1
|
Li Y, Fu B, Li Y, Li C, Zhai Y, Feng X, Wang J, Zhang Y, Lu H. O-GlycoIsoQuant: A Novel O-Glycome Quantitative Approach through Superbase Release and Isotopic Girard's P Labeling. Anal Chem 2024; 96:7289-7296. [PMID: 38666489 DOI: 10.1021/acs.analchem.4c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Quantitative glycosylation analysis serves as an effective tool for detecting changes in glycosylation patterns in cancer and various diseases. However, compared with N-glycans, O-glycans present challenges in both qualitative and quantitative mass spectrometry analysis due to their low abundance, ease of peeling, lack of a universal enzyme, and difficult accessibility. To address this challenge, we developed O-GlycoIsoQuant, a novel O-glycome quantitative approach utilizing superbase release and isotopic Girard's P labeling. This method facilitates rapid and efficient nonreducing β-elimination to dissociate O-glycans from proteins using the organic superbase, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), combined with light and heavy isotopic Girard's reagent P (GP) labeling for relative quantification of O-glycans by mass spectrometry. Employing this method, labeled O-glycans exhibit a double peak with a mass difference of 5 Da, suitable for stable relative quantification. The O-GlycoIsoQuant method is characterized by its high labeling efficiency, excellent reproducibility (CV < 20%), and good linearity (R2 > 0.99), across a dynamic range spanning a 100-fold range. This method was applied to various complex sample types, including human serum, porcine spermatozoa, human saliva, and urinary extracellular vesicles, detecting 33, 39, 49, and 37 O-glycans, respectively, thereby demonstrating its broad applicability.
Collapse
Affiliation(s)
- Yueyue Li
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Fu
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Yang Li
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chong Li
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yujia Zhai
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Xiaoxiao Feng
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jun Wang
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | | | | |
Collapse
|
2
|
Hanamatsu H, Miura Y, Nishikaze T, Yokota I, Homan K, Onodera T, Hayakawa Y, Iwasaki N, Furukawa JI. Simultaneous and sialic acid linkage-specific N- and O-linked glycan analysis by ester-to-amide derivatization. Glycoconj J 2023; 40:259-267. [PMID: 36877384 DOI: 10.1007/s10719-023-10109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Characterization of O-glycans linked to serine or threonine residues in glycoproteins has mostly been achieved using chemical reaction approaches because there are no known O-glycan-specific endoglycosidases. Most O-glycans are modified with sialic acid residues at the non-reducing termini through various linkages. In this study, we developed a novel approach for sialic acid linkage-specific O-linked glycan analysis through lactone-driven ester-to-amide derivatization combined with non-reductive β-elimination in the presence of hydroxylamine. O-glycans released by non-reductive β-elimination were efficiently purified using glycoblotting via chemoselective ligation between carbohydrates and a hydrazide-functionalized polymer, followed by modification of methyl or ethyl ester groups of sialic acid residues on solid-phase. In-solution lactone-driven ester-to-amide derivatization of ethyl-esterified O-glycans was performed, and the resulting sialylated glycan isomers were discriminated by mass spectrometry. In combination with PNGase F digestion, we carried out simultaneous, quantitative, and sialic acid linkage-specific N- and O-linked glycan analyses of a model glycoprotein and human cartilage tissue. This novel glycomic approach will facilitate detailed characterization of biologically relevant sialylated N- and O-glycans on glycoproteins.
Collapse
Affiliation(s)
- Hisatoshi Hanamatsu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan.
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan.
| | - Yoshiaki Miura
- Sumitomo Bakelite Co., Ltd., 5-8, Tennoz Parkside Building, Higashi-Shinagawa 2-chome, Shinagawa-ku, 140-0002, Tokyo, Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, 604-8511, Kyoto, Japan
| | - Ikuko Yokota
- Institute for Glyco-core Research (iGCORE), Nagoya University, 464-8601, Nagoya, Japan
| | - Kentaro Homan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan
| | - Yoshihiro Hayakawa
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, 604-8511, Kyoto, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, 464-8601, Nagoya, Japan.
| |
Collapse
|
3
|
Li J, Guo B, Zhang W, Yue S, Huang S, Gao S, Ma J, Cipollo JF, Yang S. Recent advances in demystifying O-glycosylation in health and disease. Proteomics 2022; 22:e2200156. [PMID: 36088641 DOI: 10.1002/pmic.202200156] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
Abstract
O-Glycosylation is one of the most common protein post-translational modifications (PTM) and plays an essential role in the pathophysiology of diseases. However, the complexity of O-glycosylation and the lack of specific enzymes for the processing of O-glycans and their O-glycopeptides make O-glycosylation analysis challenging. Recently, research on O-glycosylation has received attention owing to technological innovation and emerging O-glycoproteases. Several serine/threonine endoproteases have been found to specifically cleave O-glycosylated serine or threonine, allowing for the systematic analysis of O-glycoproteins. In this review, we first assessed the field of protein O-glycosylation over the past decade and used bibliometric analysis to identify keywords and emerging trends. We then summarized recent advances in O-glycosylation, covering several aspects: O-glycan release, site-specific elucidation of intact O-glycopeptides, identification of O-glycosites, characterization of different O-glycoproteases, mass spectrometry (MS) fragmentation methods for site-specific O-glycosylation assignment, and O-glycosylation data analysis. Finally, the role of O-glycosylation in health and disease was discussed.
