1
|
Ding X, Liu K, Shi Z. LASER DESORPTION/ABLATION POSTIONIZATION MASS SPECTROMETRY: RECENT PROGRESS IN BIOANALYTICAL APPLICATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:566-605. [PMID: 32770707 DOI: 10.1002/mas.21649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Lasers have long been used in the field of mass spectrometric analysis for characterization of condensed matter. However, emission of neutrals upon laser irradiation surpasses the number of ions. Typically, only one in about one million analytes ejected by laser desorption/ablation is ionized, which has fueled the quest for postionization methods enabling ionization of desorbed neutrals to enhance mass spectrometric detection schemes. The development of postionization techniques can be an endeavor that integrates multiple disciplines involving photon energy transfer, electrochemistry, gas discharge, etc. The combination of lasers of different parameters and diverse ion sources has made laser desorption/ablation postionization (LD/API) a growing and lively research community, including two-step laser mass spectrometry, laser ablation atmospheric pressure photoionization mass spectrometry, and those coupled to ambient mass spectrometry. These hyphenated techniques have shown potentials in bioanalytical applications, with major inroads to be made in simultaneous location and quantification of pharmaceuticals, toxins, and metabolites in complex biomatrixes. This review is intended to provide a timely comprehensive view of the broadening bioanalytical applications of disparate LD/API techniques. We also have attempted to discuss these applications according to the classifications based on the postionization methods and to encapsulate the latest achievements in the field of LD/API by highlighting some of the very best reports in the 21st century. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Xuelu Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Kun Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Zhenyan Shi
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
2
|
Lawal RO, Donnarumma F, Murray KK. Deep-ultraviolet laser ablation electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:281-287. [PMID: 30675964 PMCID: PMC6422691 DOI: 10.1002/jms.4338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 06/02/2023]
Abstract
A 193-nm wavelength deep ultraviolet laser was used for ambient laser ablation electrospray ionization mass spectrometry of biological samples. A pulsed ArF excimer laser was used to ablate solid samples, and the resulting plume of the desorbed material merged with charged electrospray droplets to form ions that were detected with a quadrupole time-of-flight mass spectrometer. Solutions containing peptide and protein standards up to 66-kDa molecular weight were deposited on a metal target, dried, and analyzed. No fragmentation was observed from peptides and proteins as well as from the more easily fragmented vitamin B12 molecule. The mass spectra contained peaks from multiply charged ions that were identical to conventional electrospray. Deep UV laser ablation of tissue allowed detection of lipids from untreated tissue. The mechanism of ionization is postulated to involve absorption of laser energy by a fraction of the analyte molecules that act as a sacrificial matrix or by residual water in the sample.
Collapse
Affiliation(s)
- Remilekun O. Lawal
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana. 70803, USA
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana. 70803, USA
| | - Kermit K. Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana. 70803, USA
| |
Collapse
|
3
|
Sistani H, Karki S, Archer JJ, Shi F, Levis RJ. Assessment of Reproducibility of Laser Electrospray Mass Spectrometry using Electrospray Deposition of Analyte. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:880-886. [PMID: 28299715 DOI: 10.1007/s13361-017-1622-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/19/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
A nonresonant, femtosecond (fs) laser is employed to desorb samples of Victoria blue deposited on stainless steel or indium tin oxide (ITO) slides using either electrospray deposition (ESD) or dried droplet deposition. The use of ESD resulted in uniform films of Victoria blue whereas the dried droplet method resulted in the formation of a ring pattern of the dye. Laser electrospray mass spectrometry (LEMS) measurements of the ESD-prepared films on either substrate were similar and revealed lower average relative standard deviations for measurements within-film (20.9%) and between-films (8.7%) in comparison to dried droplet (75.5% and 40.2%, respectively). The mass spectral response for ESD samples on both substrates was linear (R2 > 0.99), enabling quantitative measurements over the selected range of 7.0 × 10-11 to 2.8 × 10-9 mol, as opposed to the dried droplet samples where quantitation was not possible (R2 = 0.56). The limit of detection was measured to be 210 fmol. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Habiballah Sistani
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Santosh Karki
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Jieutonne J Archer
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Fengjian Shi
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Robert J Levis
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
4
|
