP) functionalized nanoprobe and chemiluminescent imaging. The nanoprobes (Ab2-SiO2-SBP) were fabricated by co-immobilization of SBP and one of the detection polyclonal antibodies, anti-cardiac troponin I antigen (anti-cTnI), anti-creatine kinase-MB (anti-CK-MB) and anti-myoglobin (anti-Myo), on the silica nanoparticle surface. The detection sensitivity was enhanced since the large surface area of silica carriers increased the loading of SBP for per sandwiched immunoreaction. The immunosensing biochip designed as 3 × 8 wells array was constructed by simultaneously immobilizing three capture monoclonal antibodies on the same one microtiter well with 2 × 3 active spots. In the presence of target protein, the nanoprobes will be attached onto the spots with high specificity through the sandwiched immunoreactions, which triggered the chemiluminescence (CL) signals on each sensing site of the microtiter plates and allowed to CL imaging of three biomarkers in one well at the same time. Therefore, the proposed biochip was a promising convenient strategy for simultaneous detection of cTnI, CK-MB and Myo, which showed potential application for multianalyte determination in clinical diagnostics.
Collapse
|
21
|
Lu X, Wang C, Qian J, Ren C, An K, Wang K. Target-driven switch-on fluorescence aptasensor for trace aflatoxin B1 determination based on highly fluorescent ternary CdZnTe quantum dots. Anal Chim Acta 2018; 1047:163-171. [PMID: 30567646 DOI: 10.1016/j.aca.2018.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
Abstract
Development of sensitive methods for trace aflatoxin B1 (AFB1) determination is of great significance due to its high toxicity and carcinogenicity. Herein, 3-mercaptopropionic acid (MPA)-capped ternary CdZnTe quantum dots (QDs) have been prepared via a simple hydrothermal route. We found that they exhibited enhanced intensity when benchmarked against their binary counterpart CdTe QDs. On this basis, a target-driven switch-on fluorescence aptasensor for trace AFB1 determination has been developed by employing the fluorescence resonance energy transfer (FRET) between the CdZnTe QDs and Au nanoparticles (AuNPs) pair. In the detection diagram, amino group-functionalized aptamers against AFB1 were firstly labelled with the CdZnTe QDs donors coated on silica nanospheres while the AuNPs acceptors were bioconjugated with the thiol group-modified complementary DNA (cDNA) of aptamer. By taking advantage of the DNA hybridization of aptamer and cDNA, the CdZnTe QDs (energy donor) and AuNPs (energy acceptor) were brought into close proximity, thereby leading to the occurrence of FRET during the aptasensor fabrication. When the aptasensor was incubated with AFB1, the specific binding between aptamer and target resulted in the detachment of AuNPs acceptors. This behavior would disturb the FRET process and led to the subsequent fluorescence recovery of CdZnTe QDs. Such designed aptasensor showed an increased fluorescence recovery upon the increasing concentration of AFB1 over a broad range of 50 pg mL-1 - 100 ng mL-1 and succeeded in spiked peanut samples. The proposed aptasensor is separation-free and easy-to-use, which might open up new possibilities in aptasensor fabrication by employing the novel CdZnTe QDs-AuNPs pair.
Collapse
Affiliation(s)
- Xiaoting Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chengquan Wang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Chanchan Ren
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Keqi An
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
22
|
Cai XP, Zhang B, Chen XB, Ding HY, Gu BR, Xie HP. Polyelectrolyte-protected Dual-color-quantum-dot Assembled Silica Nanoparticles and Their Application in Simultaneous Fluorescence Determination of e Antigen and Surface Antigen of Hepatitis B. ANAL SCI 2018. [PMID: 29526895 DOI: 10.2116/analsci.34.291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cationic poly-diallyldimethylammonium (PDADMAC), green CdTe quantum dots (QDs) or red CdS coated CdTe QDs, and anionic polyacrylic acid (PAA) were respectively assembled on the nano-carrier SiO2 to prepare green fluorescence composite nanoparticles (GF-QDs) and red ones (RF-QDs) with the structure SiO2/PDADMAC/QD/PDADMAC/PAA. The sandwich structure "PDADMAC/QD/PDADMAC" on the nano-carrier not only realized the protection to fluorescence of QDs but also avoided the fluorescence shielding of silica shell for the assembled QDs. In 7 days, the diluent solutions of GF-QD and RF-QD all have a very stable fluorescence. On the contrary, the fluorescence of diluent solutions of red and green QDs reduced by 75.99 and 94.35%, respectively. Indeed, they have not fluorescent shielding and have a very slight fluorescent enhancement. Based on GF-QD and RF-QD, the simultaneous determination of Hepatitis B e antigen and surface antigen has been established. Their determination in buffer and plasma all showed good precision and accuracy.