Collapse
Affiliation(s)
- Jiajia Li
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Bo Guo
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Wenqi Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shuang Yue
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shan Huang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - John F Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Kaur H. Characterization of glycosylation in monoclonal antibodies and its importance in therapeutic antibody development. Crit Rev Biotechnol 2021; 41:300-315. [PMID: 33430641 DOI: 10.1080/07388551.2020.1869684] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosylation is one of the structurally diverse and complex forms of post translational modifications observed in proteins which influence the effector functions of IgG-Fc. Although the glycosylation constitutes 2-3% of the total mass of the IgG antibody, a thorough assessment of glycoform distribution present on the antibody is a critical quality attribute (cQA) for the majority of novel and biosimilar monoclonal antibody (mAb) development. This review paper will highlight the impact of different glycoforms such as galactose, fucose, high mannose, NANA (N-acetylneuraminic acid), and NGNA (N-glycoylneuraminic acid) on the safety/immunogeneicity, efficacy/biological activity and clearance (pharmacodynamics/pharmacokinetic property (PD/PK)) of biological molecules. In addition, this paper will summarize routinely employed reliable analytical techniques such as hydrophilic interaction chromatography (HILIC), high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) for characterizing and monitoring glycosylation in monoclonal antibodies (mAbs). The advantages and disadvantages of each of the methods are addressed. The scope of this review paper is limited to only N-linked and O-linked glycosylation.
Collapse
Affiliation(s)
- Harleen Kaur
- Analytical Sciences, Aurobindo Biologics, Hyderabad, India
| |
Collapse
|
5
|
Ahmad Izaham AR, Scott NE. Open Database Searching Enables the Identification and Comparison of Bacterial Glycoproteomes without Defining Glycan Compositions Prior to Searching. Mol Cell Proteomics 2020. [PMID: 32576591 DOI: 10.1101/2020.04.21.052845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Mass spectrometry has become an indispensable tool for the characterization of glycosylation across biological systems. Our ability to generate rich fragmentation of glycopeptides has dramatically improved over the last decade yet our informatic approaches still lag behind. Although glycoproteomic informatics approaches using glycan databases have attracted considerable attention, database independent approaches have not. This has significantly limited high throughput studies of unusual or atypical glycosylation events such as those observed in bacteria. As such, computational approaches to examine bacterial glycosylation and identify chemically diverse glycans are desperately needed. Here we describe the use of wide-tolerance (up to 2000 Da) open searching as a means to rapidly examine bacterial glycoproteomes. We benchmarked this approach using N-linked glycopeptides of Campylobacter fetus subsp. fetus as well as O-linked glycopeptides of Acinetobacter baumannii and Burkholderia cenocepacia revealing glycopeptides modified with a range of glycans can be readily identified without defining the glycan masses before database searching. Using this approach, we demonstrate how wide tolerance searching can be used to compare glycan use across bacterial species by examining the glycoproteomes of eight Burkholderia species (B. pseudomallei; B. multivorans; B. dolosa; B. humptydooensis; B. ubonensis, B. anthina; B. diffusa; B. pseudomultivorans). Finally, we demonstrate how open searching enables the identification of low frequency glycoforms based on shared modified peptides sequences. Combined, these results show that open searching is a robust computational approach for the determination of glycan diversity within bacterial proteomes.
Collapse
Affiliation(s)
- Ameera Raudah Ahmad Izaham
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
6
|
Ahmad Izaham AR, Scott NE. Open Database Searching Enables the Identification and Comparison of Bacterial Glycoproteomes without Defining Glycan Compositions Prior to Searching. Mol Cell Proteomics 2020; 19:1561-1574. [PMID: 32576591 PMCID: PMC8143609 DOI: 10.1074/mcp.tir120.002100] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry has become an indispensable tool for the characterization of glycosylation across biological systems. Our ability to generate rich fragmentation of glycopeptides has dramatically improved over the last decade yet our informatic approaches still lag behind. Although glycoproteomic informatics approaches using glycan databases have attracted considerable attention, database independent approaches have not. This has significantly limited high throughput studies of unusual or atypical glycosylation events such as those observed in bacteria. As such, computational approaches to examine bacterial glycosylation and identify chemically diverse glycans are desperately needed. Here we describe the use of wide-tolerance (up to 2000 Da) open searching as a means to rapidly examine bacterial glycoproteomes. We benchmarked this approach using N-linked glycopeptides of Campylobacter fetus subsp. fetus as well as O-linked glycopeptides of Acinetobacter baumannii and Burkholderia cenocepacia revealing glycopeptides modified with a range of glycans can be readily identified without defining the glycan masses before database searching. Using this approach, we demonstrate how wide tolerance searching can be used to compare glycan use across bacterial species by examining the glycoproteomes of eight Burkholderia species (B. pseudomallei; B. multivorans; B. dolosa; B. humptydooensis; B. ubonensis, B. anthina; B. diffusa; B. pseudomultivorans). Finally, we demonstrate how open searching enables the identification of low frequency glycoforms based on shared modified peptides sequences. Combined, these results show that open searching is a robust computational approach for the determination of glycan diversity within bacterial proteomes.