Karki S, Sistani H, Archer JJ, Shi F, Levis RJ. Isolating Protein Charge State Reduction in Electrospray Droplets Using Femtosecond Laser Vaporization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:470-478. [PMID: 28063091 DOI: 10.1007/s13361-016-1576-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Charge state distributions are measured using mass spectrometry for both native and denatured cytochrome c and myoglobin after laser vaporization from the solution state into an electrospray (ES) plume consisting of a series of solution additives differing in gas-phase basicity. The charge distribution depends on both the pH of the protein solution prior to laser vaporization and the gas-phase basicity of the solution additive employed in the ES solvent. Cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 resulted in the average charge state distribution (Zavg) of 7.0 ± 0.1 (8.2 ± 0.1), 9.7 ± 0.2 (14.5 ± 0.3), and 11.6 ± 0.3 (16.4 ± 0.1), respectively, in ammonium formate ES solvent. The charge distribution shifted from higher charge states to lower charge states when the ES solvent contained amines additives with higher gas-phase basicity. In the case of triethyl ammonium formate, Zavg of cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 decreased to 4.9 (5.7), 7.4 ± 0.2 (9.6 ± 0.3), and 7.9 ± 0.3 (9.8 ± 0.2), respectively. The detection of a charge state distribution corresponding to folded protein after laser vaporized, acid-denatured protein interacts with the ES solvent containing ammonium formate, ammonium acetate, triethyl ammonium formate, and triethyl ammonium acetate suggests that at least a part of protein population folds within the electrospray droplet on a millisecond timescale. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Santosh Karki
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Habiballah Sistani
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Jieutonne J Archer
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Fengjian Shi
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Robert J Levis
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
5
|
Shi F, Flanigan PM, Archer JJ, Levis RJ. Ambient Molecular Analysis of Biological Tissue Using Low-Energy, Femtosecond Laser Vaporization and Nanospray Postionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:542-551. [PMID: 26667178 DOI: 10.1007/s13361-015-1302-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Direct analysis of plant and animal tissue samples by laser electrospray mass spectrometry (LEMS) was investigated using low-energy, femtosecond duration laser vaporization at wavelengths of 800 and 1042 nm followed by nanospray postionization. Low-energy (<50 μJ), fiber-based 1042 nm LEMS (F-LEMS) allowed interrogation of the molecular species in fresh flower petal and leaf samples using 435 fs, 10 Hz bursts of 20 pulses from a Ytterbium-doped fiber laser and revealed comparable results to high energy (75-1120 μJ), 45 fs, 800 nm Ti:Sapphire-based LEMS (Ti:Sapphire-LEMS) measurements. Anthocyanins, sugars, and other metabolites were successfully detected and revealed the anticipated metabolite profile for the petal and leaf samples. Phospholipids, especially phosphatidylcholine, were identified from a fresh mouse brain section sample using Ti:Sapphire-LEMS without the application of matrix. These lipid features were suppressed in both the fiber-based and Ti:Sapphire-based LEMS measurements when the brain sample was prepared using the optimal cutting temperature compounds that are commonly used in animal tissue cryosections.
Collapse
Affiliation(s)
- Fengjian Shi
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
| | - Paul M Flanigan
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Signature Science, LLC., 2819 Fire Rd, Egg Harbor Township, NJ, 08234, USA
| | - Jieutonne J Archer
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
| | - Robert J Levis
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
- Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
| |
Collapse
|
6
|
Shi F, Archer JJ, Levis RJ. Nonresonant, femtosecond laser vaporization and electrospray post-ionization mass spectrometry as a tool for biological tissue imaging. Methods 2016; 104:79-85. [PMID: 26931651 DOI: 10.1016/j.ymeth.2016.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 12/30/2022] Open
Abstract
An ambient mass spectrometry imaging (MSI) source is demonstrated with both high spatial and mass resolution that enables measurement of the compositional heterogeneity within a biological tissue sample. The source is based on nonresonant, femtosecond laser electrospray mass spectrometry (LEMS) coupled to a quadrupole time-of-flight (QTOF) mass analyzer. No matrix deposition and minimal sample preparation is necessary for the source. The laser, translation stage, and mass spectrometer are synchronized and controlled using a customized user interface. Single or multiple laser shots may be applied to each pixel. A scanning rate of 2.0s per pixel is achieved. Measurement of a patterned ink film indicates the potential of LEMS for ambient imaging with a lateral resolution of ∼60μm. Metabolites including sugar, anthocyanins and other small metabolites were successfully mapped from plant samples without oversampling using a spot size of 60×70μm(2). Molecular identification of the detected analytes from the tissue was enabled by accurate mass measurement in conjunction with tandem mass spectrometry. Statistical analysis, non-negative matrix factorization and principle component analysis, were applied to the imaging data to extract regions with distinct and/or correlated spectral profiles.