Collapse
Affiliation(s)
- Xue-Ping Cai
- College of Pharmaceutical Sciences, Soochow University
| | - Bin Zhang
- College of Pharmaceutical Sciences, Soochow University.,Suzhou Institute for Drug Control
| | - Xiao-Bo Chen
- College of Pharmaceutical Sciences, Soochow University
| | - Hai-Yang Ding
- College of Pharmaceutical Sciences, Soochow University
| | | | - Hong-Ping Xie
- College of Pharmaceutical Sciences, Soochow University
| |
Collapse
|
23
|
Qian J, Ren C, Wang C, Chen W, Lu X, Li H, Liu Q, Hao N, Li H, Wang K. Magnetically controlled fluorescence aptasensor for simultaneous determination of ochratoxin A and aflatoxin B1. Anal Chim Acta 2018; 1019:119-127. [PMID: 29625677 DOI: 10.1016/j.aca.2018.02.063] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 01/07/2023]
Abstract
Development of an efficient method for the simultaneous detection of two highly concerning mycotoxins, ochratoxin A (OTA) and aflatoxin B1 (AFB1), is of great significance on food safety monitoring. Herein, a magnetically controlled fluorescence aptasensor for simultaneous determination of OTA and AFB1 has been successfully developed. The working principle of the aptasensor is based on the specific aptamer-mycotoxin recognition and further leads to the partial release of two distinguishable fluorescence labels from the magnetic carriers. Through the magnetic separation, the reporter probes in the supernatant solution can be collected and converted into a sensitive fluorescence signal with dual emission peaks. This aptasensor provided a wide detection range of 2 pg mL-1 - 5 ng mL-1 for OTA and 5 pg mL-1 - 10 ng mL-1 for AFB1. The new easy-to-wash and simple-to-use approach offers a simultaneous and high selective detection with high sensitivity (limits of detection of 0.67 and 1.70 pg mL-1 for OTA and AFB1, respectively). Remarkable accuracy (relative standard deviation < 5.6%) during the mycotoxins determination as well as excellent quantitative recoveries (95-108%) during the analysis of the spiked corn samples were also achieved. This simple aptasensing scheme provides a new avenue for high throughput screen of dual mycotoxins due to its simple manipulation, short assay times, high selectivity and sensitivity.
Collapse
Affiliation(s)
- Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Chanchan Ren
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoting Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Henan Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
24
|
Ultrasensitive electrochemiluminescence immunoassay for simultaneous determination of CA125 and CA15-3 tumor markers based on PAMAM-sulfanilic acid-Ru(bpy)32+ and PAMAM-CdTe@CdS nanocomposite. Biosens Bioelectron 2018; 99:353-360. [DOI: 10.1016/j.bios.2017.07.062] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022]
|
25
|
Hu Z, Tan J, Lai Z, Zheng R, Zhong J, Wang Y, Li X, Yang N, Li J, Yang W, Huang Y, Zhao Y, Lu X. Aptamer Combined with Fluorescent Silica Nanoparticles for Detection of Hepatoma Cells. NANOSCALE RESEARCH LETTERS 2017; 12:96. [PMID: 28176286 PMCID: PMC5296265 DOI: 10.1186/s11671-017-1890-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/12/2017] [Indexed: 05/23/2023]
Abstract
PURPOSE The purpose of this study is to develop a simple, effective method to label hepatoma cells with aptamers and then detect them using fluorescent silica nanoparticles (FSNPs). METHOD Streptavidin was conjugated to carboxyl-modified fluorescein isothiocyanate (FITC)-doped silica nanoparticles which were prepared by the reverse microemulsion method. The resulting streptavidin-conjugated fluorescent silica nanoparticles (SA-FSNPs) were mixed with hepatoma cells that had been labeled with biotin-conjugated aptamer TLS11a (Bio-TLS11a). The specificity and sensitivity of the nanoprobes were assessed using flow cytometry and fluorescence microscopy. Their toxicity was assessed in normal human liver cell cultures using the MTT assay, as well as in nude mice using immunohistochemistry. RESULTS SA-FSNPs showed uniform size and shape, and fluorescence properties of them was similar to the free FITC dye. SA-FSNPs were able to detect aptamer-labeled hepatoma cells with excellent specificity and good sensitivity, and they emitted strong, photobleach-resistant fluorescent signal. SA-FSNPs showed no significant toxic effects in vitro or in vivo. CONCLUSION The combination of biotin-conjugated aptamers and SA-FSNPs shows promise for sensitive detection of hepatoma cells, and potentially of other tumor cell types as well.
Collapse
Affiliation(s)
- Zixi Hu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Juntao Tan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zongqiang Lai
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Rong Zheng
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Jianhong Zhong
- Surgery Oncology Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yiwei Wang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoxue Li
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Jieping Li
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Yong Huang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China.
| | - Xiaoling Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China.
