1
|
Zeng S, Ma Q, Zhang S, Shen C, Li J, Zhao H, Guo D, Zhang Y, Yang H. Evaluation of oxy-organosolv pretreatment on lignin extraction from wheat straw. Int J Biol Macromol 2023; 229:861-872. [PMID: 36587642 DOI: 10.1016/j.ijbiomac.2022.12.301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
To develop a characteristic "Lignin-first" strategy, the oxy-organosolv delignification processes under mild conditions were comprehensively investigated. Results showed that lignin yield could achieve about 50 % under the optimum process conditions of ethanol concentration 80 %, temperature 90 °C, liquid to wheat straw ratio 25:1 for powdery-scale substrates, which was 65.0 % higher than that for rod-scale substrates under the same conditions. The lignin structural and carbohydrate component results demonstrated the employment of oxygen induced great quantities of lignin dissolving out on the premise of little carbohydrate component (<1 %) and lignin structural (mainly β-O-4 units) changes. Moreover, based on the molecular weight and polydiversity comparison results, the aqueous oxygen could transfer homogeneously in mild organosolv system and result in lignin degradation uniformly. Besides, the employment of oxygen assisted in not only extending the massive lignin removal stage to 30 min and 50 min for P-OEEL and R-OEEL respectively, but also boost the delignification rate with comparison to P-EL and R-EL. Lastly, the excellent anti-oxidant properties of lignin from oxy-organosolv process were demonstrated by scavenging DPPH and ABTS radicals. The economic calculations showed that the cost for lignin production were about 1.58USD/g lignin from powdery-scale wheat straw, providing a competitive route for high-value utilize waste biomass.
Collapse
Affiliation(s)
- Shiyi Zeng
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Qingzhi Ma
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Shenchong Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Conghao Shen
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Jing Li
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China.
| | - Huifang Zhao
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Daliang Guo
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Yan Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province, China
| | - Hui Yang
- Pinghu Longchen Greentech Co., Ltd, Jiaxing, Zhejiang Province, China
| |
Collapse
|
2
|
Bai Y, Ali S, Liu S, Zhou J, Tang Y. Characterization of plant laccase genes and their functions. Gene 2023; 852:147060. [PMID: 36423777 DOI: 10.1016/j.gene.2022.147060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Laccase is a copper-containing polyphenol oxidase found in different organisms. The multigene family that encodes laccases is widely distributed in plant genomes. Plant laccases oxidize monolignols to produce lignin which is important for plant growth and stress responses. Industrial applications of fungal and bacterial laccases are extensively explored and addressed. Recently many studies have focused on the significance of plant laccase, particularly in crop yield, and its functions in different environmental conditions. This review summarizes the transcriptional and posttranscriptional regulation of plant laccase genes and their functions in plant growth and development. It especially describes the responses of laccase genes to various stresses and their contributions to plant biotic and abiotic stress resistance. In-depth explanations and scientific advances will serve as foundations for research into plant laccase genes' function, mechanism, and possible applications.
Collapse
Affiliation(s)
- Yongsheng Bai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, PR China
| | - Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, China
| | - Jiajie Zhou
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, PR China
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, PR China.
| |
Collapse
|
3
|
Letourneau DR, Volmer DA. Mass spectrometry-based methods for the advanced characterization and structural analysis of lignin: A review. MASS SPECTROMETRY REVIEWS 2023; 42:144-188. [PMID: 34293221 DOI: 10.1002/mas.21716] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Lignin is currently one of the most promising biologically derived resources, due to its abundance and application in biofuels, materials and conversion to value aromatic chemicals. The need to better characterize and understand this complex biopolymer has led to the development of many different analytical approaches, several of which involve mass spectrometry and subsequent data analysis. This review surveys the most important analytical methods for lignin involving mass spectrometry, first looking at methods involving gas chromatography, liquid chromatography and then continuing with more contemporary methods such as matrix assisted laser desorption ionization and time-of-flight-secondary ion mass spectrometry. Following that will be techniques that directly ionize lignin mixtures-without chromatographic separation-using softer atmospheric ionization techniques that leave the lignin oligomers intact. Finally, ultra-high resolution mass analyzers such as FT-ICR have enabled lignin analysis without major sample preparation and chromatography steps. Concurrent with an increase in the resolution of mass spectrometers, there have been a wealth of complementary data analyses and visualization methods that have allowed researchers to probe deeper into the "lignome" than ever before. These approaches extract trends such as compound series and even important analytical information about lignin substructures without performing lignin degradation either chemically or during MS analysis. These innovative methods are paving the way for a more comprehensive understanding of this important biopolymer, as we seek more sustainable solutions for our human species' energy and materials needs.