Collapse
Affiliation(s)
- Fengjian Shi
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA 19122, United States
| | - Jieutonne J Archer
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA 19122, United States
| | - Robert J Levis
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA 19122, United States.
| |
Collapse
|
7
|
Flanigan PM, Shi F, Archer JJ, Levis RJ. Internal energy deposition for low energy, femtosecond laser vaporization and nanospray post-ionization mass spectrometry using thermometer ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:716-724. [PMID: 25724375 DOI: 10.1007/s13361-015-1081-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
The internal energy of p-substituted benzylpyridinium ions after laser vaporization using low energy, femtosecond duration laser pulses of wavelengths 800 and 1042 nm was determined using the survival yield method. Laser vaporization of dried benzylpyridinium ions from metal slides into a buffered nanospray with 75 μJ, 800 nm laser pulses resulted in a higher extent of fragmentation than conventional nanospray due to the presence of a two-photon resonance fragmentation pathway. Using higher energy 800 nm laser pulses (280 and 505 μJ) led to decreased survival yields for the four different dried benzylpyridinium ions. Analyzing dried thermometer ions with 46.5 μJ, 1042 nm pulse-bursts resulted in little fragmentation and mean internal energy distributions equivalent to nanospray, which is attributable to the absence of a two-photon resonance that occurs with higher energy, 800 nm laser pulses. Vaporization of thermometer ions from solution with either 800 nm or 1042 nm laser pulses resulted in comparable internal energy distributions to nanospray ionization.
Collapse
Affiliation(s)
- Paul M Flanigan
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
| | | | | | | |
Collapse
|
8
|
Karki S, Flanigan PM, Perez JJ, Archer JJ, Levis RJ. Increasing protein charge state when using laser electrospray mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:706-715. [PMID: 25753972 DOI: 10.1007/s13361-015-1084-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
Femtosecond (fs) laser vaporization is used to transfer cytochrome c, myoglobin, lysozyme, and ubiquitin from the condensed phase into an electrospray (ES) plume consisting of a mixture of a supercharging reagent, m-nitrobenzyl alcohol (m-NBA), and trifluoroacetic acid (TFA), acetic acid (AA), or formic acid (FA). Interaction of acid-sensitive proteins like cytochrome c and myoglobin with the highly charged ES droplets resulted in a shift to higher charge states in comparison with acid-stable proteins like lysozyme and ubiquitin. Laser electrospray mass spectrometry (LEMS) measurements showed an increase in both the average charge states (Zavg) and the charge state with maximum intensity (Zmode) for acid-sensitive proteins compared with conventional electrospray ionization mass spectrometry (ESI-MS) under equivalent solvent conditions. A marked increase in ion abundance of higher charge states was observed for LEMS in comparison with conventional electrospray for cytochrome c (ranging from 19+ to 21+ versus 13+ to 16+) and myoglobin (ranging from 19+ to 26+ versus 18+ to 21+) using an ES solution containing m-NBA and TFA. LEMS measurements as a function of electrospray flow rate yielded increasing charge states with decreasing flow rates for cytochrome c and myoglobin.