- The Department of Immunology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
26
|
Feng L, Wu L, Xing F, Hu L, Ren J, Qu X. Novel electrochemiluminescence of silver nanoclusters fabricated on triplex DNA scaffolds for label-free detection of biothiols. Biosens Bioelectron 2017; 98:378-385. [DOI: 10.1016/j.bios.2017.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/21/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
|
27
|
Li D, Cui Y, Morisseau C, Gee SJ, Bever CS, Liu X, Wu J, Hammock BD, Ying Y. Nanobody Based Immunoassay for Human Soluble Epoxide Hydrolase Detection Using Polymeric Horseradish Peroxidase (PolyHRP) for Signal Enhancement: The Rediscovery of PolyHRP? Anal Chem 2017; 89:6248-6256. [PMID: 28460522 PMCID: PMC5611449 DOI: 10.1021/acs.analchem.7b01247] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertension, vascular inflammation, cancer, pain, and multiple cardiovascular related diseases. A variable domain of the heavy chain antibody (termed single domain antibody (sdAb), nanobody, or VHH) possesses the advantages of small size, high stability, ease of genetic manipulation, and ability for continuous manufacture, making such nanobody a superior choice as an immunoreagent. In this work, we developed an ultrasensitive nanobody based immunoassay for human sEH detection using polymeric horseradish peroxidase (PolyHRP) for signal enhancement. Llama nanobodies against human sEH were used as the detection antibody in sandwich enzyme linked immunosorbent assays (ELISA) with polyclonal anti-sEH as the capture antibody. A conventional sandwich ELISA using a horseradish peroxidase (HRP) labeled anti-hemeagglutinin (HA) tag as the tracer showed a marginal sensitivity (0.0015 optical density (OD)·mL/ng) and limit of detection (LOD) of 3.02 ng/mL. However, the introduction of the PolyHRP as the tracer demonstrated a 141-fold increase in the sensitivity (0.21 OD·mL/ng) and 57-fold decrease in LOD (0.05 ng/mL). Systematic comparison of three different tracers in four ELISA formats demonstrated the overwhelming advantage of PolyHRP as a label for nanobody based immunoassay. This enhanced sEH immunoassay was further evaluated in terms of selectivity against other epoxide hydrolases and detection of the target protein in human tissue homogenate samples. Comparison with an enzyme activity based assay and a Western blot for sEH detection reveals good correlation with the immunoassay. This work demonstrates increased competiveness of nanobodies for practical sEH protein detection utilizing PolyHRP. It is worthwhile to rediscover the promising potential of PolyHRP in nanobody and other affinity based methods after its low-profile existence for decades.
Collapse
Affiliation(s)
- Dongyang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Yongliang Cui
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
- Faculty of Agricultural and Food Science, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Shirley J. Gee
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Candace S. Bever
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Faculty of Agricultural and Food Science, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
28
|
Ye W, Guo J, Bao X, Chen T, Weng W, Chen S, Yang M. Rapid and Sensitive Detection of Bacteria Response to Antibiotics Using Nanoporous Membrane and Graphene Quantum Dot (GQDs)-Based Electrochemical Biosensors. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E603. [PMID: 28772965 PMCID: PMC5553420 DOI: 10.3390/ma10060603] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 11/16/2022]
Abstract
The wide abuse of antibiotics has accelerated bacterial multiresistance, which means there is a need to develop tools for rapid detection and characterization of bacterial response to antibiotics in the management of infections. In the study, an electrochemical biosensor based on nanoporous alumina membrane and graphene quantum dots (GQDs) was developed for bacterial response to antibiotics detection. Anti-Salmonella antibody was conjugated with amino-modified GQDs by glutaraldehyde and immobilized on silanized nanoporous alumina membranes for Salmonella bacteria capture. The impedance signals across nanoporous membranes could monitor the capture of bacteria on nanoporous membranes as well as bacterial response to antibiotics. This nanoporous membrane and GQD-based electrochemical biosensor achieved rapid detection of bacterial response to antibiotics within 30 min, and the detection limit could reach the pM level. It was capable of investigating the response of bacteria exposed to antibiotics much more rapidly and conveniently than traditional tools. The capability of studying the dynamic effects of antibiotics on bacteria has potential applications in the field of monitoring disease therapy, detecting comprehensive food safety hazards and even life in hostile environment.
Collapse
Affiliation(s)
- Weiwei Ye
- Institute of Ocean Research, Zhejiang University of Technology, Hangzhou 310014, China.
