1
|
Lou H, Wu Y, Kuczera K, Schöneich C. Coarse-Grained Molecular Dynamics Simulation of Heterogeneous Polysorbate 80 Surfactants and their Interactions with Small Molecules and Proteins. Mol Pharm 2024; 21:5041-5052. [PMID: 39208298 DOI: 10.1021/acs.molpharmaceut.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Polysorbate 80 (PS80) is widely used in pharmaceutical formulations, and its commercial grades exhibit certain levels of structural heterogeneity. The objective of this study was to apply coarse-grained molecular dynamics simulations to better understand the effect of PS80 heterogeneity on micelle self-assembly, the loading of hydrophobic small molecules into the micelle core, and the interactions between PS80 and a protein, bovine serum albumin (BSA). Four representative PS80 variants with different head and tail structures were studied. Our simulations found that PS80 structural heterogeneity could affect blank micelle properties such as solvent-accessible surface area, aggregation number, and micelle aspect ratio. It was also found that hydrophobic small molecules such as ethinyl estradiol preferentially partitioned into the PS80 micelle core and PS80 dioleates formed a more hydrophobic core compared to PS80 monooleates. Furthermore, multiple PS80 molecules could bind to BSA, and PS80 heterogeneity profoundly changed the binding ratio as well as the surfactant-protein contact area.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Yaqi Wu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Krzysztof Kuczera
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
2
|
Wang SQ, Zhao X, Zhang LJ, Zhao YM, Chen L, Zhang JL, Wang BC, Tang S, Yuan T, Yuan Y, Zhang M, Lee HK, Shi HW. Discrimination of polysorbate 20 by high-performance liquid chromatography-charged aerosol detection and characterization for components by expanding compound database and library. J Pharm Anal 2024; 14:100929. [PMID: 38799234 PMCID: PMC11126531 DOI: 10.1016/j.jpha.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
Analyzing polysorbate 20 (PS20) composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance. The similar structures and polarities of PS20 components make accurate separation, identification, and quantification challenging. In this work, a high-resolution quantitative method was developed using single-dimensional high-performance liquid chromatography (HPLC) with charged aerosol detection (CAD) to separate 18 key components with multiple esters. The separated components were characterized by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) with an identical gradient as the HPLC-CAD analysis. The polysorbate compound database and library were expanded over 7-time compared to the commercial database. The method investigated differences in PS20 samples from various origins and grades for different dosage forms to evaluate the composition-process relationship. UHPLC-Q-TOF-MS identified 1329 to 1511 compounds in 4 batches of PS20 from different sources. The method observed the impact of 4 degradation conditions on peak components, identifying stable components and their tendencies to change. HPLC-CAD and UHPLC-Q-TOF-MS results provided insights into fingerprint differences, distinguishing quasi products.
Collapse
Affiliation(s)
- Shi-Qi Wang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211112, China
| | - Xun Zhao
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Li-Jun Zhang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211112, China
| | - Yue-Mei Zhao
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Lei Chen
- Chinese Pharmacopoeia Commission, Beijing, 100061, China
| | - Jin-Lin Zhang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Bao-Cheng Wang
- Nanjing Well Pharmaceutical Group Co., Ltd., Nanjing, 210018, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Tom Yuan
- University of Massachusetts Amherst, Amherst, 01003, USA
| | - Yaozuo Yuan
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Mei Zhang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Hai-Wei Shi
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| |
Collapse
|
3
|
Lynch CC, Khirich G, Lee RT. Quantification of Biopharmaceutically Relevant Nonionic Surfactant Excipients Using Benchtop qNMR. Anal Chem 2024; 96:6746-6755. [PMID: 38632675 DOI: 10.1021/acs.analchem.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Nonionic surfactant excipients (NISEs) are commonly added to biologics formulations to mitigate the effects of stress incurred by the active biotherapeutic during manufacturing, transport, and storage. During manufacturing, NISEs are added by dilution of a stock solution directly into a protein formulation, and their accurate addition is critical in maintaining the quality and integrity of the drug product and thus ensuring patient safety. This is especially true for the common NISEs, polysorbates 20 and 80 (PS20 and PS80, respectively) and poloxamer 188 (P188). With the increasing diversity of biologic modalities within modern pharmaceutical pipelines, there is thus a critical need to develop and deploy convenient and user-accessible analytical techniques that can rapidly and reliably quantify these NISEs under biopharmaceutically relevant conditions. We thus pursued 60 MHz benchtop quantitative NMR (qNMR) as a nondestructive and user-friendly analytical technique for the quantification of PS20, PS80, and P188 under such conditions. We demonstrated the ability of benchtop qNMR (1) to quantify simulated PS20, PS80, and P188 stock solutions representative of those used during the drug substance (DS) formulation step in biomanufacturing and (2) to quantify these NISEs at and below their target concentrations (≤0.025% w/v) directly in biologics formulations containing histidine, sucrose, and one of three biotherapeutic modalities (monoclonal antibody, antibody-drug conjugate, and Fc-fusion protein). Our results demonstrate that benchtop qNMR offers a fit-for-purpose, reliable, user-friendly, and green analytical route by which NISE of interest to the biopharmaceutical industry may be readily and reliably quantified. We conclude that benchtop qNMR has the potential to be applied to other excipient formulation components in the presence of various biological modalities as well as the potential for routine integration within analytical and QC laboratories across pharmaceutical development and manufacturing sites.
Collapse
Affiliation(s)
- Ciarán C Lynch
- Analytical Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gennady Khirich
- Analytical Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ryan T Lee
- Analytical Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
4
|
Zegota MM, Schuster G, De Pra M, Müllner T, Menzen T, Steiner F, Hawe A. High throughput multidimensional liquid chromatography approach for online protein removal and characterization of polysorbates and poloxamer in monoclonal antibody formulations. J Chromatogr A 2024; 1720:464777. [PMID: 38432108 DOI: 10.1016/j.chroma.2024.464777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The majority of commercially available monoclonal antibody (mAb) formulations are stabilized with one of three non-ionic surfactants: polysorbate 20 (PS20), polysorbate 80 (PS80), or poloxamer 188 (P188). All three surfactants are susceptible to degradation, which can result in functionality loss and subsequent protein aggregation or free fatty acid particle formation. Consequently, quantitative, and qualitative analysis of surfactants is an integral part of formulation development, stability, and batch release testing. Due to the heterogeneous nature of both polysorbates and poloxamer, online isolation of all the compounds from the protein and other excipients that may disturb the subsequent liquid chromatography with charged aerosol detection (LC-CAD) analysis poses a challenge. Herein, we present an analytical method employing LC-CAD, utilizing a combination of anion and cation exchange columns to completely remove proteins online before infusing the isolated surfactant onto a reversed-phase column. The method allows high throughput analysis of polysorbates within 8 minutes and poloxamer 188 within 12 minutes, providing a separation of the surfactant species of polysorbates (unesterified species, lower esters, and higher esters) and poloxamer 188 (early eluters and main species). Accuracy and precision assessed according to the International Council for harmonisation (ICH) guideline were 96 - 109 % and ≤1 % relative standard deviation respectively for all three surfactants in samples containing up to 110 mg/mL mAb. Subsequently, the method was effectively applied to quantify polysorbate 20 and polysorbate 80 in nine commercial drug products with mAb concentration of up to 180 mg/mL.