Collapse
Affiliation(s)
- Santosh Karki
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | | | | | | | | |
Collapse
|
9
|
Shi F, Flanigan PM, Archer JJ, Levis RJ. Direct analysis of intact biological macromolecules by low-energy, fiber-based femtosecond laser vaporization at 1042 nm wavelength with nanospray postionization mass spectrometry. Anal Chem 2015; 87:3187-94. [PMID: 25688836 DOI: 10.1021/ac502563c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A fiber-based laser with a pulse duration of 435 fs and a wavelength of 1042 nm was used to vaporize biological macromolecules intact from the condensed phase into the gas phase for nanospray postionization and mass analysis. Laser vaporization of dried standard protein samples from a glass substrate by 10 Hz bursts of 20 pulses having 10 μs pulse separation and <50 μJ pulse energy resulted in signal comparable to a metal substrate. The protein signal observed from an aqueous droplet on a glass substrate was negligible compared to either a droplet on metal or a thin film on glass. The mass spectra generated from dried and aqueous protein samples by the low-energy, fiber laser were similar to the results from high-energy (500 μJ), 45-fs, 800-nm Ti:sapphire-based femtosecond laser electrospray mass spectrometry (LEMS) experiments, suggesting that the fiber-based femtosecond laser desorption mechanism involves a nonresonant, multiphoton process, rather than thermal- or photoacoustic-induced desorption. Direct analysis of whole blood performed without any pretreatment resulted in features corresponding to hemoglobin subunit-heme complex ions. The observation of intact molecular ions with low charge states from protein, and the tentatively assigned hemoglobin α subunit-heme complex from blood suggests that fiber-based femtosecond laser vaporization is a "soft" desorption source at a laser intensity of 2.39 × 10(12) W/cm(2). The low-energy, turnkey fiber laser demonstrates the potential of a more robust and affordable laser for femtosecond laser vaporization to deliver biological macromolecules into the gas phase for mass analysis.
Collapse
Affiliation(s)
- Fengjian Shi
- †Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States.,‡Center for Advanced Photonics Research, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Paul M Flanigan
- †Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States.,‡Center for Advanced Photonics Research, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Jieutonne J Archer
- †Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States.,‡Center for Advanced Photonics Research, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Robert J Levis
- †Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States.,‡Center for Advanced Photonics Research, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
10
|
Flanigan PM, Shi F, Perez JJ, Karki S, Pfeiffer C, Schafmeister C, Levis RJ. Determination of internal energy distributions of laser electrospray mass spectrometry using thermometer ions and other biomolecules. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1572-1582. [PMID: 25012513 DOI: 10.1007/s13361-014-0936-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/02/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
The internal energy distributions for dried and liquid samples that were vaporized with femtosecond duration laser pulses centered at 800 nm and postionized by electrospray ionization-mass spectrometry (LEMS) were measured and compared with conventional electrospray ionization mass spectrometry (ESI-MS). The internal energies of the mass spectral techniques were determined by plotting the ratio of the intact parent molecular features to all integrated ion intensities of the fragments as a function of collisional energy using benzylpyridinium salts and peptides. Measurements of dried p-substituted benzylpyridinium salts using LEMS resulted in a greater extent of fragmentation in addition to the benzyl cation. The mean relative internal energies, <E(int)> were determined to be 1.62 ± 0.06, 2.0 ± 0.5, and 1.6 ± 0.3 eV for ESI-MS, dried LEMS, and liquid LEMS studies, respectively. Two-photon resonances with the laser pulses likely caused lower survival yields in LEMS analyses of dried samples but not liquid samples. In studies with larger biomolecules, LEMS analyses of dried samples from glass showed a decrease in survival yield compared with conventional ESI-MS for leucine enkephalin and bradykinin of ~15% and 11%, respectively. The survival yields for liquid LEMS analyses were comparable to or better than ESI-MS for benzylpyridinium salts and large biomolecules.