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 00852, China.
| | - Jiubiao Guo
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518063, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 00852, China.
| | - Xianfeng Bao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Tian Chen
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wenchuan Weng
- Guangdong Entry-Exit Inspection and Quarantine Bureau, Guangzhou 510623, China.
| | - Sheng Chen
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518063, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 00852, China.
| | - Mo Yang
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 00852, China.
| |
Collapse
|
29
|
Zeng K, Tian S, Wang Z, Shen C, Luo J, Yang M, Liu YN. An ELISA for the determination of human IgG based on the formation of a colored iron(II) complex and photometric or visual read-out. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2304-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Pan M, Gu Y, Yun Y, Li M, Jin X, Wang S. Nanomaterials for Electrochemical Immunosensing. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1041. [PMID: 28475158 PMCID: PMC5469646 DOI: 10.3390/s17051041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/10/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023]
Abstract
Electrochemical immunosensors resulting from a combination of the traditional immunoassay approach with modern biosensors and electrochemical analysis constitute a current research hotspot. They exhibit both the high selectivity characteristics of immunoassays and the high sensitivity of electrochemical analysis, along with other merits such as small volume, convenience, low cost, simple preparation, and real-time on-line detection, and have been widely used in the fields of environmental monitoring, medical clinical trials and food analysis. Notably, the rapid development of nanotechnology and the wide application of nanomaterials have provided new opportunities for the development of high-performance electrochemical immunosensors. Various nanomaterials with different properties can effectively solve issues such as the immobilization of biological recognition molecules, enrichment and concentration of trace analytes, and signal detection and amplification to further enhance the stability and sensitivity of the electrochemical immunoassay procedure. This review introduces the working principles and development of electrochemical immunosensors based on different signals, along with new achievements and progress related to electrochemical immunosensors in various fields. The importance of various types of nanomaterials for improving the performance of electrochemical immunosensor is also reviewed to provide a theoretical basis and guidance for the further development and application of nanomaterials in electrochemical immunosensors.
Collapse
Affiliation(s)
- Mingfei Pan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Ying Gu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Yaguang Yun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Min Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Xincui Jin
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technolo, Tianjin 300457, China.
| |
Collapse
|
31
|
Ye H, Yang K, Tao J, Liu Y, Zhang Q, Habibi S, Nie Z, Xia X. An Enzyme-Free Signal Amplification Technique for Ultrasensitive Colorimetric Assay of Disease Biomarkers. ACS NANO 2017; 11:2052-2059. [PMID: 28135070 DOI: 10.1021/acsnano.6b08232] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Enzyme-based colorimetric assays have been widely used in research laboratories and clinical diagnosis for decades. Nevertheless, as constrained by the performance of enzymes, their detection sensitivity has not been substantially improved in recent years, which inhibits many critical applications such as early detection of cancers. In this work, we demonstrate an enzyme-free signal amplification technique, based on gold vesicles encapsulated with Pd-Ir nanoparticles as peroxidase mimics, for colorimetric assay of disease biomarkers with significantly enhanced sensitivity. This technique overcomes the intrinsic limitations of enzymes, thanks to the superior catalytic efficiency of peroxidase mimics and the efficient loading and release of these mimics. Using human prostate surface antigen as a model biomarker, we demonstrated that the enzyme-free assay could reach a limit of detection at the femtogram/mL level, which is over 103-fold lower than that of conventional enzyme-based assay when the same antibodies and similar procedure were used.
Collapse
Affiliation(s)
- Haihang Ye
- Department of Chemistry, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Kuikun Yang
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20892, United States
| | - Jing Tao
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Yijing Liu
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20892, United States
| | - Qian Zhang
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20892, United States
| | - Sanaz Habibi
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory , Upton, New York 11973, United States
- Department of Chemical Engineering, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Zhihong Nie
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20892, United States
| | - Xiaohu Xia
- Department of Chemistry, Michigan Technological University , Houghton, Michigan 49931, United States
| |
Collapse
|
32
|
Pedrero M, Campuzano S, Pingarrón JM. Electrochemical (Bio)sensing of Clinical Markers Using Quantum Dots. ELECTROANAL 2016. [DOI: 10.1002/elan.201600547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- María Pedrero
- Departamento de Química Analítica.; Facultad de Ciencias Químicas.; Universidad Complutense de Madrid. E-; 28040 Madrid Spain
| | - Susana Campuzano
- Departamento de Química Analítica.; Facultad de Ciencias Químicas.; Universidad Complutense de Madrid. E-; 28040 Madrid Spain
| | - José M. Pingarrón
- Departamento de Química Analítica.; Facultad de Ciencias Químicas.; Universidad Complutense de Madrid. E-; 28040 Madrid Spain
| |
Collapse
|
33
|
Magneto-controlled aptasensor for simultaneous electrochemical detection of dual mycotoxins in maize using metal sulfide quantum dots coated silica as labels. Biosens Bioelectron 2016; 89:802-809. [PMID: 27816583 DOI: 10.1016/j.bios.2016.10.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/19/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022]
Abstract
Currently there is an urgent need for multi-mycotoxin detection methods due to the co-occurrence of multiple mycotoxins in food raw materials and their augmented toxicity. Herein, a magneto-controlled aptasensor has been developed for simultaneous electrochemical detection of ochratoxin A (OTA) and fumonisin B1 (FB1), two typical mycotoxins found in food crops world-wide. This aptasensor was designed using the high specificity between the target and aptamer with heavy CdTe or PbS quantum dots (QDs) coated silica as labels and the complementary DNA functionalized magnetic beads as capture probes. In presence of targets, the aptamer preferred to form the target-aptamer binding which forced the partial release of the preloaded labels from the magnetic beads. After a one-step incubation and a simple magnetic separation, the electrochemical signals of Cd2+ and Pb2+ dissolved from the reserved labels which had negative correlation with targets contents, was measured based on the difference of peak potentials. This aptasensor provided a wide detection range of 10pgmL-1 to 10ngmL-1 for OTA and 50pgmL-1 to 50ngmL-1 for FB1, and succeeded in real maize samples. This method provides a new avenue for high throughput screen of mycotoxins due to the advantages of simple instrument, low sample consumption, short assay times, and lower detection costs per assay. Moreover, it could be readily expanded for the simultaneous detection of a large panel of mycotoxins by using different metal sulfide QDs when their specific aptamers are available.