Collapse
Affiliation(s)
| | - Georg Schuster
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Mauro De Pra
- Thermo Fisher Scientific, Dornierstraße 4, 82110 Germering, Germany
| | - Tibor Müllner
- Thermo Fisher Scientific, Dornierstraße 4, 82110 Germering, Germany
| | - Tim Menzen
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Frank Steiner
- Thermo Fisher Scientific, Dornierstraße 4, 82110 Germering, Germany
| | - Andrea Hawe
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| |
Collapse
|
5
|
Koelmel JP, Stelben P, Oranzi N, Kummer M, Godri D, Qi J, Rennie EE, Lin E, Weil D, Godri Pollitt KJ. PolyMatch: Novel Libraries, Algorithms, and Visualizations for Discovering Polymers and Chemical Series. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:413-420. [PMID: 38301121 DOI: 10.1021/jasms.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Polymers are integral components of everyday products, ranging from plastics and emulsifiers to lubricants and detergents. Characterization of these materials at the molecular level is essential to understanding their physicochemical properties and potential health impacts, considering factors such as the number of repeating units, chemical moieties, functional groups, and degree of unsaturation. This study introduces a free open-source vendor neutral software, PolyMatch, designed to annotate polysorbates, polysorbides, polyethylene glycols (PEGs), fatty acid esterified species, and related chemical species based on mass spectral and chromatographic patterns inherent in the repeating nature of chemical moieties. PolyMatch facilitates the generation of MS/MS libraries for polymeric chemical species characterization (with over 800 000 structures with associated fragment masses already built in) and covers the entire liquid chromatography-high-resolution mass spectrometry (LC-HRMS/MS) data-processing workflow. PolyMatch covers peak picking, blank filtering, annotation, data visualization, and sharing of interactive data sets via an HTML link to the community. The software was applied to a Tween 80 mixture, using LC-HRMS/MS on an Agilent 6546 Q-TOF instrument with iterative exclusion for comprehensive fragmentation coverage. PolyMatch automatically assigned 86 features with high confidence at the species level, 362 based on PEG containing fragments and accurate mass matching to a simulated polymer database, and over 10 000 based on being a member of a homologous series (three or more) with CH2CH2O repeating units. The ease of use of PolyMatch and comprehensive coverage with species level assignment is expected to contribute to the advancement of materials science, health research, and product development.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| | - Paul Stelben
- School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| | - Nicholas Oranzi
- University of Florida, Gainesville, Florida 32611-7011, United States
| | - Michael Kummer
- Innovative Omics Inc., Sarasota, Florida 34235, United States
| | - David Godri
- 3rd Floor Solutions, Caledon, Ontario L7E 3C8, Canada
| | - Jiarong Qi
- School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| | - Emma E Rennie
- Agilent Technologies Inc., Santa Clara, California 95051, United States
| | - Elizabeth Lin
- School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| | - David Weil
- Agilent Technologies Inc., Santa Clara, California 95051, United States
| | | |
Collapse
|
6
|
Sutton AT, Rustandi RR. Determining the Oxidation Mechanism through Radical Intermediates in Polysorbates 80 and 20 by Electron Paramagnetic Resonance Spectroscopy. Pharmaceuticals (Basel) 2024; 17:233. [PMID: 38399448 PMCID: PMC10892813 DOI: 10.3390/ph17020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Polysorbates 20 and 80 (PS20 and PS80) are added to many commercial biologic and vaccine pharmaceuticals. It is commonly known that these polysorbates undergo a radical oxidation mechanism; however, the identity of these radical intermediates has not been clearly determined. Furthermore, PS20 and PS80 differ by the presence of a lauric acid instead of an oleic acid, respectively. The oxidation of PS80 is thought to be centered around the double bond of the oleic acid even though PS20 also undergoes oxidation, making the mechanism of oxidation unclear for PS20. Using commercial stocks of PS20 and PS80 alkyl (R•), alkoxyl (C-O•) and peroxyl (C-OO•) radicals were detected by electron paramagnetic resonance spectroscopy likely originating from radical-initiating species already present in the material. When dissolved in water, the peroxyl radicals (C-OO•) originally in the stocks were not detected but poly(ethylene oxide) radicals were. An oxidative pathway for polysorbates was suggested based on the radical species identified in the polysorbate stock material and solutions.
Collapse
Affiliation(s)
- Adam T. Sutton
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA;
| | | |
Collapse
|
7
|
Luo F, Hao M, Zhang L, Xie Y, Hou W, Wang H, Zhang Z. Identification of nonvolatile organic compounds (NVOCs) in biopharmaceuticals through non-target analysis and quantification using complexation-precipitation extraction. J Chromatogr A 2024; 1713:464540. [PMID: 38039624 DOI: 10.1016/j.chroma.2023.464540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Single-use systems in biopharmaceutical manufacturing can potentially release chemical constituents (leachables) into drug products. Prior to conducting toxicological risk assessments, it is crucial to establish the qualitative and quantitative methods for these leachables. In this study, we conducted a comprehensive screening and structure elucidation of 23 leachables (nonvolatile organic compounds, NVOCs) in two antibody drugs using multiple (self-built and public) databases and mass spectral simulation. We identified 7 compounds that have not been previously reported in medical or medicinal extractables and leachables. The confidence levels for identified compounds were classified based on analytical standards, literature references, and fragment assignments. Most of the identified leachables were found to be plasticizers, antioxidants, slip agents or polymer degradants. Polysorbate (namely Tween) is commonly used as an excipient for protein stabilization in biopharmaceutical formulations, but its ionization in liquid chromatography-electrospray ionization mass spectrometry can interfere with compound quantification. To address this, we employed a complexation-precipitation extraction method to reduce polysorbate content and quantify the analytes. The developed quantitative method for target NVOCs demonstrated high sensitivity (limit of quantification: 20 or 50 μg/L), accuracy (recoveries: 77.2 to 109.5 %) and precision (RSD ≤ 8.2 %). Overall, this established method will facilitate the evaluation of NVOC safety in drug products.
Collapse
Affiliation(s)
- Feifei Luo
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China
| | - Mengmeng Hao
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China
| | - Lei Zhang
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China.
| | - Yangguo Xie
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China
| | - Wei Hou
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China
| | - Hongya Wang
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China
| | - Zhongli Zhang
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China.
| |
Collapse
|
8
|
Carle S, Evers DH, Hagelskamp E, Garidel P, Buske J. All-in-one stability indicating polysorbate 20 degradation root-cause analytics via UPLC-QDa. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123955. [PMID: 38128165 DOI: 10.1016/j.jchromb.2023.123955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Polysorbates (PS) are the most frequently used surfactants to stabilize biologicals. Ironically, these excellent stabilizing non-ionic surfactants have inherent structural properties, which lead to instabilities of their own. Such PS degradation can be triggered by multiple root-causes, like chemical and enzymatic hydrolysis or oxidative degradation. This can on the one hand reduce the concentration of surface-active PS and on the other hand lead to the formation of unfavorable degradants, like poorly soluble free fatty acids (FFA), which may phase separate and form visible FFA particles. Due to the potential criticality of PS degradation in biopharmaceutical formulations, various analytics have been established in recent years not only to monitor the PS content but also to evaluate specific PS markers and crucial degradants. However, in most cases sample preparations and several analytical assays have to be conducted to obtain a comprehensive picture of potential PS degradation root-causes. Here we show a novel approach for PS degradation UPLC-QDa based root-cause analytics, which utilizes previously established analytics for (i) most relevant polysorbate 20 (PS20) esters, (ii) PS20 free fatty acids and (iii) a newly developed method for the evaluation of PS20 specific oxidation markers. Thereby, this triad of analytical methods uses the same sample preparation and detector, which reduces the overall necessary effort, time investment and sample volume. Furthermore, the innovative PS20 oxidation marker method allows to quantify specific concentrations of the determined markers by external calibration and possible perception of oxidative degradation processes prior to relevant losses of PS20 esters, which could serve as an early indication during formulation development. The applicability of this method set was verified using several PS20 containing stress samples, which cover the most relevant root-causes, including acidic and alkaline hydrolysis, enzyme mediated hydrolysis, oxidative AAPH stress and Fe2+/H2O2 mediated degradation as well as autoxidation via long-term storage at elevated temperatures. Overall, this analytical setup has shown to deliver in-depth data about PS20 degradation, which can be used to narrow down the causative stress without the necessity of fundamentally different methods. Therefore, it can be seen as all-in-one solution during sometimes troublesome development of biopharmaceutical formulations, that supports the elucidation of the PS degradation mechanism(s) and thus establish mitigation strategies.
Collapse
Affiliation(s)
- Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Straße 65, 88400 Biberach, Germany.
| | - Dirk-H Evers
- RaDes GmbH, Schnackenburgallee 114, 22525 Hamburg, Germany.
| | | | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Straße 65, 88400 Biberach, Germany.
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Straße 65, 88400 Biberach, Germany.
| |
Collapse
|
9
|
Kopf R, Paschen C, Müller L, Kocar B, Wolfring M, Vincent M, Klemm D, Bell C, Pinto C. Leveraging mass detection to simultaneously quantify surfactant content and degradation mode for highly concentrated biopharmaceuticals. J Pharm Biomed Anal 2023; 236:115651. [PMID: 37688908 DOI: 10.1016/j.jpba.2023.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
Non-ionic surfactants are commonly used in parenteral protein formulations and include polysorbate 20, polysorbate 80 and poloxamer188. Recently, quantification and characterization of surfactants has generated considerable interest due to their connection to visible particle formation, a critical quality attribute for parenteral formulations. Typically, surfactant quantification is performed by mixed mode chromatography with evaporative light scattering detection (ELSD) or charged aerosol detection (CAD). However, these methods often suffer from loss of specificity in highly concentrated protein formulations. Here we present a mixed mode chromatography method using single quad mass detection, overcoming current limitations for highly concentrated proteins. In addition to content determination of intact surfactants, this method allows to quantify and characterize the predominant degradation patterns of polysorbates within a single measurement. Formulations with up to 200 mg/mL active pharmaceutical product (API) containing surfactant levels between 0.16 and 0.64 mg/mL were tested during method qualification. The obtained results for linearity (r > 0.99), precision (max. 3.8 % RSD) and accuracy (96-116 % recovery) meet current requirements for pharmaceutical products as defined in ICH Q2.