Collapse
Affiliation(s)
- Ameera Raudah Ahmad Izaham
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
7
|
Zhang Q, Li Z, Song X. Preparation of Complex Glycans From Natural Sources for Functional Study. Front Chem 2020; 8:508. [PMID: 32719769 PMCID: PMC7348041 DOI: 10.3389/fchem.2020.00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023] Open
Abstract
One major barrier in glycoscience is the lack of diverse and biomedically relevant complex glycans in sufficient quantities for functional study. Complex glycans from natural sources serve as an important source of these glycans and an alternative to challenging chemoenzymatic synthesis. This review discusses preparation of complex glycans from several classes of glycoconjugates using both enzymatic and chemical release approaches. Novel technologies have been developed to advance the large-scale preparation of complex glycans from natural sources. We also highlight recent approaches and methods developed in functional and fluorescent tagging and high-performance liquid chromatography (HPLC) isolation of released glycans.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhonghua Li
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
8
|
Mucin O-glycan microarrays. Curr Opin Struct Biol 2019; 56:187-197. [DOI: 10.1016/j.sbi.2019.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 11/22/2022]
|
9
|
History and future of shotgun glycomics. Biochem Soc Trans 2019; 47:1-11. [DOI: 10.1042/bst20170487] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
Abstract
Glycans in polysaccharides and glycoconjugates of the hydrophilic exterior of all animal cells participate in signal transduction, cellular adhesion, intercellular signaling, and sites for binding of pathogens largely through protein–glycan interactions. Microarrays of defined glycans have been used to study the binding specificities of biologically relevant glycan-binding proteins (GBP), but such arrays are limited by their lack of diversity or relevance to the GBP being investigated. Shotgun glycan microarrays are made up of structurally undefined glycans that were released from natural sources, labeled with bifunctional reagents so that they can be monitored during their purification using multidimensional chromatographic procedures, stored as a tagged glycan library (TGL) and subsequently printed onto microarrays at equal molar concentrations. The shotgun glycan microarray is then interrogated with a biologically relevant GBP and the corresponding glycan ligands can be retrieved from the TGL for detailed structural analysis and further functional analysis. Shotgun glycomics extended the defined glycan microarray to a discovery platform that supports functional glycomic analyses and may provide a useful process for ultimately defining the human glycome.
Collapse
|
10
|
Zhang Q, Li Z, Wang Y, Zheng Q, Li J. Mass spectrometry for protein sialoglycosylation. MASS SPECTROMETRY REVIEWS 2018; 37:652-680. [PMID: 29228471 DOI: 10.1002/mas.21555] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Sialic acids are a family of structurally unique and negatively charged nine-carbon sugars, normally found at the terminal positions of glycan chains on glycoproteins and glycolipids. The glycosylation of proteins is a universal post-translational modification in eukaryotic species and regulates essential biological functions, in which the most common sialic acid is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid) (Neu5NAc). Because of the properties of sialic acids under general mass spectrometry (MS) conditions, such as instability, ionization discrimination, and mixed adducts, the use of MS in the analysis of protein sialoglycosylation is still challenging. The present review is focused on the application of MS related methodologies to the study of both N- and O-linked sialoglycans. We reviewed MS-based strategies for characterizing sialylation by analyzing intact glycoproteins, proteolytic digested glycopeptides, and released glycans. The review concludes with future perspectives in the field.