Collapse
|
34
|
Li Y, Sun L, Liu Q, Han E, Hao N, Zhang L, Wang S, Cai J, Wang K. Photoelectrochemical CaMV35S biosensor for discriminating transgenic from non-transgenic soybean based on SiO 2@CdTe quantum dots core-shell nanoparticles as signal indicators. Talanta 2016; 161:211-218. [PMID: 27769398 DOI: 10.1016/j.talanta.2016.08.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/05/2016] [Accepted: 08/16/2016] [Indexed: 01/18/2023]
Abstract
A methodology for detection of the Cauliflower Mosaic Virus 35S(CaMV35S) promoter was developed to distinguish transgenic from non-transgenic soybean samples by using photoelectrochemical (PEC) biosensor. In this PEC biosensing system, the as-prepared gold nanoparticles-reduced graphene oxide acted as a nanocarrier to immobilize the thiol-functional probe (probe1), and the SiO2@CdTe quantum dots (QDs) core-shell nanoparticles tagged with the amino-functional probe (probe2) acted as signal indicators, respectively. In the presence of target DNA (tDNA) of CaMV35S, the binding of tDNA with probe1 and probe2 through the high specific DNA hybridization led to the fabrication of sandwich structure, and thus the high loading of the signal indicators SiO2@CdTe QDs at the electrode surface, which increased the PEC signal. The increased PEC signal depended on the concentration of tDNA, and a wide linear range from 0.1pM to 0.5nM with low detection limit of 0.05pM was obtained. In addition, the PEC biosensor has been successfully used for discriminating transgenic soybean from non-transgenic samples, which was consistent with the polymerase chain reaction (PCR) results, suggesting the proposed PEC biosensor is a feasible tool for the further daily genetically modified organism detection.
Collapse
Affiliation(s)
- Yaqi Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Li Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Liuping Zhang
- Sinograin Zhenjiang Grains & Oils Quality Testing Center Co. Ltd., Zhenjiang, 212000 PR China
| | - Shanshan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 PR China.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 PR China.
| |
Collapse
|
35
|
Cheng H, Xu L, Zhang H, Yu A, Lai G. Enzymatically catalytic signal tracing by a glucose oxidase and ferrocene dually functionalized nanoporous gold nanoprobe for ultrasensitive electrochemical measurement of a tumor biomarker. Analyst 2016; 141:4381-7. [PMID: 27186605 DOI: 10.1039/c6an00651e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A nanoporous gold nanosphere (pAu NS) was synthesized to load high-content glucose oxidase (GOx) and ferrocene (Fc) for the successful preparation of a new gold nanoprobe. After the specific recognition of the tumor biomarker of carcinoembryonic antigen (CEA) at a gold electrode based aptasensor, this GOx and Fc dually functionalized pAu NS nanoprobe was further used for sandwich immunoreaction and signal tracing. Based on the Fc-mediated GOx-catalytic reaction, the gold nanoprobes quantitatively captured onto the electrode surface produced a sensitive electrochemical signal corresponding to the protein recognition events, which led to the development of a new biosensing method for CEA measurement. Both the high loading of GOx and Fc on the pAu NS nanocarrier and the enzymatically catalytic reaction of the nanoprobe greatly amplify the electrochemical signal; meanwhile, the immobilization of the Fc mediator on this enzyme nanoprobe and the highly specific aptamer recognition drastically decrease the background current, resulting in the achievement of ultrahigh sensitivity of the method. Under optimum conditions, this method shows an excellent analytical performance including a wide linear relationship of five-order of magnitude and a low detection limit down to 0.45 pg mL(-1). Thus this pAu NS based gold nanoprobe and the proposed immunoassay method provide great potential for practical applications.