Collapse
Affiliation(s)
- Robert Kopf
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland.
| | - Christoph Paschen
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Lavinia Müller
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Berk Kocar
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Martin Wolfring
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Mathilde Vincent
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Denis Klemm
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Christian Bell
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Cosimo Pinto
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| |
Collapse
|
10
|
Schöneich C. Primary Processes of Free Radical Formation in Pharmaceutical Formulations of Therapeutic Proteins. Biomolecules 2023; 13:1142. [PMID: 37509177 PMCID: PMC10376966 DOI: 10.3390/biom13071142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidation represents a major pathway for the chemical degradation of pharmaceutical formulations. Few specific details are available on the mechanisms that trigger oxidation reactions in these formulations, specifically with respect to the formation of free radicals. Hence, these mechanisms must be formulated based on information on impurities and stress factors resulting from manufacturing, transportation and storage. In more detail, this article focusses on autoxidation, metal-catalyzed oxidation, photo-degradation and radicals generated from cavitation as a result of mechanical stress. Emphasis is placed on probable rather than theoretically possible pathways.
Collapse
Affiliation(s)
- Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| |
Collapse
|
11
|
Konya Y, Ochiai R, Fujiwara S, Tsujino K, Okumura T. Profiling polysorbate 80 components using comprehensive liquid chromatography-tandem mass spectrometry analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9438. [PMID: 36410723 DOI: 10.1002/rcm.9438] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Polysorbate 80 (PS80) is an amphipathic, nonionic surfactant commonly used in pharmaceutical protein formulations and is composed of fatty acid (FA) esters of polyethoxylated sorbitan. However, commercial PS80 products contain substantial amounts of by-products. The development of simple and reliable methods for PS80 component analysis is challenging given the inherent heterogeneity. METHOD We developed a comprehensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to profile the components of PS80. Semi-comprehensive LC-MS/MS analyses of 11 subspecies in three commercial PS80 products were performed to estimate the average degree of polymerization of the ethylene oxide units (Avg-n) in the molecules. Furthermore, three subspecies (polyoxyethylene sorbitan monoester, polyoxyethylene isosorbide monoester, and polyoxyethylene monoester) were analyzed to estimate the composition ratios of the seven ester-bonded FAs present in PS80. RESULTS The Avg-n values of five polyoxyethylene sorbitan esters (none, mono, di, tri, and tetra), three polyoxyethylene isosorbide esters (none, mono, and di), and three polyoxyethylene esters (none, mono, and di) were 26.5-30.6, 12.1-14.6, and 11.4-15.8, respectively. These values were comparable regardless of the number of ester-bonded FAs. Each product had a similar FA composition ratio regardless of the differences in the subspecies. However, the obtained C18:2 values were higher than those reported in the product certificates. CONCLUSION The proposed LC-MS/MS method evaluated the overall PS80 components, revealing the possibility of underestimation of ester-bonded linoleic acid using the conventional gas chromatography-mass spectrometry method. The similarity of Avg-n values and FA compositions among subspecies suggested the high reliability of these results, indicating that the presented approach may help in the quality control of PS80 formulations.
Collapse
Affiliation(s)
- Yutaka Konya
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Ryosuke Ochiai
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Satoshi Fujiwara
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Kazushige Tsujino
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Takeshi Okumura
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| |
Collapse
|
12
|
Wuchner K, Yi L, Chery C, Nikels F, Junge F, Crotts G, Rinaldi G, Starkey JA, Bechtold-Peters K, Shuman M, Leiss M, Jahn M, Garidel P, de Ruiter R, Richer SM, Cao S, Peuker S, Huille S, Wang T, Brun VL. Industry Perspective on the Use and Characterization of Polysorbates for Biopharmaceutical Products Part 2: Survey Report on Control Strategy Preparing for the Future. J Pharm Sci 2022; 111:2955-2967. [PMID: 36002077 DOI: 10.1016/j.xphs.2022.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Polysorbate (PS) 20 and 80 are the main surfactants used to stabilize biopharmaceutical products. Industry practices on various aspects of PS based on a confidential survey and following discussions by 16 globally acting major biotechnology companies is presented in two publications. Part 1 summarizes the current practice and use of PS during manufacture in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS.1 The current part 2 of the survey focusses on understanding, monitoring, prediction, and mitigation of PS degradation pathways in order to propose an effective control strategy. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature.
Collapse
Affiliation(s)
- Klaus Wuchner
- Janssen R&D, DPDS BTDS Analytical Development, Hochstr. 201, 8200 Schaffhausen, Switzerland.
| | - Linda Yi
- Analytical Development, Biogen, Morrisville, NC 27709, USA
| | - Cyrille Chery
- UCB, Analytical Development Sciences for Biologicals, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Felix Nikels
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Friederike Junge
- Analytical Research and Development, NBE Analytical R&D, AbbVie Deutschland GmbH& Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - George Crotts
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Gianluca Rinaldi
- Merck Serono SpA, Guidonia Montecelio, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Jason A Starkey
- Pfizer, Inc. Biotherapeutics Pharmaceutical Sciences, Analytical Research and Development 875 W. Chesterfield Parkway, Chesterfield, MO 63017, USA
| | | | - Melissa Shuman
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Michael Leiss
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Michael Jahn
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Rien de Ruiter
- Byondis B.V., Downstream Processing, Nijmegen, the Netherlands
| | - Sarah M Richer
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Shawn Cao
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sebastian Peuker
- Bayer AG, Product Supply, Analytical Development and Clinical QC for Biotech Products, Friedrich-Ebert-Str. 217-233, 42117 Wuppertal, Germany
| | - Sylvain Huille
- Sanofi R&D, Biologics Drug Products Development,13 quai Jules Guesde, 94403 Vitry-sur Seine, France
| | - Tingting Wang
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Virginie Le Brun
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| |
Collapse
|
13
|
Abstract
Polysorbates (PSs), including PS20 and PS80, are non-ionic surfactants widely used in the pharmaceutical industry to enhance drug solubility and stability. Despite their wide application, PSs are prone to degradation by either hydrolysis or oxidation in drug formulations during storage; therefore, a PS characterization method assessing protein products is needed for stability testing and for understanding the degradation pathway. In this article, we detail our protocol for sample preparation for forced degradation study and our instrumentation setup for PS profiling and quantitation in protein samples. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Sample preparation for forced degradation of polysorbate in protein samples Basic Protocol 2: Two-dimensional liquid chromatography coupled with charged aerosol detector or mass spectrometry to analyze polysorbate degradation.
Collapse
Affiliation(s)
- Sisi Zhang
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Hui Xiao
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Ning Li
- Regeneron Pharmaceuticals Inc., Tarrytown, New York
| |
Collapse
|
14
|
Peters BH, Wei Y, Middaugh CR, Schöneich C. Intra-micellar and extra-micellar oxidation in phosphate and histidine buffers containing polysorbate 80. J Pharm Sci 2022; 111:2435-2444. [PMID: 35716732 DOI: 10.1016/j.xphs.2022.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/15/2022]
Abstract
Polysorbate is a key excipient included in formulations of therapeutic proteins to help prevent aggregation and surface adsorption. The stability of both polysorbate and therapeutic proteins can be compromised by oxidative degradation. In general, polysorbate is added to formulations at concentrations above the critical micelle concentration (cmc). To date, however, few experiments have quantitatively addressed the extent of extra- and intra-micellar oxidation of polysorbate in pharmaceutically relevant buffers. This study utilizes 2,2'-azobis(2-methylpropionamidine)dihydrochloride (AAPH), a peroxyl radical-generating initiator, C11-BODIPY(581/591), a lipid peroxidation probe, and fluorescence spectroscopy to reveal that both intra- and extra-micellar oxidation proceed in pharmaceutically relevant phosphate and histidine buffers. It is further demonstrated that the relative extent of oxidation observed in the intra- and extra-micellar compartments is similar irrespective of the buffer system.
Collapse
Affiliation(s)
- Björn-Hendrik Peters
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047
| | - Yangjie Wei
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047.
| |
Collapse
|
15
|
Industry perspective on the use and characterization of polysorbates for biopharmaceutical products Part 1: Survey report on current state and common practices for handling and control of polysorbates. J Pharm Sci 2022; 111:1280-1291. [PMID: 35192858 DOI: 10.1016/j.xphs.2022.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
Polysorbates (PS) are widely used as a stabilizer in biopharmaceutical products. Industry practices on various aspects of PS are presented in this part 1 survey report based on a confidential survey and following discussions by 16 globally acting major biotechnology companies. The current practice and use of PS during manufacture across their global manufacturing sites are covered in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature. Part 2 of the survey report (upcoming) will focus on understanding, monitoring, prediction, and mitigation of PS degradation pathways to develop an effective control strategy.