Collapse
Affiliation(s)
- Dane R Letourneau
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
4
|
He F, Huang YF, Dai W, Qu XY, Lu JG, Lao CC, Luo WH, Sun DM, Wei M, Xiao SY, Xie Y, Liu L, Zhou H. The localization of the alkaloids in Coptis chinensis rhizome by time-of-flight secondary ion mass spectrometry. FRONTIERS IN PLANT SCIENCE 2022; 13:1092643. [PMID: 36618650 PMCID: PMC9816869 DOI: 10.3389/fpls.2022.1092643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Understanding the spatial distribution of active compounds can effectively evaluate the quality of decoction pieces of traditional Chinese medicine (TCM). Traditional methods are economical and practical but lack chemical information on the original distribution. Time-of-flight secondary ion mass spectrometry (TOF-SIMS), with the advantage of non-destructive detection of samples, can directly analyze the distribution of chemical compounds on the surface of various samples. METHODS In this study, TOF-SIMS image analysis technology was used to detect TCM for the first time. Taking Coptis rhizome (CR) as an example, a commonly used TCM, the distribution of the compounds in the cross-section of CR was studied. Meanwhile, ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLCQQQ-MS/MS) was used to verify the results of TOF-SIMS. RESULTS The distribution of nine active compounds: berberine, epiberberine, coptisine, palmatine, columbamine, jatrorrhizine, tetrahydricheilanthifolinium, and oxyberberine, was well imaged in the cross-section of CR by TOF-SIMS. The content of berberine and epiberberine was the highest; Palmatine distribution in the pith was more than that in other parts; Oxyberberine was mainly concentrated in the cork and xylem rays. Normalization analysis showed contents of these compounds increased along with the growth years. The result was consistent with UPLC-QQQ-MS/MS. CONCLUSION The TOF-SIMS method can display the spatial distribution status of the active compounds of herbs, providing a basis for selecting the medicine site with non-destructive and fast detection.
Collapse
Affiliation(s)
- Fan He
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yu-Feng Huang
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Dai
- Institute of Chinese Medicinal Materials, Mianyang Academy of Agricultural Sciences, Mianyang, Sichuan, China
| | - Xian-You Qu
- Chongqing Key Laboratory of Traditional Chinese Resources, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Jing-Guang Lu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Chi-Chou Lao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wen-Hui Luo
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Guangdong Yifang Pharmaceutical Co., Ltd., Foshan, Guangdong, China
| | - Dong-Mei Sun
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Guangdong Yifang Pharmaceutical Co., Ltd., Foshan, Guangdong, China
| | - Mei Wei
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Guangdong Yifang Pharmaceutical Co., Ltd., Foshan, Guangdong, China
| | - Sheng-Yuan Xiao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Ying Xie
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liang Liu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hua Zhou
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Ajith A, Milnes PJ, Johnson GN, Lockyer NP. Mass Spectrometry Imaging for Spatial Chemical Profiling of Vegetative Parts of Plants. PLANTS 2022; 11:plants11091234. [PMID: 35567235 PMCID: PMC9102225 DOI: 10.3390/plants11091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022]
Abstract
The detection of chemical species and understanding their respective localisations in tissues have important implications in plant science. The conventional methods for imaging spatial localisation of chemical species are often restricted by the number of species that can be identified and is mostly done in a targeted manner. Mass spectrometry imaging combines the ability of traditional mass spectrometry to detect numerous chemical species in a sample with their spatial localisation information by analysing the specimen in a 2D manner. This article details the popular mass spectrometry imaging methodologies which are widely pursued along with their respective sample preparation and the data analysis methods that are commonly used. We also review the advancements through the years in the usage of the technique for the spatial profiling of endogenous metabolites, detection of xenobiotic agrochemicals and disease detection in plants. As an actively pursued area of research, we also address the hurdles in the analysis of plant tissues, the future scopes and an integrated approach to analyse samples combining different mass spectrometry imaging methods to obtain the most information from a sample of interest.