Collapse
Affiliation(s)
- Hui Cheng
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| | | | | | | | | |
Collapse
|
36
|
Yu S, Zou G, Wei Q. Ultrasensitive electrochemical immunosensor for quantitative detection of tumor specific growth factor by using Ag@CeO2 nanocomposite as labels. Talanta 2016; 156-157:11-17. [PMID: 27260429 DOI: 10.1016/j.talanta.2016.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/14/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
In this paper, an ultrasensitive electrochemical immunosensor was developed for the detection of tumor specific growth factor (TSGF). Reduced graphene oxide-tetraethylene pentamine (rGO-TEPA) was used to modify the surface of glassy carbon electrode (GCE). Meanwhile, Ag@CeO2 nanocomposite was synthesized and applied as secondary-antibody (Ab2) labels for the fabrication of the immunosensor. The amperometric response of the immunosensor for the reduction of H2O2 was recorded. Simultaneously, electrochemical impedance spectroscopy (EIS) and Cyclic voltammetry (CV) were used to characterize the fabrication process of the immunosensor. The anti-TSGF primary antibody (Ab1) was immobilized onto the rGO-TEPA modified GCE via cross-linking with glutaraldehyde (GA). And then the TSGF antigen and Ab2-Ag@CeO2 were modified onto the electrode surface in sequence. Under the optimal conditions, the immunosensor exhibited a wide linear range (0.500-100pg/mL), a low detection limit (0.2pg/mL), good reproducibility, acceptable selectivity and excellent stability. The proposed sensing strategy may provide a potential application in the detection of other cancer biomarkers.
Collapse
Affiliation(s)
- Siqi Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Qin Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
37
|
Zhao J, Guo Z, Guo J, Wang J, Zhang Y. Electrochemical detection of two tumor markers based on functionalized polypyrrole microspheres as immunoprobes. RSC Adv 2016. [DOI: 10.1039/c6ra01773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(A) represents the preparation of the labels and (B) represents the immunosensor preparation and detection principle.
Collapse
Affiliation(s)
- Junqing Zhao
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials and Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
| | - Zilin Guo
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials and Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
| | - Jinjin Guo
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials and Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
| | - Junchun Wang
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials and Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
| | - Yuzhong Zhang
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials and Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
| |
Collapse
|
38
|
Zhao Y, Zheng Y, Kong R, Xia L, Qu F. Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron 2016; 75:383-8. [DOI: 10.1016/j.bios.2015.08.065] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/17/2015] [Accepted: 08/28/2015] [Indexed: 01/05/2023]
|
39
|
Wang H, Zhang Y, Chu Y, Ma H, Li Y, Wu D, Du B, Wei Q. Disposable competitive-type immunoassay for determination of aflatoxin B1 via detection of copper ions released from Cu-apatite. Talanta 2016; 147:556-60. [DOI: 10.1016/j.talanta.2015.10.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023]
|
40
|
Zhao Y, Wang Q, Li J, Ma H, Zhang Y, Wu D, Du B, Wei Q. A CeO2-matrical enhancing ECL sensing platform based on the Bi2S3-labeled inverted quenching mechanism for PSA detection. J Mater Chem B 2016; 4:2963-2971. [DOI: 10.1039/c6tb00120c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Wang C, Qian J, Wang K, Hua M, Liu Q, Hao N, You T, Huang X. Nitrogen-Doped Graphene Quantum Dots@SiO2 Nanoparticles as Electrochemiluminescence and Fluorescence Signal Indicators for Magnetically Controlled Aptasensor with Dual Detection Channels. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26865-26873. [PMID: 26524349 DOI: 10.1021/acsami.5b09300] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We proposed a facile method to prepare the nitrogen-doped graphene quantum dots (NGQDs) doped silica (NGQDs@SiO2) nanoparticles (NPs). The NGQDs@SiO2 NPs were further explored as a versatile signal indicator for ochratoxin A (OTA) aptasensing by combination with electrochemiluminescence (ECL) and fluorescence (FL) detection. In this strategy, the core-shell Fe3O4@Au magnetic beads (MBs) acted as a nanocarrier to immobilize the thiolated aptamer specific for OTA, and the amino modified capture DNA (cDNA) was efficiently tagged with NGQDs@SiO2 NPs. The multifunctional aptasensor was thus fabricated by assembly of the NGQDs@SiO2 NPs onto the surface of Fe3O4@Au MBs through the high specific DNA hybridization between aptamer and cDNA. Upon OTA incubation, the aptamer linked with Fe3O4@Au MBs preferred to form an aptamer-OTA complex, which resulted in the partial release of the preloaded NGQDs@SiO2 NPs. The more OTA molecules in the detection system, the more NGQDs@SiO2 NPs were released into the bulk solution and the less preloaded NGQDs@SiO2 NPs were accumulated on the magnetic electrode surface. This provided a dual channel for OTA detection by combination with the enriched solid-state ECL and homogeneous FL detection. The FL assay exhibits a wide dynamic range and is more reproducible due to the homogeneous detection while the ECL assay possesses a lower detection limit and is preferable by using a cheaper instrument. One can obtain a preliminary screen from FL assay and a more accurate result from ECL assay. Integrating the virtues of dual analytical modality, this aptasensing strategy well-balanced the rapidity, sensitivity, and dynamic range, making it promising to other targets with aptamer sequences.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering and ‡Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, People's Republic of China