Collapse
|
16
|
Zhang S, Riccardi C, Kamen D, Xiao H, Li N. Monitoring polysorbate hydrolysis in therapeutic proteins using an ultrasensitive extraction-free fatty acid quantitation method. Anal Biochem 2022; 637:114472. [PMID: 34801481 DOI: 10.1016/j.ab.2021.114472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/15/2023]
Abstract
Polysorbates (PSs) are surfactants commonly added to therapeutic protein drug product formulations to protect proteins from denaturation and aggregation during storage, transportation, and delivery. However, enzymatic hydrolysis of PSs has been recognized as the primary route of PS degradation in monoclonal antibody formulations, resulting in the release of free fatty acids that drive undesired particulate formation. Here, we present a rapid lipase activity assay with optimized incubation conditions for accurate quantitation of free fatty acids without a fatty acid extraction step. This assay can detect low levels of PS degradation (0.000024% PS20 degradation) within 1 day with minimal sample preparation. The levels of released free fatty acids were found to strongly correlate with the degree of PS20 degradation. The case study described herein suggests that this approach can detect low levels of PS20 degradation caused by sub-ppm lipase levels within 1 day, compared with the duration of 14 days needed for PS degradation assays based on two-dimensional liquid chromatography-charge aerosol detection.
Collapse
Affiliation(s)
- Sisi Zhang
- Analytical Chemistry, Regeneron Pharmaceuticals, Tarrytown, NY, 10591, USA
| | - Caterina Riccardi
- Formulation Group, Regeneron Pharmaceuticals, Tarrytown, NY, 10591, USA
| | - Douglas Kamen
- Formulation Group, Regeneron Pharmaceuticals, Tarrytown, NY, 10591, USA
| | - Hui Xiao
- Analytical Chemistry, Regeneron Pharmaceuticals, Tarrytown, NY, 10591, USA.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Tarrytown, NY, 10591, USA
| |
Collapse
|
17
|
Identification of the specific causes of polysorbate 20 degradation in monoclonal antibody formulations containing multiple lipases. Pharm Res 2022; 39:75-87. [PMID: 34981317 DOI: 10.1007/s11095-021-03160-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Polysorbates (PS) are excipients used in the biotech industry to stabilize monoclonal antibody (mAb) protein products. However, PS in drug product formulations can be degraded during storage and lead to particle formation because of the limited solubility of the free fatty acids released through the enzymatic hydrolysis of PS-a process driven by residual host cell proteins, especially lipases, that are co-purified with the drugs. When multiple lipases are present, it is very difficult to know the cause for PS degradation. In this study, we aim to determine the cause of PS degradation from two lipases, lysosomal acid lipase (LAL) and lipoprotein lipase (LPL). METHODS PS degradation pattern of the drug product was compared with those induced by recombinant lipases. Correlations between the concentration of LPL or LAL and PS20 loss were compared. Specific inhibitors, LAL inhibitor lalistat2 and LPL inhibitor GSK264220A, were used to differentiate their degradation of PS in the drug products. RESULTS The complete inhibition of PS20 degradation by lalistat2 suggested that LAL, rather than LPL, was responsible for the PS20 degradation. In addition, LAL was more strongly correlated than LPL with the percentage of PS20 degradation. No PS20 degradation was observed for several mAbs containing similar levels of LPL (0.5-1.5 ppm) in the absence of LAL, suggesting that LPL concentrations below 1.5 ppm does not degrade PS20 in drug products. CONCLUSIONS LAL was determined to be the cause of the PS20 degradation. This study provides a practical strategy to determine the root cause of PS degradation.
Collapse
|
18
|
Near UV and visible light photo-degradation mechanisms in citrate buffer: one-electron reduction of peptide and protein disulfides promotes oxidation and cis/trans isomerization of unsaturated fatty acids of polysorbate 80. J Pharm Sci 2022; 111:991-1003. [DOI: 10.1016/j.xphs.2022.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
|
19
|
O'Neill JM, Johnson CM, Wesdemiotis C. Multidimensional Mass Spectrometry of Multicomponent Nonionic Surfactant Blends. Anal Chem 2021; 93:12090-12095. [PMID: 34431663 DOI: 10.1021/acs.analchem.1c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultraperformance liquid chromatography (UPLC) and ion mobility (IM) spectrometry were interfaced with mass spectrometry (MS) and tandem mass spectrometry (MS/MS) to characterize a complex nonionic surfactant mixture. The surfactant was composed of a glycerol core, functionalized with poly(ethylene oxide) units (PEOn) that were partially esterified by caprylic and/or capric acid. Reversed-phase UPLC classified the blend based on polarity into four groups of eluates, corresponding to compounds with zero, one, two, or three fatty acid residues. Additional separation within each eluate group was achieved according to the length of the fatty acid chains. Coeluting molecules of similar polarity were dispersed in the gas phase by their collision cross section in the IM dimension. Performed in series, UPLC and IM allowed for the separation and detection of several isomeric and isobaric blend constituents, thereby enabling their isolation for conclusive MS/MS analysis to confirm or elucidate their primary structures and architectures (overall four-dimensional, 4D, characterization).
Collapse
Affiliation(s)
- Jason M O'Neill
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Charles M Johnson
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
20
|
Degradation of Polysorbate 20 by Sialate O-Acetylesterase in Monoclonal Antibody Formulations. J Pharm Sci 2021; 110:3866-3873. [PMID: 34487744 DOI: 10.1016/j.xphs.2021.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
Polysorbates (PS) are surfactants commonly added in biologics formulations that can protect proteins from denaturation and aggregation. However, decreases in polysorbate 20 (PS20) content have been observed in some monoclonal antibody formulations, causing the formation of visible and/or subvisible particles that ultimately compromise the quality and stability of the therapeutic protein products. It was determined that the particles are mainly composed of free fatty acid, suggesting enzymatic hydrolysis of PS is responsible for the degradation of PS. Enrichment of host cell proteins (HCPs) by immunoprecipitation followed by shotgun proteomics have been utilized to identify the HCPs that can hydrolyze PS20. One HCP, sialate O-acetylesterase (SIAE), demonstrated strong enzymatic activity for PS20 degradation even at low concentration (<5 ppm level). Incubation of recombinant SIAE with PS20 resulted in a unique degradation pattern where the hydrolysis of monoester with short fatty acid chain (C12, C14) was observed but not the monoester with long fatty acid chain (C16, C18) or higher-order esters. SIAE was detected and quantitated in several formulated mAbs, and the amount of SIAE was positively correlated to PS20 degradation in these mAbs during incubation. Additional experiments also showed that when SIAE was depleted, PS20 degradation was diminished, suggesting a causality between SIAE and PS20 degradation. The lipase activity of SIAE is specific to PS20, but not to PS 80 (PS80), which contains monoesters with long chain fatty acid (C18) and higher-order esters. The specific esterase activity of SIAE on PS20 suggests a possible solution of using PS80 over PS20 to eliminate surfactant degradation in mAb products.
Collapse
|
21
|
Yang RS, Bush DR, DeGraan-Weber N, Barbacci D, Zhang LK, Letarte S, Richardson D. Advancing Structure Characterization of PS-80 by Charge-Reduced Mass Spectrometry and Software-Assisted Composition Analysis. J Pharm Sci 2021; 111:314-322. [PMID: 34487745 DOI: 10.1016/j.xphs.2021.08.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
The commercially available Polysorbate 80 (PS-80) is a highly heterogeneous product. It is a complex and structurally diverse mixture consisting of polymeric species containing polyoxyethylenes (POEs), fatty acid esters, with/or without a carbohydrate core. The core is primarily sorbitan, with some isosorbide and sorbitol. Depending on the sources of fatty acids and the degrees of esterification, multiple combinations of fatty acid esters are commonly observed. A number of POE intermediates, such as polyoxyethylene glycols, POE-sorbitans, POE-isosorbides, and an array of fatty acid esters from these intermediates remain in the raw material as well. The complex composition of PS-80 is difficult to control and poses a significant characterization challenge for its use in the pharmaceutical industry. Here, we present a novel solution for PS-80 characterization using ultra high-performance liquid chromatography coupled with charge-reduction high resolution mass spectrometry. Post column co-infusion of triethylamine focused the signal into mainly singly charged molecular ions and reduced the extent of in-source fragmentation, resulting in a simpler ion map and enhanced measurement of PS-80 species. The data processing workflow is designed to programmatically identify PS-80 component classes and reduce the burden of manually analyzing complex MS data. The 2-dimensional graphical representation of the data helps visualize these features. Together, these innovative methodologies enabled us to analyze components in PS-80 with unprecedented detail and shall be a useful tool to study formulation and stability of pharmaceutical preparations. The power of this approach was demonstrated by comparing the composition of PS-80 obtained from different vendors.
