1
|
Camposeo A, D'Elia F, Portone A, Matino F, Archimi M, Conti S, Fiori G, Pisignano D, Persano L. Naturally Degradable Photonic Devices with Transient Function by Heterostructured Waxy-Sublimating and Water-Soluble Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001594. [PMID: 33101861 PMCID: PMC7578881 DOI: 10.1002/advs.202001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Combined dry-wet transient materials and devices are introduced, which are based on water-dissolvable dye-doped polymers layered onto nonpolar cyclic hydrocarbon sublimating substrates. Light-emitting heterostructures showing amplified spontaneous emission are obtained on transient elements and used as illumination sources for speckle-free, full-field imaging, and transient optical labels are realized that incorporate QR-codes with stably encoded information. The transient behavior is also studied at the microscopic scale, highlighting the real-time evolution of material domains in the sublimating compound. Finally, the exhausted components are fully soluble in water thus being naturally degradable. This technology opens new and versatile routes for environmental sensing, storage conditions monitoring, and organic photonics.
Collapse
Affiliation(s)
- Andrea Camposeo
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
- NESTScuola Normale SuperiorePiazza S. Silvestro 12PisaI‐56127Italy
| | - Francesca D'Elia
- NESTScuola Normale SuperiorePiazza S. Silvestro 12PisaI‐56127Italy
| | - Alberto Portone
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
- NESTScuola Normale SuperiorePiazza S. Silvestro 12PisaI‐56127Italy
| | - Francesca Matino
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
- NESTScuola Normale SuperiorePiazza S. Silvestro 12PisaI‐56127Italy
| | - Matteo Archimi
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
- Dipartimento di FisicaUniversità di PisaLargo B. Pontecorvo 3PisaI‐56127Italy
| | - Silvia Conti
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia Caruso 16PisaI‐ 56122Italy
| | - Gianluca Fiori
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia Caruso 16PisaI‐ 56122Italy
| | - Dario Pisignano
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
- Dipartimento di FisicaUniversità di PisaLargo B. Pontecorvo 3PisaI‐56127Italy
| | - Luana Persano
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
- NESTScuola Normale SuperiorePiazza S. Silvestro 12PisaI‐56127Italy
| |
Collapse
|
2
|
Abstract
This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications.
Collapse
Affiliation(s)
- Hui Yang
- Institute of Biomedical and Health Engineering
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Science
- 518055 Shenzhen
- China
| | - Martin A. M. Gijs
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| |
Collapse
|
3
|
Rodríguez-Ruiz I, Radajewski D, Charton S, Phamvan N, Brennich M, Pernot P, Bonneté F, Teychené S. Innovative High-Throughput SAXS Methodologies Based on Photonic Lab-on-a-Chip Sensors: Application to Macromolecular Studies. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1266. [PMID: 28574461 PMCID: PMC5492703 DOI: 10.3390/s17061266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/17/2017] [Accepted: 05/31/2017] [Indexed: 02/04/2023]
Abstract
The relevance of coupling droplet-based Photonic Lab-on-a-Chip (PhLoC) platforms and Small-Angle X-Ray Scattering (SAXS) technique is here highlighted for the performance of high throughput investigations, related to the study of protein macromolecular interactions. With this configuration, minute amounts of sample are required to obtain reliable statistical data. The PhLoC platforms presented in this work are designed to allow and control an effective mixing of precise amounts of proteins, crystallization reagents and buffer in nanoliter volumes, and the subsequent generation of nanodroplets by means of a two-phase flow. Spectrophotometric sensing permits a fine control on droplet generation frequency and stability as well as on concentration conditions, and finally the droplet flow is synchronized to perform synchrotron radiation SAXS measurements in individual droplets (each one acting as an isolated microreactor) to probe protein interactions. With this configuration, droplet physic-chemical conditions can be reproducibly and finely tuned, and monitored without cross-contamination, allowing for the screening of a substantial number of saturation conditions with a small amount of biological material. The setup was tested and validated using lysozyme as a model of study. By means of SAXS experiments, the proteins gyration radius and structure envelope were calculated as a function of protein concentration. The obtained values were found to be in good agreement with previously reported data, but with a dramatic reduction of sample volume requirements compared to studies reported in the literature.