| | - Jing Qian
- School of Food and Biological Engineering and ‡Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, People's Republic of China
| | - Kun Wang
- School of Food and Biological Engineering and ‡Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, People's Republic of China
| | - Mengjuan Hua
- School of Food and Biological Engineering and ‡Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, People's Republic of China
| | - Qian Liu
- School of Food and Biological Engineering and ‡Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, People's Republic of China
| | - Nan Hao
- School of Food and Biological Engineering and ‡Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, People's Republic of China
| | - Tianyan You
- School of Food and Biological Engineering and ‡Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, People's Republic of China
| | - Xingyi Huang
- School of Food and Biological Engineering and ‡Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, People's Republic of China
| |
Collapse
|
42
|
Shore A, Mazzochette Z, Mugweru A. Mixed valence Mn,La,Sr-oxide based magnetic nanoparticles coated with silica nanoparticles for use in an electrochemical immunosensor for IgG. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1672-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Wang H, Li G, Zhang Y, Zhu M, Ma H, Du B, Wei Q, Wan Y. Nanobody-Based Electrochemical Immunoassay for Ultrasensitive Determination of Apolipoprotein-A1 Using Silver Nanoparticles Loaded Nanohydroxyapatite as Label. Anal Chem 2015; 87:11209-14. [DOI: 10.1021/acs.analchem.5b04063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Huan Wang
- Key Laboratory of Chemical Sensing and
Analysis in Universities of Shandong, School of Chemistry and Chemical
Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Guanghui Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
| | - Yihe Zhang
- Key Laboratory of Chemical Sensing and
Analysis in Universities of Shandong, School of Chemistry and Chemical
Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Min Zhu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing and
Analysis in Universities of Shandong, School of Chemistry and Chemical
Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Bin Du
- Key Laboratory of Chemical Sensing and
Analysis in Universities of Shandong, School of Chemistry and Chemical
Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Qin Wei
- Key Laboratory of Chemical Sensing and
Analysis in Universities of Shandong, School of Chemistry and Chemical
Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Yakun Wan
- Key Laboratory of Chemical Sensing and
Analysis in Universities of Shandong, School of Chemistry and Chemical
Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
| |
Collapse
|
44
|
Sun Z, Wang W, Wen H, Gan C, Lei H, Liu Y. Sensitive electrochemical immunoassay for chlorpyrifos by using flake-like Fe3O4 modified carbon nanotubes as the enhanced multienzyme label. Anal Chim Acta 2015; 899:91-9. [DOI: 10.1016/j.aca.2015.09.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 02/01/2023]
|
45
|
Pang X, Li J, Zhao Y, Wu D, Zhang Y, Du B, Ma H, Wei Q. Label-Free Electrochemiluminescent Immunosensor for Detection of Carcinoembryonic Antigen Based on Nanocomposites of GO/MWCNTs-COOH/Au@CeO₂. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19260-19267. [PMID: 26271682 DOI: 10.1021/acsami.5b05185] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A high-sensitivity electrochemiluminescence (ECL) sensor was conducted to detect carcinoembryonic antigen (CEA). Nanocomposites of graphene oxide/carboxylated multiwall carbon nanotubes/gold/cerium oxide nanoparticles (GO/MWCNTs-COOH/Au@CeO2) were used as antibody carriers and sensing platforms to modify on glassy carbon electrodes (GCE). CeO2 nanoparticles were first exploited as an ECL luminescent material and the possible ECL mechanism was proposed in this work. GO/MWCNTs-COOH was used as a loading matrix for CeO2 nanoparticles because of the superior conductivity and large specific surface area. Au nanoparticles were further deposited on this matrix to attach anti-CEA and enhance the sensitivity of immunosensor. The proposed sensing platform showed excellent cathodic ECL performance and sensitive response to CEA. The effects of experimental conditions on the ECL performance were investigated. The proposed immunosensor showed the broad linear range (0.05-100 ng/mL) and the low detection limit (LOD, 0.02 ng/mL, signal-to-noise ratio = 3) according to the selected experimental conditions. The excellent analysis performance for determination of CEA in the human serum samples simplied this immunosensor displayed high sensitivity and excellent repeatability. More importantly, this conducted immunosensor broadens the use scope of CeO2 nanoparticles.