Collapse
Affiliation(s)
- Rong-Sheng Yang
- Analytical Research & Development, Merck & Co., Inc, Kenilworth, New Jersey 07033, United States.
| | | | | | - Damon Barbacci
- Analytical Research & Development, Merck & Co., Inc, Kenilworth, New Jersey 07033, United States
| | - Li-Kang Zhang
- Analytical Research & Development, Merck & Co., Inc, Kenilworth, New Jersey 07033, United States
| | - Simon Letarte
- Analytical Research & Development, Merck & Co., Inc, Kenilworth, New Jersey 07033, United States
| | - Douglas Richardson
- Analytical Research & Development, Merck & Co., Inc, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
22
|
Webster GK, Chang JC, Heflin JL. Stability Indicating Method for Polysorbate 80 in Protein Formulations. J Chromatogr Sci 2021; 59:706-713. [PMID: 33367524 DOI: 10.1093/chromsci/bmaa116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 11/14/2022]
Abstract
Polysorbates (also known as "Tween") are common components of protein formulations used to minimize protein adsorption and stabilize the protein. These nonionic surfactants are heterogenous mixtures of fatty acids with a complex reversed-phase profile due to the inhomogeneity of the polymers present. Polysorbates can be oxidized, which can be hard to detect in the complex polymer profile. Further adding to the analytical challenge is the lack of a chromophore for the detection of these polymers. The routine analysis of polysorbates in protein formulations was greatly improved through the introduction of online solid-phase extraction (SPE) to simplify the polysorbate profile for quantification. However, this method combines many of the polysorbate polymers into a single peak for detection, thus limiting its effectiveness for detecting degradation. To address the need for a stability indicating method without the complexity of the reversed-phase profile, an optimized online SPE method was developed and investigated. Using polysorbate 80, this investigation shows that further expanding the step gradient can yield a profile that is stability indicating and available for routine testing of protein formulation.
Collapse
Affiliation(s)
- Gregory K Webster
- Analytical Research and Development, AbbVie Inc., North Chicago, IL 60064 USA
| | - Jean C Chang
- Analytical Research and Development, AbbVie Inc., North Chicago, IL 60064 USA
| | - Julie L Heflin
- Analytical Research and Development, AbbVie Inc., North Chicago, IL 60064 USA
| |
Collapse
|
23
|
Liu H, Jin Y, Menon R, Laskowich E, Bareford L, de Vilmorin P, Kolwyck D, Yeung B, Yi L. Characterization of Polysorbate 80 by Liquid Chromatography-Mass Spectrometry to Understand Its Susceptibility to Degradation and Its Oxidative Degradation Pathway. J Pharm Sci 2021; 111:323-334. [PMID: 34416271 DOI: 10.1016/j.xphs.2021.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
A liquid chromatography-mass spectrometry (LC-MS) method was developed to provide a fingerprint of polysorbate 80 (PS80) subspecies that enables identification of PS80 degradation pathway. The developed method demonstrates unique monoester peak profile of PS80 from different vendors, attributed by differences in relative abundance of the fatty acid monoesters. The LC-MS method was also applied to examine the susceptibility of PS80, at different grades, to auto-oxidation and hydrolysis. PS80 oxidative degradation induced by iron or occurred in open bottle without nitrogen overlay was found to follow the same pathway, but at a much faster rate in the former scenario. The oxidation preferentially occurs at the double bond of fatty acid chains, thus providing explanation on the faster degradation observed in PS80 at Chinese Pharmacopia (ChP) grade than at multi-compendial (MC) grade. In contrast, the difference in susceptibility of MC and ChP grade PS80 against esterase-induced hydrolysis in placebo was not pronounced. The method was also able to provide a fingerprint to identify both PS80 hydrolysis and oxidation in mAb drug product stability samples, but it required a solid phase extraction step to remove protein prior to the analysis.
Collapse
Affiliation(s)
- Haiyan Liu
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Yutong Jin
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Rashmi Menon
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Erin Laskowich
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Lisa Bareford
- Materials Science, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Phil de Vilmorin
- Materials Science, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Dave Kolwyck
- Materials Science, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Bernice Yeung
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States
| | - Linda Yi
- Analytical Development, Biogen Inc., 5000 Davis Drive, RTP, NC 27709, United States.
| |
Collapse
|
24
|
Lind TK, Nilsson EJ, Wyler B, Scherer D, Skansberger T, Morin M, Kocherbitov V, Engblom J. Effects of ethylene oxide chain length on crystallization of polysorbate 80 and its related compounds. J Colloid Interface Sci 2021; 592:468-484. [PMID: 33711648 DOI: 10.1016/j.jcis.2021.01.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/18/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
As a result of the synthesis protocol polyoxyethylene sorbitan monooleate (polysorbate 80, PS80) is a highly complex mixture of compounds. PS80 was therefore separated into its main constituents, e.g. polyoxyethylene isosorbide esters and polyoxyethylene esters, as well as mono- di- and polyesters using preparative high-performance liquid chromatography. In this comprehensive study the individual components and their ethoxylation level were verified by matrix assisted laser desorption/ionization time-of-flight and their thermotropic behavior was analyzed using differential scanning calorimetry and X-ray diffraction. A distinct correlation was found between the average length of the ethylene oxide (EO) chains in the headgroup and the individual compounds' ability to crystallize. Importantly, a critical number of EO units required for crystallization of the headgroup was determined (6 EO units per chain or 24 per molecule). The investigation also revealed that the hydrocarbon tails only crystallize for polyoxyethylene sorbitan esters if saturated. PS80 is synthesized by reacting with approximately 20 mol of EO per mole of sorbitol, however, the number of EO units in the sorbitan ester in commercial PS80 products is higher than the expected 20 (5 EO units per chain). The complex behavior of all tested compounds revealed that if the amount of several of the linear by-products is reduced, the number of EO units in the chains will stay below the critical number and the product will not be able to crystallize by the EO chains.
Collapse
Affiliation(s)
- Tania K Lind
- Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Emelie J Nilsson
- Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden.
| | | | | | - Tatyana Skansberger
- Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Maxim Morin
- Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Vitaly Kocherbitov
- Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Johan Engblom
- Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden.
| |
Collapse
|
25
|
Evers DH, Schultz-Fademrecht T, Garidel P, Buske J. Development and validation of a selective marker-based quantification of polysorbate 20 in biopharmaceutical formulations using UPLC QDa detection. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1157:122287. [DOI: 10.1016/j.jchromb.2020.122287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 11/29/2022]
|
26
|
Allmendinger A, Lebouc V, Bonati L, Woehr A, Kishore RSK, Abstiens K. Glass Leachables as a Nucleation Factor for Free Fatty Acid Particle Formation in Biopharmaceutical Formulations. J Pharm Sci 2020; 110:785-795. [PMID: 33035535 DOI: 10.1016/j.xphs.2020.09.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
Abstract
Surfactants are essential components in protein formulations protecting them against interfacial stress. One of the current industry-wide challenges is enzymatic degradation of parenteral surfactants such as polysorbate 20 (PS20) and polysorbate 80, which leads to the accumulation of free fatty acids (FFAs) potentially forming visible particles over the drug product shelf-life. While the concentration of FFAs can be quantified, the time point of particle formation remains unpredictable. In this work, we studied the influence of glass leachables as nucleation factors for FFA particle formation. We demonstrate the feasibility of nucleation of FFA particles in the presence of inorganic salts like NaAlO2 and CaCl2 simulating relevant glass leachables. We further demonstrate FFA particle formation depending on relevant aluminum concentrations. FFA particle formation was subsequently confirmed with lauric/myristic acid in the presence of different quantities and compositions of glass leachables obtained by several sterilization cycles using different types of glass vials. We further verified the formation of particles in aged protein formulation containing degraded PS20 through the spiking of glass leachables. Particles were characterized as a complex of glass leachables, such as aluminum and FFAs. Based on our findings, we propose a likely pathway for FFA particle formation that considers specific nucleation factors.
Collapse
Affiliation(s)
- Andrea Allmendinger
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel.
| | - Vanessa Lebouc
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| | - Lucia Bonati
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| | - Anne Woehr
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| | - Ravuri S K Kishore
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| | - Kathrin Abstiens
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche, Grenzacherstr. 124, CH-4070 Basel
| |
Collapse
|
27
|
Zhang S, Xiao H, Goren M, Burakov D, Chen G, Li N, Tustian A, Adams B, Mattila J, Bak H. Putative Phospholipase B-Like 2 is Not Responsible for Polysorbate Degradation in Monoclonal Antibody Drug Products. J Pharm Sci 2020; 109:2710-2718. [DOI: 10.1016/j.xphs.2020.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 01/14/2023]
|
28
|
Penfield KW, Rumbelow S. Challenges in polysorbate characterization by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8709. [PMID: 31943438 DOI: 10.1002/rcm.8709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Polysorbates are used in a variety of applications over a wide range of markets. Simple in concept, these products are complex in actual composition. Mass spectrometry and related techniques have been effectively used to characterize these products, from the major components to the minor residual production byproducts and degradation species. In this paper we review the use of MALDI-MS, LC/MS, GC/MS, and SFC/MS in the analysis of these materials. The wealth of information provided by MALDI is presented, using Polysorbate 60 as an example. Limitations are described, with the impact of matrix selection and cationization agent demonstrated. Furthermore, unique challenges of MALDI analysis of Polysorbate 80 are shown. Polysorbates have been extensively analyzed, especially by the biopharmaceutical industry, to better understand the impact of various grades of purity and manufacture on the stability of formulations. Using Polysorbate 80 as an example, we illustrate some of the more advanced techniques used to more fully characterize these complex molecules using high-resolution LC/MS and LC/MS/MS. Finally, the use of other techniques (such as GC/MS and SFC/MS) is briefly reviewed.