Collapse
Affiliation(s)
| | - Dimitri Radajewski
- Laboratoire de Génie Chimique, UMR 5503, 4 allée Emile Monso, 31432 Toulouse, France.
| | | | - Nhat Phamvan
- Laboratoire de Génie Chimique, UMR 5503, 4 allée Emile Monso, 31432 Toulouse, France.
| | - Martha Brennich
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38000 Grenoble, France.
| | - Petra Pernot
- European Molecular Biology Laboratory, 71 avenue des Martyrs, 38000 Grenoble, France.
| | - Françoise Bonneté
- Institut des Biomolécules Max-Mousseron, UMR 5247, Université d'Avignon, 33 rue Louis Pasteur, 84000 Avignon, France.
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, UMR 5503, 4 allée Emile Monso, 31432 Toulouse, France.
| |
Collapse
|
4
|
Rodríguez-Ruiz I, Teychené S, Van Pham N, Radajewski D, Lamadie F, Llobera A, Charton S. Broadcasting photonic lab on a chip concept through a low cost manufacturing approach. Talanta 2017; 170:180-184. [PMID: 28501156 DOI: 10.1016/j.talanta.2017.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 11/17/2022]
Abstract
A low cost fabrication process for photonic lab on a chip systems is here proposed. For the implementation of the masters suitable for cast molding fabrication, an inexpensive dry film photoresist, patternable using standard laboratory equipment, is benchmarked against standardized SU-8 masters obtained using UV lithography and systems manufacture in clean room facilities. Results show adequate system fabrication and a comparable performance of the photonic structures for absorbance/extinction measurements.
Collapse
Affiliation(s)
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, UMR 5503, 4 Allée Emile Monso, Toulouse, France.
| | - Nhat Van Pham
- Laboratoire de Génie Chimique, UMR 5503, 4 Allée Emile Monso, Toulouse, France
| | - Dimitri Radajewski
- Laboratoire de Génie Chimique, UMR 5503, 4 Allée Emile Monso, Toulouse, France
| | | | - Andreu Llobera
- Institut de Microelectrònica de Barcelona-CNM/CSIC Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | | |
Collapse
|
5
|
Rodríguez-Ruiz I, Ackermann TN, Muñoz-Berbel X, Llobera A. Photonic Lab-on-a-Chip: Integration of Optical Spectroscopy in Microfluidic Systems. Anal Chem 2016; 88:6630-7. [DOI: 10.1021/acs.analchem.6b00377] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Isaac Rodríguez-Ruiz
- Institut de Microelectrònica de Barcelona−CNM/CSIC Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
- CEA, DEN, DTEC, SGCS, F-30207 Bagnols-sur-Cèze, France
| | - Tobias N. Ackermann
- Institut de Microelectrònica de Barcelona−CNM/CSIC Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Xavier Muñoz-Berbel
- Institut de Microelectrònica de Barcelona−CNM/CSIC Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Andreu Llobera
- Institut de Microelectrònica de Barcelona−CNM/CSIC Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
6
|
Glynn MT, Kinahan DJ, Ducrée J. CD4 counting technologies for HIV therapy monitoring in resource-poor settings--state-of-the-art and emerging microtechnologies. LAB ON A CHIP 2013; 13:2731-2748. [PMID: 23670110 DOI: 10.1039/c3lc50213a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Modern advancements in pharmaceuticals have provided individuals who have been infected with the human immunodeficiency virus (HIV) with the possibility of significantly extending their survival rates. When administered sufficiently soon after infection, antiretroviral therapy (ART) allows medical practitioners to control onset of the symptoms of the associated acquired immune deficiency syndrome (AIDS). Active monitoring of the immune system in both HIV patients and individuals who are regarded as "at-risk" is critical in the decision making process for when to start a patient on ART. A reliable and common method for such monitoring is to observe any decline in the number of CD4 expressing T-helper cells in the blood of a patient. However, the technology, expertise, infrastructure and costs to carry out such a diagnostic cannot be handled by medical services in resource-poor regions where HIV is endemic. Addressing this shortfall, commercialized point-of-care (POC) CD4 cell count systems are now available in such regions. A number of newer devices will also soon be on the market, some the result of recent maturing of charity-funded initiatives. Many of the current and imminent devices are enabled by microfluidic solutions, and this review will critically survey and analyze these POC technologies for CD4 counting, both on-market and near-to-market deployment. Additionally, promising technologies under development that may usher in a new generation of devices will be presented.