Collapse
Affiliation(s)
- Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Zack Li
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
| | - Jianjun Li
- National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Wang C, Lu Y, Han J, Jin W, Li L, Zhang Y, Song X, Huang L, Wang Z. Simultaneous Release and Labeling of O- and N-Glycans Allowing for Rapid Glycomic Analysis by Online LC-UV-ESI-MS/MS. J Proteome Res 2018; 17:2345-2357. [DOI: 10.1021/acs.jproteome.8b00038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chengjian Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yu Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jianli Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Wanjun Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Lingmei Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Ying Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4117, Atlanta, Georgia 30322, United States
| | - Linjuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zhongfu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
12
|
Figl R, Altmann F. Reductive Alkaline Release of N-Glycans Generates a Variety of Unexpected, Useful Products. Proteomics 2018; 18. [DOI: 10.1002/pmic.201700330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/22/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Rudolf Figl
- Department of Chemistry; University of Natural Resources and Life Sciences; Vienna Austria
| | - Friedrich Altmann
- Department of Chemistry; University of Natural Resources and Life Sciences; Vienna Austria
| |
Collapse
|
13
|
King SR, Hecht ES, Muddiman DC. Demonstration of hydrazide tagging for O-glycans and a central composite design of experiments optimization using the INLIGHT™ reagent. Anal Bioanal Chem 2017; 410:1409-1415. [PMID: 29279989 DOI: 10.1007/s00216-017-0828-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022]
Abstract
The INLIGHT™ strategy for N-linked glycan derivatization has been shown to overcome many of the challenges associated with glycan analysis. The hydrazide tag reacts efficiently with the glycans, increasing their non-polar surface area, allowing for reversed-phase separations and increased ionization efficiency. We have taken the INLIGHT™ strategy and adopted it for use with O-linked glycans. A central composite design was utilized to find optimized tagging conditions (45% acetic acid, 0.1 μg/μL tag concentration, 37 C, 1.75 h). Derivatization at optimized conditions was much quicker than any hydrazide derivatization strategy used previously. Human immunoglobulin A (IgA) and bovine submaxillary mucin (BSM) were then deglycosylated through hydrazinolysis and the removed glycans were tagged under optimum conditions. XIC of tagged glycans and MS2 data show successful hydrazide tagging of O-linked glycans for the first time. Graphical abstract The INLIGHT™ hydrazide tag was optimized using a central composite design for derivatization of O-linked glycans. Two glycoprotein standards were deglycosylated through hydrazinolysis and tagged at the optimized conditions. MS/MS data shows INLIGHT™ derivatization of glycans demonstrating successful hydrazide tagging of O-glycans for the first time.
Collapse
Affiliation(s)
- Samuel R King
- W. M. Keck FTMS Laboratory from Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Elizabeth S Hecht
- W. M. Keck FTMS Laboratory from Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Muddiman
- W. M. Keck FTMS Laboratory from Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
14
|
Goso Y, Sugaya T, Ishihara K, Kurihara M. Comparison of Methods to Release Mucin-Type O-Glycans for Glycomic Analysis. Anal Chem 2017; 89:8870-8876. [PMID: 28723077 DOI: 10.1021/acs.analchem.7b01346] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucin-type O-glycans (O-glycans) are one of the most common glycans attached to proteins. To develop an optimized glycomic analysis protocol, O-glycans were released from glycoproteins using hydrazine, ammonia, or sodium hydroxide treatment, followed by hydrophilic interaction liquid chromatography to evaluate O-glycan release. We found that porcine gastric mucin or bovine fetuin treated at 60 °C for 6 h with hydrazine gas in the presence of malonic acid yielded O-glycans with only a small amount of degraded, so-called "peeled" products. Ammonia treatment also yielded intact O-glycans but with additional peeled products containing GlcNAc at the reducing end. In contrast, sodium hydroxide treatment yielded mainly peeled glycans, including those containing GlcNAc at the reducing end. Importantly, O-glycans obtained from rat gastric mucin treated with hydrazine and labeled with anthranilic acid had a nearly identical profile following hydrophilic interaction liquid chromatography as permethylated O-glycan alditols analyzed by mass spectroscopy. Taken together, the data suggest that glycan release using hydrazine treatment, followed by high-performance liquid chromatography after fluorescent labeling, is a suitable method for glycomic analysis of mucin-type O-glycans.
Collapse
Affiliation(s)
- Yukinobu Goso
- Department of Biochemistry, Kitasato University School of Medicine , Sagamihara 252-0374, Japan
| | - Tsukiko Sugaya
- Department of Biochemistry, Kitasato University School of Medicine , Sagamihara 252-0374, Japan
| | - Kazuhiko Ishihara
- Kitasato Junior College of Health and Hygienic Sciences , Minami-uonuma 949-7241, Japan
| | - Makoto Kurihara
- Department of Applied Bioscience, Kanagawa Institute of Technology , Atsugi 243-0292, Japan
| |
Collapse
|
15
|
Sun X, Tao L, Yi L, Ouyang Y, Xu N, Li D, Linhardt RJ, Zhang Z. N-glycans released from glycoproteins using a commercial kit and comprehensively analyzed with a hypothetical database. J Pharm Anal 2017; 7:87-94. [PMID: 29404022 PMCID: PMC5686862 DOI: 10.1016/j.jpha.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/05/2022] Open
Abstract
The glycosylation of proteins is responsible for their structural and functional roles in many cellular activities. This work describes a strategy that combines an efficient release, labeling and liquid chromatography-mass spectral analysis with the use of a comprehensive database to analyze N-glycans. The analytical method described relies on a recently commercialized kit in which quick deglycosylation is followed by rapid labeling and cleanup of labeled glycans. This greatly improves the separation, mass spectrometry (MS) analysis and fluorescence detection of N-glycans. A hypothetical database, constructed using GlycResoft, provides all compositional possibilities of N-glycans based on the common sugar residues found in N-glycans. In the initial version this database contains >8,700 N-glycans, and is compatible with MS instrument software and expandable. N-glycans from four different well-studied glycoproteins were analyzed by this strategy. The results provided much more accurate and comprehensive data than had been previously reported. This strategy was then used to analyze the N-glycans present on the membrane glycoproteins of gastric carcinoma cells with different degrees of differentiation. Accurate and comprehensive N-glycan data from those cells was obtained efficiently and their differences compared corresponding to their differentiation states. Thus, the novel strategy developed greatly improves accuracy, efficiency and comprehensiveness of N-glycan analysis.