Collapse
Affiliation(s)
- Paul M Flanigan
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Bhardwaj C, Hanley L. Ion sources for mass spectrometric identification and imaging of molecular species. Nat Prod Rep 2014; 31:756-67. [PMID: 24473154 DOI: 10.1039/c3np70094a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2013 The ability to transfer molecular species to the gas phase and ionize them is central to the study of natural products and other molecular species by mass spectrometry (MS). MS-based strategies in natural products have focused on a few established ion sources, such as electron impact and electrospray ionization. However, a variety of other ion sources are either currently in use to evaluate natural products or show significant future promise. This review discusses these various ion sources in the context of other articles in this special issue, but is also applicable to other fields of analysis, including materials science. Ion sources are grouped based on the current understanding of their predominant ion formation mechanisms. This broad overview groups ion sources into the following categories: electron ionization and single photon ionization; chemical ionization-like and plasma-based; electrospray ionization; and, laser desorption-based. Laser desorption-based methods are emphasized with specific examples given for laser desorption postionization sources and their use in the analysis of intact microbial biofilms. Brief consideration is given to the choice of ion source for various sample types and analyses, including MS imaging.
Collapse
Affiliation(s)
- Chhavi Bhardwaj
- Department of Chemistry, University of Illinois at Chicago, mc 111, Chicago, IL 60607-7061.
| | | |
Collapse
|
12
|
Flanigan P, Levis R. Ambient femtosecond laser vaporization and nanosecond laser desorption electrospray ionization mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:229-256. [PMID: 25014343 DOI: 10.1146/annurev-anchem-071213-020343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of <100 fs to enable matrix-free laser vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 10(13) W cm(-2) desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.
Collapse
Affiliation(s)
- Paul Flanigan
- Center for Advanced Photonics Research, Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122; ,
| | | |
Collapse
|
13
|
Cui Y, Bhardwaj C, Milasinovic S, Carlson RP, Gordon RJ, Hanley L. Molecular imaging and depth profiling of biomaterials interfaces by femtosecond laser desorption postionization mass spectrometry. ACS APPLIED MATERIALS & INTERFACES 2013; 5:9269-9275. [PMID: 23947564 DOI: 10.1021/am4020633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mass spectrometry (MS) imaging is increasingly being applied to probe the interfaces of biomaterials with invasive microbial biofilms, human tissue, or other biological materials. Laser desorption vacuum ultraviolet postionization with ∼75 fs, 800 nm laser pulses (fs-LDPI-MS) was used to collect MS images of a yeast-Escherichia coli co-culture biofilm. The method was also used to depth profile a three-dimensionally structured, multispecies biofilm. Finally, fs-LDPI-MS analyses of yeast biofilms grown under different conditions were compared with LDPI-MS using ultraviolet, nanosecond pulse length laser desorption as well as with fs laser desorption ionization without postionization. Preliminary implications for the use of fs-LDPI-MS for the analysis of biomaterials interfaces are discussed and contrasted with established methods in MS imaging.
Collapse
Affiliation(s)
- Yang Cui
- Department of Chemistry, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | | | | | | | | | | |
Collapse
|
14
|
Perez JJ, Flanigan PM, Karki S, Levis RJ. Laser electrospray mass spectrometry minimizes ion suppression facilitating quantitative mass spectral response for multicomponent mixtures of proteins. Anal Chem 2013; 85:6667-73. [PMID: 23751016 DOI: 10.1021/ac400401h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comparison of the mass spectral response for myoglobin, cytochrome c, and lysozyme is presented for laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Analysis of multicomponent protein solutions using nonresonant femtosecond (fs) laser vaporization with electrospray postionization mass spectrometry exhibited significantly reduced ion suppression effects in comparison with conventional ESI analysis, enabling quantitative measurements over 4 orders of magnitude in concentration. No significant charge reduction was observed in the LEMS experiment while the ESI measurement revealed charge reduction for myoglobin and cytochrome c as a function of increasing protein concentration. Conventional ESI-MS of each analyte from a multicomponent solution reveals that the ion signal detected for myoglobin and cytochrome c reaches a plateau and then begins to decrease with increasing protein concentration preventing quantitative analysis. The ESI mass spectral response for lysozyme from the mixture initially decreased, before increasing, with increasing multicomponent solution concentration.