Collapse
Affiliation(s)
- Xuehui Pang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P.R. China
| | - Jianxiu Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P.R. China
| | - Yongbei Zhao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P.R. China
| | - Dan Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P.R. China
| | - Yong Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P.R. China
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P.R. China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P.R. China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, P.R. China
| |
Collapse
|
46
|
Electrochemiluminescence device for in-situ and accurate determination of CA153 at the MCF-7 cell surface based on graphene quantum dots loaded surface villous Au nanocage. Biosens Bioelectron 2015; 71:286-293. [DOI: 10.1016/j.bios.2015.04.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 11/24/2022]
|
47
|
Chen Y, Xiang Y, Yuan R, Chai Y. Intercalation of quantum dots as the new signal acquisition and amplification platform for sensitive electrochemiluminescent detection of microRNA. Anal Chim Acta 2015; 891:130-5. [DOI: 10.1016/j.aca.2015.07.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 11/17/2022]
|
48
|
Yakoh A, Pinyorospathum C, Siangproh W, Chailapakul O. Biomedical Probes Based on Inorganic Nanoparticles for Electrochemical and Optical Spectroscopy Applications. SENSORS 2015; 15:21427-77. [PMID: 26343676 PMCID: PMC4610547 DOI: 10.3390/s150921427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/20/2023]
Abstract
Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities.
Collapse
Affiliation(s)
- Abdulhadee Yakoh
- Electrochemistry and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Chanika Pinyorospathum
- Electrochemistry and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
49
|
Enhanced immunoassay for porcine circovirus type 2 antibody using enzyme-loaded and quantum dots-embedded shell–core silica nanospheres based on enzyme-linked immunosorbent assay. Anal Chim Acta 2015; 887:192-200. [DOI: 10.1016/j.aca.2015.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/21/2015] [Accepted: 06/11/2015] [Indexed: 11/21/2022]
|
50
|
Duangkaew P, Tapaneeyakorn S, Apiwat C, Dharakul T, Laiwejpithaya S, Kanatharana P, Laocharoensuk R. Ultrasensitive electrochemical immunosensor based on dual signal amplification process for p16(INK4a) cervical cancer detection in clinical samples. Biosens Bioelectron 2015. [PMID: 26201985 DOI: 10.1016/j.bios.2015.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The p16(INK4a) (p16) is a cyclin-dependent kinase inhibitor, which has been evaluated in several studies as a diagnostic marker of cervical cancer. Immunostaining using p16 specific antibody has confirmed an over-expression of p16 protein in cervical cancer cells and its association with disease progression. This article reports an ultrasensitive electrochemical immunosensor for specific detection of p16 and demonstrates its performance for detection of solubilized p16 protein in cell lysates obtained from patients. Sandwich-based immunoreaction couple with double signal amplification strategy based on catalytic enlargement of particle tag was used for high sensitivity and specificity. The conditions were optimized to create an immunoassay protocol. Disposable screen-printed electrode modified with capture antibodies (Ab1) was selected for further implementation towards point-of-care diagnostics. Small gold nanoparticles (15 nm diameter) conjugated with detection antibodies (Ab2) were found to better serve as a detection label due to limited interference with antigen-antibody interaction. Double signal enhancement was performed by sequential depositions of gold and silver layers. This gave the sensitivity of 1.78 μA mL(ng GST-p16)(-1) cm(-2) and detection limit of 1.3 ng mL(-1) for GST-p16 protein which is equivalent to 0.49 ng mL(-1) for p16 protein and 28 cells for HeLa cervical cancer cells. In addition to purified protein, the proposed immunosensor effectively detected elevated p16 level in cervical swab samples obtained from 10 patients with positive result from standard Pap smear test, indicating that an electrochemical immunosensors hold an excellent promise for detection of cervical cancer in clinical setting.
Collapse
Affiliation(s)
- Pattasuda Duangkaew
- Nanostructures and Functional Assembly Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Satita Tapaneeyakorn
- Nanomolecular Target Discovery Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chayachon Apiwat
- Nanomolecular Target Discovery Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Tararaj Dharakul
- Nanomolecular Target Discovery Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; Department of Immunology and Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somsak Laiwejpithaya
- Department of Immunology and Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Proespichaya Kanatharana
- Trace Analysis and Biosensor Research Center, Department of Chemistry, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Rawiwan Laocharoensuk
- Nanostructures and Functional Assembly Laboratory, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| |
Collapse
|