Collapse
Affiliation(s)
- Xue Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Lei Tao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Lin Yi
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yilan Ouyang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Naiyu Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Duxin Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
16
|
Quantitative O -glycomics based on improvement of the one-pot method for nonreductive O -glycan release and simultaneous stable isotope labeling with 1-(d 0 /d 5 )phenyl-3-methyl-5-pyrazolone followed by mass spectrometric analysis. J Proteomics 2017; 150:18-30. [DOI: 10.1016/j.jprot.2016.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/28/2016] [Accepted: 08/19/2016] [Indexed: 12/23/2022]
|
17
|
Song X, Ju H, Lasanajak Y, Kudelka MR, Smith DF, Cummings RD. Oxidative release of natural glycans for functional glycomics. Nat Methods 2016; 13:528-34. [PMID: 27135973 PMCID: PMC4887297 DOI: 10.1038/nmeth.3861] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/28/2016] [Indexed: 12/13/2022]
Abstract
Glycans have essential roles in biology and the etiology of many diseases. A major hurdle in studying glycans through functional glycomics is the lack of methods to release glycans from diverse types of biological samples. Here we describe an oxidative strategy using household bleach to release all types of free reducing N-glycans and O-glycan-acids from glycoproteins, and glycan nitriles from glycosphingolipids. Released glycans are directly useful in glycomic analyses and can be derivatized fluorescently for functional glycomics. This chemical method overcomes the limitations in glycan generation and promotes archiving and characterization of human and animal glycomes and their functions.
Collapse
Affiliation(s)
- Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yi Lasanajak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew R Kudelka
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Sić S, Maier NM, Rizzi AM. Quantitative fingerprinting of O-linked glycans released from proteins using isotopic coded labeling with deuterated 1-phenyl-3-methyl-5-pyrazolone. J Chromatogr A 2015; 1408:93-100. [PMID: 26184710 DOI: 10.1016/j.chroma.2015.06.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 02/02/2023]
Abstract
Investigation of oligosaccharides attached to proteins as post-translational modification remains an important research field in the area of glycoproteomics as well as in biotechnology. The development of new tools for qualitative and quantitative analysis of glycans has gained high importance in recent years. This is particularly true with O-glycans for which quantitative data are still underrepresented in literature. This fact is probably due to the absence of an enzyme for general release of O-linked saccharides from glycoproteins and due to their low ionization yield in mass spectrometry (MS). In this paper, a method is established aimed at improved qualitative and quantitative analysis of mucin-type O-glycans. A chemical reaction combining release and derivatization of O-glycans in one step is combined here with mass spectrometric quantification. For the purpose of improved quantitative analysis, stable-isotope coded labeling by d0/d5 1-phenyl-3-methyl-5-pyrazolidone (PMP) was performed. The "heavy"-version of this label, penta-deutero (d5)-PMP, was synthesized for this purpose. Beneath improving the reproducibility of quantitation, PMP derivatization contributed to an enhancement of ionization yields in MS. By introducing an internal standard (e.g. GlcNAc3) the reproducibility for quantification can be improved. For higher abundant O-glycans a mean coefficient of variation (CV) less than 6% could be attained, for very low abundant CV values between 15 and 20%. For the determination of O-glycan profiles in mixtures, a HPLC separation was combined with a high resolution Qq-oaTOF instrument. RP-type stationary phases were successful in separating glycan species including some of isomeric ones. This separation step was particularly useful for removing of salts avoiding so the presence of various sodium clusters in the MS spectrum.
Collapse
Affiliation(s)
- Siniša Sić
- Department of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna, Austria
| | - Norbert M Maier
- Department of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna, Austria
| | - Andreas M Rizzi
- Department of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna, Austria.
| |
Collapse
|
19
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
20
|
Song X, Heimburg-Molinaro J, Smith DF, Cummings RD. Glycan microarrays of fluorescently-tagged natural glycans. Glycoconj J 2015; 32:465-73. [PMID: 25877830 DOI: 10.1007/s10719-015-9584-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/02/2015] [Accepted: 03/19/2015] [Indexed: 01/22/2023]
Abstract
This review discusses the challenges facing research in 'functional glycomics' and the novel technologies that are being developed to advance the field. The structural complexity of glycans and glycoconjugates makes studies of both their structures and recognition difficult. However, these intricate structures can be captured from their natural sources, isolated and fluorescently-tagged for detailed structural analysis and for presentation on glycan microarrays for functional recognition by glycan-binding proteins. These advances in glycan preparation and manipulation enable the streamlining of functional glycomics studies and will help to propel the field forward in studying natural, biologically relevant glycans.