Collapse
Affiliation(s)
- Johnny J Perez
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | | | | | | |
Collapse
|
15
|
Flanigan PM, Perez JJ, Karki S, Levis RJ. Quantitative measurements of small molecule mixtures using laser electrospray mass spectrometry. Anal Chem 2013; 85:3629-37. [PMID: 23452308 DOI: 10.1021/ac303443q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Quantitative measurements of atenolol, tioconazole, tetraethylammonium bromide, and tetrabutylammonium iodide using laser electrospray mass spectrometry (LEMS) reveal monotonic signal response as a function of concentration for single analytes, two- and four-component equimolar mixtures, and two-component variable molarity mixtures. LEMS analyses of single analytes as a function of concentration were linear over ~2.5 orders of magnitude for all four analytes and displayed no sign of saturation. Corresponding electrospray ionization (ESI) measurements displayed a nonmonotonic increase as saturation occurred at higher concentrations. In contrast to the LEMS experiments, the intensity ratios from control experiments using conventional ESI-MS deviated from expected values for the equimolar mixture measurements due to ion suppression of less surface active analytes, particularly in the analysis of the four-component mixture. In the analyses of two-component nonequimolar mixtures, both techniques were able to determine the concentration ratios after adjustment with response factors although conventional ESI-MS was subject to a greater degree of saturation and ion suppression at higher analyte concentrations.
Collapse
Affiliation(s)
- Paul M Flanigan
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, Pennsylvania 19122, United States
| | | | | | | |
Collapse
|
16
|
Liu J, Zhang C, Sun J, Ren X, Luo H. Laser desorption dual spray post-ionization mass spectrometry for direct analysis of samples via two informative channels. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:250-254. [PMID: 23378098 DOI: 10.1002/jms.3145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/08/2012] [Accepted: 11/20/2012] [Indexed: 06/01/2023]
Abstract
A laser desorption dual spray post-ionization mass spectrometry method is described, and its usefulness is demonstrated with the examples of selective detection of food components, manipulation of protein charge state distribution and investigation on the formation of magic number clusters. The method is carried out by adopting two spray emitters for post-ionization of analytes desorbed by a pulsed infrared laser. Various components in a complex sample or distinct behavior of an analyte in two different spray reagents can be rapidly probed by the method quasi-simultaneously, highlighting the potential applications of this method for protein characterization, reaction study and food analysis.
Collapse
Affiliation(s)
- Jia Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
17
|
Monge ME, Harris GA, Dwivedi P, Fernández FM. Mass Spectrometry: Recent Advances in Direct Open Air Surface Sampling/Ionization. Chem Rev 2013; 113:2269-308. [DOI: 10.1021/cr300309q] [Citation(s) in RCA: 404] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- María Eugenia Monge
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Glenn A. Harris
- Department
of Biochemistry and
the Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Prabha Dwivedi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| |
Collapse
|
18
|
Perez JJ, Flanigan PM, Brady JJ, Levis RJ. Classification of Smokeless Powders Using Laser Electrospray Mass Spectrometry and Offline Multivariate Statistical Analysis. Anal Chem 2012; 85:296-302. [DOI: 10.1021/ac302661k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Johnny J. Perez
- Center for
Advanced Photonics
Research, Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, Pennsylvania 19122, United States
| | - Paul M. Flanigan
- Center for
Advanced Photonics
Research, Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, Pennsylvania 19122, United States
| | - John J. Brady
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland
20783, United States
| | - Robert J. Levis
- Center for
Advanced Photonics
Research, Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
19
|
Flanigan PM, Radell LL, Brady JJ, Levis RJ. Differentiation of Eight Phenotypes and Discovery of Potential Biomarkers for a Single Plant Organ Class Using Laser Electrospray Mass Spectrometry and Multivariate Statistical Analysis. Anal Chem 2012; 84:6225-32. [DOI: 10.1021/ac3012335] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Paul M. Flanigan