Collapse
|
29
|
Zhang S, Xiao H, Molden R, Qiu H, Li N. Rapid Polysorbate 80 Degradation by Liver Carboxylesterase in a Monoclonal Antibody Formulated Drug Substance at Early Stage Development. J Pharm Sci 2020; 109:3300-3307. [PMID: 32721471 DOI: 10.1016/j.xphs.2020.07.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022]
Abstract
Polysorbates (PS) are surfactants commonly added in a therapeutic protein drug product to protect proteins from denaturation and aggregation during storage, transportation, and delivery. Significant degradation of PS in drug products could lead to particulate formation with shortened drug shelf life, and one of the major root causes of PS degradation is the host cell protein (HCP) derived lipase/esterase, which belong to the serine hydrolase family. Typically, PS degradation can only be observed in drug products after a long time of storage if very low levels of host cell protein impurity with PS degradation activities are present. In this study, PS80 degradation was observed in a monoclonal antibody (mAb) within 18 h at 5 °C with a low level of HCP presented (<20 ppm) based on ELISA quantitation. This observation suggested that a trace amount of unknown host cell protein(s) with strong enzymatic activity on polysorbate degradation was present in this drug substance. The activity-based protein profiling (ABPP) method with the ActivX FP serine hydrolase probe was employed to identify host cell proteins that can hydrolyze PS. Two hydrolases, liver carboxylesterase B-1-like protein (CES-B1L, A0A061I7X9) and liver carboxylesterase 1-like protein (CES-1L, A0A061IFE2) were identified with high confidence using the ABPP approach for the first time in a mAb drug substance during early stage development. PS80 became stable in the drug substance sample after the two hydrolases were depleted using the immobilized ActivX FP probe, confirming these two hydrolases were responsible for the rapid PS80 degradation. In addition, the PS80 degradation pattern was found to be equivalent to that generated by their human analog, human liver carboxylesterase-1 (hCES-1) and rabbit liver esterase (rLES). Overall, these results suggest that CES-B1L and CES-1L are the primary cause of PS80 degradation in this mAb drug.
Collapse
Affiliation(s)
- Sisi Zhang
- Analytical Chemistry, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Hui Xiao
- Analytical Chemistry, Regeneron Pharmaceuticals, Tarrytown, NY, USA.
| | - Rosalynn Molden
- Analytical Chemistry, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| |
Collapse
|
30
|
Yang J, Jia Y, Fan C, Cheng Y, Pan C, Huang B, Meng X, Zhang J, Zheng A, Ma X, Li X, Luque R, Sun Y. Aqueous Room Temperature Mono-Dehydration of Sugar Alcohols Using Functionalized Yttrium Oxide Nanocatalysts. Front Chem 2020; 8:532. [PMID: 32793546 PMCID: PMC7390900 DOI: 10.3389/fchem.2020.00532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/25/2020] [Indexed: 11/13/2022] Open
Abstract
The aqueous room temperature mono-dehydration of sugar alcohols (D-sorbitol and D-mannitol) was conducted using functionalized yttrium oxide nanocatalysts prepared via sol-gel methods. Materials exhibited high selectivity to mono-dehydration products. Solvent and catalyst effects were also investigated and discussed. The introduction of titanium into the yttrium oxide framework would decrease both substrate conversion and mono-dehydration efficiency. In addition, studies of the catalytic mechanism indicate high mono-dehydration efficiency may come from the stability of the formed intermediate during catalysis. This work provides a highly efficient and benign system for catalytic mono-dehydration of sugar alcohols.
Collapse
Affiliation(s)
- Juncheng Yang
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Yihong Jia
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Chao Fan
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Yu Cheng
- Shaanxi Key Laboratory of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Shaanxi Institute of Ophthalmology, Xi'an No. 1 Hospital, First Affiliated Hospital of Northwestern University, Xi'an, China
| | - Cheng Pan
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Benhua Huang
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Xu Meng
- School of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
| | - Junjie Zhang
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Aqun Zheng
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Xiaomo Ma
- College of Humanities and Social Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyong Li
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Rafael Luque
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
- Departamento de Quimica Organica, Universidad de Cordoba, Cordoba, Spain
| | - Yang Sun
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
31
|
Jahn M, Zerr A, Fedorowicz FM, Brigger F, Koulov A, Mahler HC. Measuring Lipolytic Activity to Support Process Improvements to Manage Lipase-Mediated Polysorbate Degradation. Pharm Res 2020; 37:118. [PMID: 32495187 DOI: 10.1007/s11095-020-02812-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Polysorbates are critical stabilizers in biopharmaceutical protein formulations. However, they may degrade in drug substance (DS) or drug product (DP) during storage. Degradation catalyzed by lipases present in host cell proteins (HCPs) is one suspected root cause. The purpose of this study was to develop an assay to detect lipolytic activity in biopharmaceutical DS and DP formulations. METHODS The assay is based on the hydrolysis of the lipase substrate 4-methylumbelliferyl oleate to yield the fluorescent product 4-methylumbelliferone. RESULTS First, the assay components and their concentrations (buffer salts and pH, solvent and inhibitor Orlistat) were established and optimized using a model lipase (Porcine pancreatic lipase) and cell culture harvest fluid that exhibited lipolytic activity. The assay was then successfully applied and thereby qualified in protein formulations and at lipase concentrations possibly encountered in actual biopharmaceutical DS and DP formulations. CONCLUSION The lipase assay can be used to detect lipolytic activity in intermediate and final DS, for example during process optimization in downstream purification, to better and specifically reduce the level, or deplete, lipases from HCPs. The assay is also suitable to be applied during root cause investigations related to polysorbate degradation in biopharmaceutical DP.
Collapse
Affiliation(s)
- Michael Jahn
- Lonza AG, Drug Product Services, 60 A, CH-4057, Basel, Switzerland.
| | - Andreas Zerr
- Lonza AG, Drug Product Services, 60 A, CH-4057, Basel, Switzerland
| | | | - Finn Brigger
- Lonza AG, Drug Product Services, 60 A, CH-4057, Basel, Switzerland
| | - Atanas Koulov
- Lonza AG, Drug Product Services, 60 A, CH-4057, Basel, Switzerland
| | | |
Collapse
|
32
|
Pan J, Tang Y, Shen Z, Du Z. Development of supercritical fluid chromatography coupled with mass spectrometry method for characterization of a nonionic surfactant and comparison with liquid chromatography coupled with mass spectrometry method. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4499. [PMID: 31919971 DOI: 10.1002/jms.4499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
The supercritical fluid chromatography coupled with mass spectrometry (SFC-MS) method and liquid chromatography coupled with mass spectrometry (LC-MS) method were developed for the separation and characterization of poly (ethylene oxide) methyl glucose sesquistearate (PEO-Glu-sesquistearate). The products of PEO-Glu-sesquistearate are composed of complex oligomers. The relationship between molecular structure of these oligomers and chromatographic retention behavior in both SFC and LC were discussed and compared. As compared with LC, hydrophobic moieties of compounds favor the fast elution in SFC. The different series can be better separated by LC, while the homologues compounds in same series can be better separated by SFC, and SFC-MS provided more comprehensive structural information. Different series such as PEO-distearate, PEO-stearate, PEO, PEO-Glu-tetrastearate, PEO-Glu-tristearate, PEO-Glu-distearate, PEO-Glu-stearate, and PEO-Glu were identified by MS/MS.