Collapse
Affiliation(s)
- Macdara T Glynn
- Biomedical Diagnostic Institute, National Centre for Sensor Research, School of Physical Sciences, Dublin City University, Dublin, Ireland.
| | | | | |
Collapse
|
7
|
Zhang Y, Liu Y, Wang X, Shen Y, Ji R, Cai B. Investigation of the charging characteristics of micrometer sized droplets based on parallel plate capacitor model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1676-1682. [PMID: 23297795 DOI: 10.1021/la3046737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The charging characteristics of micrometer sized aqueous droplets have attracted more and more attentions due to the development of the microfluidics technology since the electrophoretic motion of a charged droplet can be used as the droplet actuation method. This work proposed a novel method of investigating the charging characteristics of micrometer sized aqueous droplets based on parallel plate capacitor model. With this method, the effects of the electric field strength, electrolyte concentration, and ion species on the charging characteristics of the aqueous droplets was investigated. Experimental results showed that the charging characteristics of micrometer sized droplets can be investigated by this method.
Collapse
Affiliation(s)
- Yanzhen Zhang
- College of Electromechanical Engineering, China University of Petroleum, Qingdao 266580, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Ibarlucea B, Díez-Gil C, Ratera I, Veciana J, Caballero A, Zapata F, Tárraga A, Molina P, Demming S, Büttgenbach S, Fernández-Sánchez C, Llobera A. PDMS based photonic lab-on-a-chip for the selective optical detection of heavy metal ions. Analyst 2013; 138:839-44. [DOI: 10.1039/c2an36402f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Ordeig O, Ortiz P, Muñoz-Berbel X, Demming S, Büttgenbach S, Fernández-Sánchez C, Llobera A. Dual Photonic-Electrochemical Lab on a Chip for Online Simultaneous Absorbance and Amperometric Measurements. Anal Chem 2012; 84:3546-53. [DOI: 10.1021/ac203106x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olga Ordeig
- Instituto de Microelectrónica
de Barcelona, IMB-CNM (CSIC), Campus UAB,
08193-Bellaterra, Barcelona, Spain
| | - Pedro Ortiz
- Instituto de Microelectrónica
de Barcelona, IMB-CNM (CSIC), Campus UAB,
08193-Bellaterra, Barcelona, Spain
| | - Xavier Muñoz-Berbel
- Instituto de Microelectrónica
de Barcelona, IMB-CNM (CSIC), Campus UAB,
08193-Bellaterra, Barcelona, Spain
| | - Stefanie Demming
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer
Straße 201, 38124 Braunschhweig, Germany
| | - Stephanus Büttgenbach
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer
Straße 201, 38124 Braunschhweig, Germany
| | - César Fernández-Sánchez
- Instituto de Microelectrónica
de Barcelona, IMB-CNM (CSIC), Campus UAB,
08193-Bellaterra, Barcelona, Spain
| | - Andreu Llobera
- Instituto de Microelectrónica
de Barcelona, IMB-CNM (CSIC), Campus UAB,
08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
10
|
Kovarik ML, Gach PC, Ornoff DM, Wang Y, Balowski J, Farrag L, Allbritton NL. Micro total analysis systems for cell biology and biochemical assays. Anal Chem 2012; 84:516-40. [PMID: 21967743 PMCID: PMC3264799 DOI: 10.1021/ac202611x] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michelle L. Kovarik
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Phillip C. Gach
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas M. Ornoff
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Joseph Balowski
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lila Farrag
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
11
|
Microfluidic Raman Spectroscopy for Bio-chemical Sensing and Analysis. SPRINGER SERIES ON CHEMICAL SENSORS AND BIOSENSORS 2012. [DOI: 10.1007/978-3-642-25498-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Kuehne AJC, Gather MC, Eydelnant IA, Yun SH, Weitz DA, Wheeler AR. A switchable digital microfluidic droplet dye-laser. LAB ON A CHIP 2011; 11:3716-3719. [PMID: 21901207 DOI: 10.1039/c1lc20405j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Digital microfluidic devices allow the manipulation of droplets between two parallel electrodes. These electrodes can act as mirrors generating a micro-cavity, which can be exploited for a droplet dye-laser. Three representative laser-dyes with emission wavelengths spanning the whole visible spectrum are chosen to show the applicability of this concept. Sub-microlitre droplets of laser-dye solution are moved in and out of a lasing site on-chip to down-convert the UV-excitation light into blue, green and red laser-pulses.