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia,
Pennsylvania 19122, United States
| | - Laine L. Radell
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia,
Pennsylvania 19122, United States
| | - John J. Brady
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland
20783, United States
| | - Robert J. Levis
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia,
Pennsylvania 19122, United States
| |
Collapse
|
20
|
Milasinovic S, Liu Y, Bhardwaj C, Melvin BM, Gordon RJ, Hanley L. Feasibility of depth profiling of animal tissue by ultrashort pulse laser ablation. Anal Chem 2012; 84:3945-51. [PMID: 22482364 PMCID: PMC3371643 DOI: 10.1021/ac300557a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Experiments were performed to examine the feasibility of mass spectrometry (MS) depth profiling of animal tissue by ~75 fs, 800 nm laser pulses to expose underlying layers of tissue for subsequent MS analysis. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) was used to analyze phospholipids and proteins from both intact bovine eye lens tissue and tissue ablated by ultrashort laser pulses. Laser desorption postionization mass spectrometry (LDPI-MS) with 10.5 eV single photon ionization was also used to analyze cholesterol and other small molecules in the tissue before and after laser ablation. Scanning electron microscopy was applied to examine the ablation patterns in the tissue and estimate the depth of the ablation craters. Ultrashort pulse laser ablation was found to be able to remove a layer of several tens of micrometers from the surface of eye lens tissue while leaving the underlying tissue relatively undamaged for subsequent MS analysis. MS analysis of cholesterol, phospholipids, peptides, and various unidentified species did not reveal any chemical damage caused by ultrashort pulse laser ablation for analytes smaller than ~6 kDa. However, a drop in intensity of larger protein ions was detected by MALDI-MS following laser ablation. An additional advantage was that ablated tissue displayed up to an order of magnitude higher signal intensities than intact tissue when subsequently analyzed by MS. These results support the use of ultrashort pulse laser ablation in combination with MS analysis to permit depth profiling of animal tissue.
Collapse
Affiliation(s)
- Slobodan Milasinovic
- Department of Chemistry, m/c 111, University of Illinois at Chicago, Chicago, IL 60607-7061
| | - Yaoming Liu
- Department of Chemistry, m/c 111, University of Illinois at Chicago, Chicago, IL 60607-7061
| | - Chhavi Bhardwaj
- Department of Chemistry, m/c 111, University of Illinois at Chicago, Chicago, IL 60607-7061
| | - Blaze M.T. Melvin
- Department of Chemistry, m/c 111, University of Illinois at Chicago, Chicago, IL 60607-7061
| | - Robert J. Gordon
- Department of Chemistry, m/c 111, University of Illinois at Chicago, Chicago, IL 60607-7061
| | - Luke Hanley
- Department of Chemistry, m/c 111, University of Illinois at Chicago, Chicago, IL 60607-7061
| |
Collapse
|
21
|
Lee YJ, Perdian DC, Song Z, Yeung ES, Nikolau BJ. Use of mass spectrometry for imaging metabolites in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:81-95. [PMID: 22449044 DOI: 10.1111/j.1365-313x.2012.04899.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We discuss and illustrate recent advances that have been made to image the distribution of metabolites among cells and tissues of plants using different mass spectrometry technologies. These technologies include matrix-assisted laser desorption ionization, desorption electrospray ionization, and secondary ion mass spectrometry. These are relatively new technological applications of mass spectrometry and they are providing highly spatially resolved data concerning the cellular distribution of metabolites. We discuss the advantages and limitations of each of these mass spectrometric methods, and provide a description of the technical barriers that are currently limiting the technology to the level of single-cell resolution. However, we anticipate that advances in the next few years will increase the resolving power of the technology to provide unprecedented data on the distribution of metabolites at the subcellular level, which will increase our ability to decipher new knowledge concerning the spatial organization of metabolic processes in plants.