Collapse
Affiliation(s)
- Jinheng Pan
- College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Tang
- College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhengchao Shen
- College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenxia Du
- College of Science, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
33
|
Acidic and alkaline hydrolysis of polysorbates under aqueous conditions: Towards understanding polysorbate degradation in biopharmaceutical formulations. Eur J Pharm Sci 2020; 144:105211. [DOI: 10.1016/j.ejps.2019.105211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 11/21/2022]
|
34
|
Wang Z, Wang Y, Tie C, Zhang J. A fast strategy for profiling and identifying pharmaceutic excipient polysorbates by ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry. J Chromatogr A 2020; 1609:460450. [DOI: 10.1016/j.chroma.2019.460450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
|
35
|
Choyke S, Ferguson PL. Molecular characterization of nonionic surfactant components of the Corexit® 9500 oil spill dispersant by high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1683-1694. [PMID: 31245872 DOI: 10.1002/rcm.8512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Approximately 7 million liters of Corexit® dispersants were applied during the 2010 Deepwater Horizon oil spill to facilitate the dispersion of crude oil. At the time of application, the exact chemical composition of Corexit® was relatively unknown. Characterization of Corexit® 9500 was performed using high-resolution mass spectrometry to further understand the complexity of the nonionic surfactant components of this mixture. METHODS Corexit®9500 was analyzed by ultra-high-performance liquid chromatography (UHPLC) coupled to a high resolution Orbitrap Fusion Lumos mass spectrometer operated in positive electrospray ionization mode and a charged aerosol detector. Chromatographic conditions were optimized to efficiently separate isobaric and isomeric compounds. Polyethoxylated nonionic surfactants in Corexit® 9500 were identified using the following criteria: accurate mass (<3 ppm), retention time, and homologue series; in addition, interpretation of high-resolution tandem mass spectra was used to annotate tentative component structures. RESULTS More than 2000 polysorbate nonionic surfactants in 87 homologue series were detected. Polysorbate surfactants were characterized by the type of molecular basis group (sorbitan, isosorbide, or fatty acid), degree of esterification (n = 0-4), ester chain length (C6-C24), and ester saturation, in addition to polydispersion by ethoxylation. Isomeric compounds were differentiated by LC/HRMS/MS analysis with product ion assignment. Results from the charged aerosol detector showed that the diesters (23.9 ± 0.78%) were the most abundant component in Corexit® 9500 followed by dioctyl sodium sulfosuccinate (DOSS) (19.2 ± 1.5%), triesters (17.3 ± 1.5%), and monoesters (15.7 ± 2.3%). CONCLUSIONS Our analytical approach facilitated the characterization of polysorbate surfactants within Corexit® 9500 and allowed a systematic study to differentiate isomeric and isobaric compounds, when standards were not available. The characterized composition of Corexit® 9500 will facilitate future studies to determine the chemical and biological transformation kinetics and byproducts of Corexit® 9500 under environmental conditions.
Collapse
Affiliation(s)
- Sarah Choyke
- Nicholas School of the Environment, Duke University, 140 Science Drive, Durham, NC, 27708-0187, USA
| | - P Lee Ferguson
- Civil and Environmental Engineering, Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall, Box 90287, Durham, NC, 27708-0187, USA
- Environmental Chemistry, Nicholas School of the Environment, Duke University, 121 Hudson Hall, Box 90287, Durham, NC, 27708-0187, USA
| |
Collapse
|
36
|
Yang K, Hewarathna A, Geerlof-Vidavsky I, Rao VA, Gryniewicz-Ruzicka C, Keire D. Screening of Polysorbate-80 Composition by High Resolution Mass Spectrometry with Rapid H/D Exchange. Anal Chem 2019; 91:14649-14656. [PMID: 31638787 DOI: 10.1021/acs.analchem.9b03809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polysorbate (PS) is a widely used polymeric excipient in biotherapeutic formulations to stabilize and protect protein drugs. Commercial PS is a highly heterogeneous mixture of structurally related components. PS composition can impact the stabilizer performance of PS in formulated protein drugs. Characterization of PS heterogeneity is, however, analytically challenging. In this work, a high-throughput screening protocol is presented for the profiling of the PS-80 polysorbate form using high resolution mass spectrometry (HRMS) coupled with a rapid hydrogen/deuterium (H/D) exchange in deuterated methanol. The protocol takes advantage of accurate mass measurements from HRMS analysis and utilizes H/D exchange-induced mass shifts that are characteristic to structures (particularly the number of terminal hydroxyl groups) of PS molecules to definitively identify species. In particular, mass shifts caused by deuterium uptake were used (1) to confirm molecular identities assigned by accurate mass measurements (which adds an extra level of identification confidence) and (2) to differentiate isomers that have an identical mass (thus, undistinguishable by high mass accuracy), but differ in the number of terminal hydroxyls. These data were input to an automated searching algorithm against a molecular mass database covering over 17000 potential PS-80 molecular species. The identified species were then visualized with Kendrick Mass Defect plots. The analysis protocol identified and profiled over 180 species from PS-80 samples in a high-throughput fashion without requiring chromatographic separation to reduce complexity of mixtures or tandem mass spectrometric analysis to conduct structural elucidation.
Collapse
Affiliation(s)
- Kui Yang
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , St. Louis , Missouri 63110 , United States
| | - Asha Hewarathna
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , St. Louis , Missouri 63110 , United States
| | - Ilan Geerlof-Vidavsky
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , St. Louis , Missouri 63110 , United States
| | - V Ashutosh Rao
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , Maryland 20903 , United States
| | - Connie Gryniewicz-Ruzicka
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , St. Louis , Missouri 63110 , United States
| | - David Keire
- Division of Pharmaceutical Analysis, Office of Testing and Research, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , St. Louis , Missouri 63110 , United States
| |
Collapse
|
37
|
Cheng Y, Hu M, Zamiri C, Carcelen T, Demeule B, Tomlinson A, Gu J, Yigzaw Y, Kalo M, Yu XC. A Rapid High-Sensitivity Reversed–Phase Ultra High Performance Liquid Chromatography Mass Spectrometry Method for Assessing Polysorbate 20 Degradation in Protein Therapeutics. J Pharm Sci 2019; 108:2880-2886. [DOI: 10.1016/j.xphs.2019.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/04/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
|
38
|
Poppe L, Knutson N, Cao S, Wikström M. In Situ Quantification of Polysorbate in Pharmaceutical Samples of Therapeutic Proteins by Hydrodynamic Profiling by NMR Spectroscopy. Anal Chem 2019; 91:7807-7811. [PMID: 31117409 DOI: 10.1021/acs.analchem.9b01442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polysorbates are nonionic surfactants often used at variable levels in various formulations of protein therapeutics. Their quantification in pharmaceutical samples has posed an analytical challenge. Here we present an approach based on 1H NMR spectroscopy which can accurately estimate the concentration of polysorbate 80 (PS80) in intact pharmaceutical samples of an arbitrary formulation. The method, HAP-NMR (hydrodynamic profiling by NMR), is an extension of the protein fingerprint by line shape enhancement method (PROFILE) approach ( Poppe , L. ; Jordan , J. B. ; Lawson , K. ; Jerums , M. ; Apostol , I. ; Schnier , P. D. Anal. Chem. 2013 , 85 (20) , 9623 - 9629 ) and is based on the 1D 1H pulsed field gradient stimulated echo (PFGSTE) NMR experiment, which allows for the rectification of the 1D 1H NMR spectrum to a level suitable for a quantitative hydrodynamic analysis. Here we describe the methodology as applied to an antibody sample formulated in 9% (w/v) sucrose and with variable levels of PS80, ranging from 0.01% to 0.20% (w/v) sample concentrations. Equally important, we present evidence and propose a novel mechanism of how polysorbate stabilizes protein in pharmaceutical formulations.
Collapse
|
39
|
Dwivedi M, Blech M, Presser I, Garidel P. Polysorbate degradation in biotherapeutic formulations: Identification and discussion of current root causes. Int J Pharm 2018; 552:422-436. [DOI: 10.1016/j.ijpharm.2018.10.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022]
|
40
|
Arand K, Asmus E, Popp C, Schneider D, Riederer M. The Mode of Action of Adjuvants-Relevance of Physicochemical Properties for Effects on the Foliar Application, Cuticular Permeability, and Greenhouse Performance of Pinoxaden. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5770-5777. [PMID: 29787258 DOI: 10.1021/acs.jafc.8b01102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We comprehensively studied the complexity of the mode of action of adjuvants by uncoupling the parameters contributing to the spray process during foliar application of agrochemicals. The ethoxylated sorbitan esters Tween 20 and Tween 80 improved the efficiency of pinoxaden (PXD) in controlling grass-weed species in greenhouse experiments by aiding retention, having humectant properties, maintaining the bioavailability, and increasing the cuticular penetration of PXD. The nonethoxylated sorbitan esters Span 20 and Span 80 showed minimal effects on retention, droplet hydration, or cuticular penetration, resulting in reduced PXD effects in the greenhouse. Tris(2-ethylhexyl)phosphate (TEHP) does not contribute much to retention and spreading but strongly enhances the diffusion of PXD across isolated P. laurocerasus cuticular membranes. As TEHP was most efficient in controlling the growth of grass-weed species, we propose that the direct effect of penetration aids on cuticular permeation plays a key role in the efficiency of foliar-applied agrochemicals.