Collapse
Affiliation(s)
- Alexander J C Kuehne
- School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Ashok PC, Singh GP, Rendall HA, Krauss TF, Dholakia K. Waveguide confined Raman spectroscopy for microfluidic interrogation. LAB ON A CHIP 2011; 11:1262-70. [PMID: 21225053 DOI: 10.1039/c0lc00462f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report the first implementation of the fiber based microfluidic Raman spectroscopic detection scheme, which can be scaled down to micrometre dimensions, allowing it to be combined with other microfluidic functional devices. This novel Raman spectroscopic detection scheme, which we termed as Waveguide Confined Raman Spectroscopy (WCRS), is achieved through embedding fibers on-chip in a geometry that confines the Raman excitation and collection region which ensures maximum Raman signal collection. This results in a microfluidic chip with completely alignment-free Raman spectroscopic detection scheme, which does not give any background from the substrate of the chip. These features allow a WCRS based microfluidic chip to be fabricated in polydimethylsiloxane (PDMS) which is a relatively cheap material but has inherent Raman signatures in fingerprint region. The effects of length, collection angle, and fiber core size on the collection efficiency and fluorescence background of WCRS were investigated. The ability of the device to predict the concentration was studied using urea as a model analyte. A major advantage of WCRS is its scalability that allows it to be combined with many existing microfluidic functional devices. The applicability of WCRS is demonstrated through two microfluidic applications: reaction monitoring in a microreactor and detection of analyte in a microdroplet based microfluidic system. The WCRS approach may lead to wider use of Raman spectroscopy based detection in microfluidics, and the development of portable, alignment-free microfluidic devices.
Collapse
Affiliation(s)
- Praveen C Ashok
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, Fife KY16 9SS, UK.
| | | | | | | | | |
Collapse
|
15
|
Demming S, Sommer B, Llobera A, Rasch D, Krull R, Büttgenbach S. Disposable parallel poly(dimethylsiloxane) microbioreactor with integrated readout grid for germination screening of Aspergillus ochraceus. BIOMICROFLUIDICS 2011; 5:14104. [PMID: 21423594 PMCID: PMC3060924 DOI: 10.1063/1.3553004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 12/24/2010] [Indexed: 05/07/2023]
Abstract
In this work a disposable, parallel microbioreactor (MBR) suitable for screening in batch or continuous mode is presented. The reactor consists of five parallel microchambers made of poly(dimethylsiloxane) bonded to a glass substrate. A grid structure is engraved on each chamber, allowing subsequent morphology imaging. Measurements are recorded over the entire cultivation period with constant parameters, namely, position and focus in the z-axis. The microdevice may be used for either parallel, uni- or multiparametric screening, and overcomes the drawback of gridless microwell plates which require expensive equipment such as an inverted microscope with an automatic stage. To validate the scalability from laboratory scale to microscale, and thus the cultivation protocol in the MBR, the germination of fungal spores (A. ochraceus) is evaluated for two different key magnitudes (pH and temperature) and compared to the results obtained from conventional laboratory scale systems (flasks and agar plates). Information on germination capacity with regard to interspecies' variability allows for optimization of industrial processes as optimal pH and temperature matched to the mesoscopic cultivation systems. The germination conditions therefore remain unaffected inside the MBR, while providing the following advantages: (i) dramatic reduction of medium consumption, (ii) submerged cultivation with constant oxygen supply, (iii) assured low cost and disposability, and (iv) possibility of a continuous cultivation mode.
Collapse
|
16
|
Ibarlucea B, Fernández-Sánchez C, Demming S, Büttgenbach S, Llobera A. Selective functionalisation of PDMS-based photonic lab on a chip for biosensing. Analyst 2011; 136:3496-502. [DOI: 10.1039/c0an00941e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Ding J, Zhang L, Qu F, Ren X, Zhao X, Liu Q. Cell activity analysis by capillary zone electrophoresis combined with specific cell staining. Electrophoresis 2010; 32:455-63. [DOI: 10.1002/elps.201000324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 10/12/2010] [Accepted: 10/28/2010] [Indexed: 11/08/2022]
|