Collapse
Affiliation(s)
- Young Jin Lee
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
22
|
Dill AL, Eberlin LS, Costa AB, Ifa DR, Cooks RG. Data quality in tissue analysis using desorption electrospray ionization. Anal Bioanal Chem 2011; 401:1949-61. [PMID: 21789488 PMCID: PMC10701858 DOI: 10.1007/s00216-011-5249-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 12/16/2022]
Abstract
There has been a recent surge in applications of mass spectrometry (MS) to tissue analysis, particularly lipid-based tissue imaging using ambient ionization techniques. This recent growth highlights the need to examine the effects of sample handling, storage conditions, and experimental protocols on the quality of the data obtained. Variables such as time before freezing after organ removal, storage time at -80 °C, time stored at room temperature, heating, and freeze/thaw cycles were investigated for their effect on the data quality obtained in desorption electrospray ionization (DESI)-MS using mouse brain. In addition, analytical variables such as tissue thickness, drying times, and instrumental conditions were also examined for their impact on DESI-MS data. While no immediate changes were noted in the DESI-MS lipid profiles of the mouse brain tissue after spending 1 h at room temperature when compared to being frozen immediately following removal, minor changes were noted between the tissue samples after 7 months of storage at -80 °C. In tissue sections stored at room temperature, degradation was noted in 24 h by the appearance of fatty acid dimers, which are indicative of high fatty acid concentrations, while in contrast, those sections stored at -80 °C for 7 months showed no significant degradation. Tissue sections were also subjected to up to six freeze/thaw cycles and showed increasing degradation following each cycle. In addition, tissue pieces were subjected to 50 °C temperatures and analyzed at specific time points. In as little as 2 h, degradation was observed in the form of increased fatty acid dimer formation, indicating that enzymatic processes forming free fatty acids were still active in the tissue. We have associated these dimers with high concentrations of free fatty acids present in the tissue during DESI-MS experiments. Analytical variables such as tissue thickness and time left to dry under nitrogen were also investigated, with no change in the resulting profiles at thickness from 10 to 25 μm and with optimal signal obtained after just 20 min in the dessicator. Experimental conditions such as source parameters, spray solvents, and sample surfaces are all shown to impact the quality of the data. Inter-section (relative standard deviation (%RSD), 0.44-7.2%) and intra-sample (%RSD, 4.0-8.0%) reproducibility data show the high quality information DESI-MS provides. Overall, the many variables investigated here showed DESI-MS to be a robust technique, with sample storage conditions having the most effect on the data obtained, and with unacceptable sample degradation occurring during room temperature storage.
Collapse
Affiliation(s)
- Allison L Dill
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
23
|
Liu J, Wang H, Cooks RG, Ouyang Z. Leaf Spray: Direct Chemical Analysis of Plant Material and Living Plants by Mass Spectrometry. Anal Chem 2011; 83:7608-13. [PMID: 21916420 DOI: 10.1021/ac2020273] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jiangjiang Liu
- Weldon School of Biomedical Engineering, ‡Department of Chemistry, and §Center for Analytical Instrumentation Development, Purdue University, West Lafayette, Indiana 47907, United States
| | - He Wang
- Weldon School of Biomedical Engineering, ‡Department of Chemistry, and §Center for Analytical Instrumentation Development, Purdue University, West Lafayette, Indiana 47907, United States
| | - R. Graham Cooks
- Weldon School of Biomedical Engineering, ‡Department of Chemistry, and §Center for Analytical Instrumentation Development, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zheng Ouyang
- Weldon School of Biomedical Engineering, ‡Department of Chemistry, and §Center for Analytical Instrumentation Development, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
24
|
Flanigan PM, Brady JJ, Judge EJ, Levis RJ. Determination of Inorganic Improvised Explosive Device Signatures Using Laser Electrospray Mass Spectrometry Detection with Offline Classification. Anal Chem 2011; 83:7115-22. [DOI: 10.1021/ac2014299] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Paul M. Flanigan
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - John J. Brady
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Elizabeth J. Judge
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Robert J. Levis
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
25
|
Nonresonant femtosecond laser vaporization of aqueous protein preserves folded structure. Proc Natl Acad Sci U S A 2011; 108:12217-22. [PMID: 21746908 DOI: 10.1073/pnas.1105673108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Femtosecond laser vaporization-based mass spectrometry can be used to measure protein conformation in vitro at atmospheric pressure. Cytochrome c and lysozyme are vaporized from the condensed phase into the gas phase intact when exposed to an intense (10(13) W/cm(2)), nonresonant (800 nm), ultrafast (75 fs) laser pulse. Electrospray postionization time-of-flight mass spectrometry reveals that the vaporized protein maintains the solution-phase conformation through measurement of the charge-state distribution and the collision-induced dissociation channels.
Collapse
|