Collapse
Affiliation(s)
- Xuezheng Song
- Department of Biochemistry, The National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, Suite 4025, Atlanta, GA, 30322, USA.
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, The National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, Suite 4025, Atlanta, GA, 30322, USA
| | - David F Smith
- Department of Biochemistry, The National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, Suite 4025, Atlanta, GA, 30322, USA
| | - Richard D Cummings
- Department of Biochemistry, The National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Biochemistry, O. Wayne Rollins Research Center, Emory University School of Medicine, 1510 Clifton Road, Suite 4025, Atlanta, GA, 30322, USA
| |
Collapse
|
21
|
Nonreductive chemical release of intact N-glycans for subsequent labeling and analysis by mass spectrometry. Anal Biochem 2014; 462:1-9. [PMID: 24912132 DOI: 10.1016/j.ab.2014.05.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 11/23/2022]
Abstract
A novel strategy is proposed, using cost-saving chemical reactions to generate intact free reducing N-glycans and their fluorescent derivatives from glycoproteins for subsequent analysis. N-Glycans without core α-1,3-linked fucose are released in reducing form by selective hydrolysis of the N-type carbohydrate-peptide bond of glycoproteins under a set of optimized mild alkaline conditions and are comparable to those released by commonly used peptide-N-glycosidase (PNGase) F in terms of yield without any detectable side reaction (peeling or deacetylation). The obtained reducing glycans can be routinely derivatized with 2-aminobenzoic acid (2-AA), 1-phenyl-3-methyl-5-pyrazolone (PMP), and potentially some other fluorescent reagents for comprehensive analysis. Alternatively, the core α-1,3-fucosylated N-glycans are released in mild alkaline medium and derivatized with PMP in situ, and their yields are comparable to those obtained using commonly used PNGase A without conspicuous peeling reaction or any detectable deacetylation. Using this new technique, the N-glycans of a series of purified glycoproteins and complex biological samples were successfully released and analyzed by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS), demonstrating its general applicability to glycomic studies.
Collapse
|
22
|
Turyan I, Hronowski X, Sosic Z, Lyubarskaya Y. Comparison of two approaches for quantitative O-linked glycan analysis used in characterization of recombinant proteins. Anal Biochem 2014; 446:28-36. [DOI: 10.1016/j.ab.2013.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 11/30/2022]
|
23
|
Jeong HJ, Adhya M, Park HM, Kim YG, Kim BG. Detection of Hanganutziu-Deicher antigens inO-glycans from pig heart tissues by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Xenotransplantation 2013; 20:407-17. [DOI: 10.1111/xen.12045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/17/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Hee-Jin Jeong
- School of Chemical and Biological Engineering in College of Engineering; Seoul National University; Seoul Korea
| | - Mausumi Adhya
- School of Chemical and Biological Engineering in College of Engineering; Seoul National University; Seoul Korea
| | - Hae-Min Park
- School of Chemical and Biological Engineering in College of Engineering; Seoul National University; Seoul Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering; College of Engineering; Soongsil University; Seoul Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering in College of Engineering; Seoul National University; Seoul Korea
- Institute of Molecular Biology and Genetics and Institute of Bioengineering; Seoul National University; Seoul Korea
- Institute of Bioengineering; Seoul National University; Seoul Korea
| |
Collapse
|
24
|
Parry A, Clemson NA, Ellis J, Bernhard SSR, Davis BG, Cameron NR. 'Multicopy multivalent' glycopolymer-stabilized gold nanoparticles as potential synthetic cancer vaccines. J Am Chem Soc 2013; 135:9362-5. [PMID: 23763610 PMCID: PMC3928990 DOI: 10.1021/ja4046857] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Indexed: 01/18/2023]
Abstract
Mucin-related carbohydrates are overexpressed on the surface of cancer cells, providing a disease-specific target for cancer immunotherapy. Here, we describe the design and construction of peptide-free multivalent glycosylated nanoscale constructs as potential synthetic cancer vaccines that generate significant titers of antibodies selective for aberrant mucin glycans. A polymerizable version of the Tn-antigen glycan was prepared and converted into well-defined glycopolymers by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. The polymers were then conjugated to gold nanoparticles, yielding 'multicopy-multivalent' nanoscale glycoconjugates. Immunological studies indicated that these nanomaterials generated strong and long-lasting production of antibodies that are selective to the Tn-antigen glycan and cross-reactive toward mucin proteins displaying Tn. The results demonstrate proof-of-concept of a simple and modular approach toward synthetic anticancer vaccines based on multivalent glycosylated nanomaterials without the need for a typical vaccine protein component.