Collapse
Affiliation(s)
- Katja Arand
- University of Würzburg , Julius von Sachs Institute of Biosciences , Julius-von-Sachs-Platz 3 , Würzburg D-97082 , Germany
| | - Elisabeth Asmus
- University of Würzburg , Julius von Sachs Institute of Biosciences , Julius-von-Sachs-Platz 3 , Würzburg D-97082 , Germany
| | - Christian Popp
- Syngenta Crop Protection, Global Formulation Technology , Breitenloh 5 , Münchwilen CH-4333 , Switzerland
| | - Daniel Schneider
- Syngenta Crop Protection, Global Formulation Technology , Breitenloh 5 , Münchwilen CH-4333 , Switzerland
| | - Markus Riederer
- University of Würzburg , Julius von Sachs Institute of Biosciences , Julius-von-Sachs-Platz 3 , Würzburg D-97082 , Germany
| |
Collapse
|
41
|
Jones MT, Mahler HC, Yadav S, Bindra D, Corvari V, Fesinmeyer RM, Gupta K, Harmon AM, Hinds KD, Koulov A, Liu W, Maloney K, Wang J, Yeh PY, Singh SK. Considerations for the Use of Polysorbates in Biopharmaceuticals. Pharm Res 2018; 35:148. [DOI: 10.1007/s11095-018-2430-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022]
|
42
|
A Newly Identified Impurity in Polysorbate 80, the Long-Chain Ketone 12-Tricosanone, Forms Visible Particles in a Biopharmaceutical Drug Product. J Pharm Sci 2018; 107:1552-1561. [PMID: 29499279 DOI: 10.1016/j.xphs.2018.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 11/24/2022]
Abstract
Visible particles linked to polysorbates (PSs) used in biopharmaceutical drug products (DPs) have been observed repeatedly in recent years as an industry-wide issue, with PS degradation and insoluble degradation products, especially fatty acids and fatty acid esters, being suspected as root cause. We have shown that the visible particles observed in a monoclonal antibody DP solution in vials after 18 months of long-term storage at 5 ± 3°C were neither linked to reduction in PS (PS80) concentration nor to any known PS degradation product, but consist of 12-tricosanone, an impurity present in the raw material PS80, not a degradation product. The occurrence of visible 12-tricosanone particles in DP correlated with the usage of specific PS80 raw material lots, where 12-tricosanone was found as impurity at elevated levels. The quantities detected in these PS80 lots directly translate into the amount found in the respective monoclonal antibody DP batches. This is the first time that a clear correlation between the occurrence of the impurity 12-tricosanone in PS80 and the occurrence of visible particles in DP batches is reported. The observation and techniques described enable the control of this ketone in PS raw materials, providing means to prevent respective visible particle formation in DP.
Collapse
|
43
|
Dual Effect of Histidine on Polysorbate 20 Stability: Mechanistic Studies. Pharm Res 2018; 35:33. [DOI: 10.1007/s11095-017-2321-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
|
44
|
Martos A, Koch W, Jiskoot W, Wuchner K, Winter G, Friess W, Hawe A. Trends on Analytical Characterization of Polysorbates and Their Degradation Products in Biopharmaceutical Formulations. J Pharm Sci 2017; 106:1722-1735. [DOI: 10.1016/j.xphs.2017.03.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/01/2022]
|
45
|
Wesdemiotis C. Multidimensional Mass Spectrometry of Synthetic Polymers and Advanced Materials. Angew Chem Int Ed Engl 2017; 56:1452-1464. [PMID: 27712048 DOI: 10.1002/anie.201607003] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/02/2016] [Indexed: 01/06/2023]
Abstract
Multidimensional mass spectrometry interfaces a suitable ionization technique and mass analysis (MS) with fragmentation by tandem mass spectrometry (MS2 ) and an orthogonal online separation method. Separation choices include liquid chromatography (LC) and ion-mobility spectrometry (IMS), in which separation takes place pre-ionization in the solution state or post-ionization in the gas phase, respectively. The MS step provides elemental composition information, while MS2 exploits differences in the bond stabilities of a polymer, yielding connectivity and sequence information. LC conditions can be tuned to separate by polarity, end-group functionality, or hydrodynamic volume, whereas IMS adds selectivity by macromolecular shape and architecture. This Minireview discusses how selected combinations of the MS, MS2 , LC, and IMS dimensions can be applied, together with the appropriate ionization method, to determine the constituents, structures, end groups, sequences, and architectures of a wide variety of homo- and copolymeric materials, including multicomponent blends, supramolecular assemblies, novel hybrid materials, and large cross-linked or nonionizable polymers.
Collapse
Affiliation(s)
- Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
46
|
Wesdemiotis C. Mehrdimensionale Massenspektrometrie von synthetischen Polymeren und modernen Materialien. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chrys Wesdemiotis
- Department of Chemistry; The University of Akron; Akron OH 44325 USA
| |
Collapse
|
47
|
Degradation Mechanisms of Polysorbate 20 Differentiated by 18O-labeling and Mass Spectrometry. Pharm Res 2016; 34:84-100. [DOI: 10.1007/s11095-016-2041-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/16/2016] [Indexed: 01/18/2023]
|
48
|
Pan J, Ji Y, Du Z, Zhang J. Rapid characterization of commercial polysorbate 80 by ultra-high performance supercritical fluid chromatography combined with quadrupole time-of-flight mass spectrometry. J Chromatogr A 2016; 1465:190-6. [DOI: 10.1016/j.chroma.2016.08.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022]
|
49
|
Place BJ, Perkins MJ, Sinclair E, Barsamian AL, Blakemore PR, Field JA. Trace Analysis of Surfactants in Corexit Oil Dispersant Formulations and Seawater. DEEP-SEA RESEARCH. PART II, TOPICAL STUDIES IN OCEANOGRAPHY 2016; 129:273-281. [PMID: 27594772 PMCID: PMC5007063 DOI: 10.1016/j.dsr2.2014.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
After the April 2010 explosion on the Deepwater Horizon oil rig, and subsequent release of millions of barrels of oil, two Corexit oil dispersant formulations were used in unprecedented quantities both on the surface and sub-surface of the Gulf of Mexico. Although the dispersant formulations contain four classes of surfactants, current studies to date focus on the anionic surfactant, bis-(2-ethylhexyl) sulfosuccinate (DOSS). Factors affecting the integrity of environmental and laboratory samples for Corexit analysis have not been systematically investigated. For this reason, a quantitative analytical method was developed for the detection of all four classes of surfactants, as well as the hydrolysis products of DOSS, the enantiomeric mixture of α- and β-ethylhexyl sulfosuccinate (α-/β-EHSS). The analytical method was then used to evaluate which practices for sample collection, storage, and analysis resulted in high quality data. Large volume, direct injection of seawater followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) minimized analytical artifacts, analysis time, and both chemical and solid waste. Concentrations of DOSS in the seawater samples ranged from 71 - 13,000 ng/L, while the nonionic surfactants including Span 80, Tween 80, Tween 85 were detected infrequently (26% of samples) at concentrations from 840 - 9100 ng/L. The enantiomers α-/β-EHSS were detected in seawater, at concentrations from 200 - 1,900 ng/L, and in both Corexit dispersant formulations, indicating α-/β-EHSS were applied to the oil spill and may be not unambiguous indicator of DOSS degradation. Best practices are provided to ensure sample integrity and data quality for environmental monitoring studies and laboratory that require the detection and quantification of Corexit-based surfactants in seawater.
Collapse
Affiliation(s)
| | - Matt J. Perkins
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Ewan Sinclair
- College of Osteopathic Medicine, Touro University-California, Vallejo, CA
| | | | | | - Jennifer A. Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
- Corresponding Author Information: Department of Environmental and Molecular Toxicology, 1007 ALS Building, Oregon State University, Corvallis, OR 97331, , Phone: 541-737-2265, Fax: 541-737-0497
| |
Collapse
|
50
|
Stoll D, Danforth J, Zhang K, Beck A. Characterization of therapeutic antibodies and related products by two-dimensional liquid chromatography coupled with UV absorbance and mass spectrometric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:51-60. [PMID: 27267072 DOI: 10.1016/j.jchromb.2016.05.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 01/08/2023]
Abstract
The development of analytical tools for the characterization of large biomolecules is an emerging and rapidly evolving area. This development activity is motivated largely by the current trend involving the increase in development and use of large biomolecules for therapeutic uses. Given the inherent complexity of these biomolecules, which arises from their sheer size and possibilities for chemical modification as well as changes over time (e.g., through modification in solution, aggregation), two-dimensional liquid chromatography (2D-LC) has attracted considerable interest as an analytical tool to address the challenges faced in characterizing these materials. The immediate potential benefits of 2D-LC over conventional one-dimensional liquid chromatography in this context include: (1) higher overall resolving power; (2) complementary information gained from two dimensions of separation in a single analysis; and (3) enabling indirect coupling of separation modes that are inherently incompatible with mass spectrometric (MS) detection (e.g., ion-exchange, because of high-salt eluents) to MS through a more compatible second dimension separation such as reversed-phase LC. In this review we summarize the work in this area, most of which has occurred in the past five years. Although the future is bright for further development in this area, some challenges have already been addressed through new 2D-LC methods. These include: (1) deep characterization of monoclonal antibodies to understand charge heterogeneity, glycosylation patterns, and other modifications; (2) characterization of antibody-drug conjugates to understand the extent and localization of small molecule conjugation; (3) detailed study of excipients in protein drug formulations; and (4) detection of host-cell proteins on biotherapeutic molecule preparations. We fully expect that in the near future we will see this list expanded, and that continued development will lead to methods with further improved performance metrics.
Collapse
Affiliation(s)
- Dwight Stoll
- Gustavus Adolphus College, Department of Chemistry, St. Peter, MN, USA.
| | - John Danforth
- Gustavus Adolphus College, Department of Chemistry, St. Peter, MN, USA
| | - Kelly Zhang
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| |
Collapse
|