Collapse
Affiliation(s)
- Alison
L. Parry
- Department of Chemistry and
Biophysical Sciences Institute, Durham University, South Road, Durham, DH1 3LE, U.K
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory,
12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Natasha A. Clemson
- Department of Chemistry and
Biophysical Sciences Institute, Durham University, South Road, Durham, DH1 3LE, U.K
| | - James Ellis
- Department of Chemistry and
Biophysical Sciences Institute, Durham University, South Road, Durham, DH1 3LE, U.K
| | - Stefan S. R. Bernhard
- Department of Chemistry and
Biophysical Sciences Institute, Durham University, South Road, Durham, DH1 3LE, U.K
| | - Benjamin G. Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory,
12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Neil R. Cameron
- Department of Chemistry and
Biophysical Sciences Institute, Durham University, South Road, Durham, DH1 3LE, U.K
| |
Collapse
|
25
|
Zhang H, Zhang S, Tao G, Zhang Y, Mulloy B, Zhan X, Chai W. Typing of blood-group antigens on neutral oligosaccharides by negative-ion electrospray ionization tandem mass spectrometry. Anal Chem 2013; 85:5940-9. [PMID: 23692402 PMCID: PMC3856363 DOI: 10.1021/ac400700e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blood-group antigens, such as those containing fucose and bearing the ABO(H)- and Lewis-type determinants expressed on the carbohydrate chains of glycoproteins and glycolipids, and also on unconjugated free oligosaccharides in human milk and other secretions, are associated with various biological functions. We have previously shown the utility of negative-ion electrospay ionization tandem mass spectrometry with collision-induced dissociation (ESI-CID-MS/MS) for typing of Lewis (Le) determinants, for example, Le(a), Le(x), Le(b), and Le(y) on neutral and sialylated oligosaccharide chains. In the present report, we extended the strategy to characterization of blood-group A-, B-, and H-determinants on type 1 and type 2 and also on type 4 globoside chains to provide a high sensitivity method for typing of all the major blood-group antigens, including the A, B, H, Le(a), Le(x), Le(b), and Le(y) determinants, present in oligosaccharides. Using the principles established, we identified two minor unknown oligosaccharide components present in the products of enzymatic synthesis by bacterial fermentation. We also demonstrated that the unique fragmentations derived from the D- and (0,2)A-type cleavages observed in ESI-CID-MS/MS, which are important for assigning blood-group and chain types, only occur under the negative-ion conditions for reducing sugars but not for reduced alditols or under positive-ion conditions.
Collapse
Affiliation(s)
- Hongtao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Shuang Zhang
- Testing and Analysis Centre, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guanjun Tao
- Testing and Analysis Centre, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yibing Zhang
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Barbara Mulloy
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Xiaobei Zhan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wengang Chai
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
26
|
Deciphering O-glycomics for the development and production of biopharmaceuticals. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Yamada K, Hirabayashi J, Kakehi K. Analysis of O-glycans as 9-fluorenylmethyl derivatives and its application to the studies on glycan array. Anal Chem 2013; 85:3325-33. [PMID: 23406169 DOI: 10.1021/ac303771q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A method is proposed for the analysis of O-glycans as 9-fluorenylmethyl (Fmoc) derivatives. After releasing the O-glycans from the protein backbone in the presence of ammonia-based media, the glycosylamines thus formed are conveniently labeled with Fmoc-Cl and analyzed by HPLC and MALDI-TOF MS after easy purification. Fmoc labeled O-glycans showed 3.5 times higher sensitivities than those labeled with 2-aminobenzoic acid in fluorescent detection. Various types of O-glycans having sialic acids, fucose, and/or sulfate residues were successfully labeled with Fmoc and analyzed by HPLC and MALDI-TOF MS. The method was applied to the comprehensive analysis of O-glycans expressed on MKN45 cells (human gastric adenocarcinoma). In addition, Fmoc-derivatized O-glycans were easily converted to free hemiacetal or glycosylamine-form glycans that are available for fabrication of glycan array and neoglycoproteins. To demonstrate the availability of our methods, we fabricate the glycan array with Fmoc labeled glycans derived from mucin samples and cancer cells. The model studies using the glycan array showed clear interactions between immobilized glycans and some lectins.
Collapse
Affiliation(s)
- Keita Yamada
- School of Pharmacy, Kinki University, Higashi-Osaka, Japan
| | | | | |
Collapse
|
28
|
Furukawa JI, Fujitani N, Shinohara Y. Recent advances in cellular glycomic analyses. Biomolecules 2013; 3:198-225. [PMID: 24970165 PMCID: PMC4030886 DOI: 10.3390/biom3010198] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/28/2013] [Accepted: 02/14/2013] [Indexed: 12/21/2022] Open
Abstract
A large variety of glycans is intricately located on the cell surface, and the overall profile (the glycome, given the entire repertoire of glycoconjugate-associated sugars in cells and tissues) is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that control cell-cell adhesion, immune response, microbial pathogenesis and other cellular events. The glycomic profile also reflects cellular alterations, such as development, differentiation and cancerous change. A glycoconjugate-based approach would therefore be expected to streamline discovery of novel cellular biomarkers. Development of such an approach has proven challenging, due to the technical difficulties associated with the analysis of various types of cellular glycomes; however, recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various classes of glycoconjugates. This review focuses on recent advances in the technical aspects of cellular glycomic analyses of major classes of glycoconjugates, including N- and O-linked glycans, derived from glycoproteins, proteoglycans and glycosphingolipids. Articles that unveil the glycomics of various biologically important cells, including embryonic and somatic stem cells, induced pluripotent stem (iPS) cells and cancer cells, are discussed.
Collapse
Affiliation(s)
- Jun-Ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Naoki Fujitani
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
29
|
Lingg N, Zhang P, Song Z, Bardor M. The sweet tooth of biopharmaceuticals: importance of recombinant protein glycosylation analysis. Biotechnol J 2012; 7:1462-72. [PMID: 22829536 DOI: 10.1002/biot.201200078] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/06/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022]
Abstract
Biopharmaceuticals currently represent the fastest growing sector of the pharmaceutical industry, mainly driven by a rapid expansion in the manufacture of recombinant protein-based drugs. Glycosylation is the most prominent post-translational modification occurring on these protein drugs. It constitutes one of the critical quality attributes that requires thorough analysis for optimal efficacy and safety. This review examines the functional importance of glycosylation of recombinant protein drugs, illustrated using three examples of protein biopharmaceuticals: IgG antibodies, erythropoietin and glucocerebrosidase. Current analytical methods are reviewed as solutions for qualitative and quantitative measurements of glycosylation to monitor quality target product profiles of recombinant glycoprotein drugs. Finally, we propose a framework for designing the quality target product profile of recombinant glycoproteins and planning workflow for glycosylation analysis with the selection of available analytical methods and tools.
Collapse
Affiliation(s)
- Nico Lingg
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | | | | |
Collapse
|
30
|
Zhang Z, Khan NM, Nunez KM, Chess EK, Szabo CM. Complete Monosaccharide Analysis by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection. Anal Chem 2012; 84:4104-10. [DOI: 10.1021/ac300176z] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenqing Zhang
- Baxter Healthcare Corporation, Round Lake, Illinois
60073, United States
| | - Nazeer M. Khan
- Baxter Healthcare Corporation, Round Lake, Illinois
60073, United States
| | - Karen M. Nunez
- Baxter Healthcare Corporation, Round Lake, Illinois
60073, United States
| | - Edward K. Chess
- Baxter Healthcare Corporation, Round Lake, Illinois
60073, United States
| | - Christina M. Szabo
- Baxter Healthcare Corporation, Round Lake, Illinois
60073, United States
| |
Collapse
|
31
|
Furukawa JI, Fujitani N, Araki K, Takegawa Y, Kodama K, Shinohara Y. A Versatile Method for Analysis of Serine/Threonine Posttranslational Modifications by β-Elimination in the Presence of Pyrazolone Analogues. Anal Chem 2011; 83:9060-7. [DOI: 10.1021/ac2019848] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jun-ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Naoki Fujitani
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kayo Araki
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuhiro Takegawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kota Kodama
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
32
|
Zauner G, Koeleman CAM, Deelder AM, Wuhrer M. Mass spectrometric O-glycan analysis after combined O-glycan release by beta-elimination and 1-phenyl-3-methyl-5-pyrazolone labeling. Biochim Biophys Acta Gen Subj 2011; 1820:1420-8. [PMID: 21803123 DOI: 10.1016/j.bbagen.2011.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Analysis of protein glycosylation is an important first step towards establishing the functions of glycans in health and disease. In contrast to N-glycans which are generally enzymatically released for analysis, there is no corresponding enzyme for O-glycan liberation. Therefore, O-glycans are generally released by chemical methods involving tedious procedures. METHODS Here, a straightforward method for the combined release and labeling of O-linked glycans from glycoproteins is described. Dimethylamine serves as the releasing agent, and 1-phenyl-3-methyl-5-pyrazolone (PMP) is employed for a prompt reaction with the reducing end of the freshly released O-glycan structures via an aldol condensation followed by a Michael-type addition resulting in a 2:1 stoichiometry of PMP per glycan. Samples are analyzed by nanoLC coupled to mass spectrometry. RESULTS Mucin from bovine submaxillary gland was used as a model protein to evaluate and optimize the approach that was further applied to bile salt stimulated lipase (BSSL) isolated from human milk. Next to previously reported O-glycan structures two additional oligosaccharides could be detected for BSSL. GENERAL SIGNIFICANCE In conclusion, the facile protocol established is suitable for the analysis of complex O-linked oligosaccharides from various biological samples. This article is part of a Special Issue entitled Glycoproteomics.
Collapse
Affiliation(s)
- Gerhild Zauner
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Postbus 9600, 2300 RC, Leiden, The Netherlands
| | | | | | | |
Collapse
|