Collapse
Affiliation(s)
- Akhila Ajith
- Department of Chemistry, Photon Science Institute, University of Manchester, Manchester M13 9PL, UK;
| | - Phillip J. Milnes
- Syngenta, Jeolott’s Hill International Research Centre, Bracknell RG42 6EY, UK;
| | - Giles N. Johnson
- Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PY, UK;
| | - Nicholas P. Lockyer
- Department of Chemistry, Photon Science Institute, University of Manchester, Manchester M13 9PL, UK;
- Correspondence:
| |
Collapse
|
6
|
Huang X, Wang W, Gong T, Wickell D, Kuo LY, Zhang X, Wen J, Kim H, Lu F, Zhao H, Chen S, Li H, Wu W, Yu C, Chen S, Fan W, Chen S, Bao X, Li L, Zhang D, Jiang L, Khadka D, Yan X, Liao Z, Zhou G, Guo Y, Ralph J, Sederoff RR, Wei H, Zhu P, Li FW, Ming R, Li Q. The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. NATURE PLANTS 2022; 8:500-512. [PMID: 35534720 PMCID: PMC9122828 DOI: 10.1038/s41477-022-01146-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/30/2022] [Indexed: 05/03/2023]
Abstract
To date, little is known about the evolution of fern genomes, with only two small genomes published from the heterosporous Salviniales. Here we assembled the genome of Alsophila spinulosa, known as the flying spider-monkey tree fern, onto 69 pseudochromosomes. The remarkable preservation of synteny, despite resulting from an ancient whole-genome duplication over 100 million years ago, is unprecedented in plants and probably speaks to the uniqueness of tree ferns. Our detailed investigations into stem anatomy and lignin biosynthesis shed new light on the evolution of stem formation in tree ferns. We identified a phenolic compound, alsophilin, that is abundant in xylem, and we provided the molecular basis for its biosynthesis. Finally, analysis of demographic history revealed two genetic bottlenecks, resulting in rapid demographic declines of A. spinulosa. The A. spinulosa genome fills a crucial gap in the plant genomic landscape and helps elucidate many unique aspects of tree fern biology.
Collapse
Affiliation(s)
- Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Wenling Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - David Wickell
- Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Li-Yaung Kuo
- Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jialong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Hoon Kim
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Fachuang Lu
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Hansheng Zhao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, Institute of Gene for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Changjiang Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wei Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Shuai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Longyu Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dipak Khadka
- GoldenGate International College, Tribhuvan University, Battisputali, Kathmandu, Nepal
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Zhenyang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, China
| | - John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Fay-Wei Li
- Thompson Institute, Ithaca, NY, USA.
- Plant Biology Section, Cornell University, Ithaca, NY, USA.
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
7
|
Hu W, Nie H, Wang Y, Li N, Di S, Pan Q, Liu J, Han Y. Tracing the migration and transformation of metabolites in xylem during wood growth by mass spectrometry imaging. Analyst 2022; 147:1551-1558. [DOI: 10.1039/d1an02251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MALDI MSI was used to explore the rule of metabolite migration and transformation for the first time. The rules of heartwood formation and resin secretion were visualized and fully explored.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuangshuang Di
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Jikun Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| |
Collapse
|
8
|
Hu W, Han Y, Sheng Y, Wang Y, Pan Q, Nie H. Mass spectrometry imaging for direct visualization of components in plants tissues. J Sep Sci 2021; 44:3462-3476. [PMID: 34245221 DOI: 10.1002/jssc.202100138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Mass spectrometry is considered the most informative technique for components identification and has been widely adopted in plant sciences. However, the spatial distribution of compounds in the plant, which is vital for the exploration of plant physiological mechanisms, is missed in MS analysis. In recent years, mass spectrometry imaging has brought a great breakthrough in plant analysis because it can determine both the molecular compositions and spatial distributions, which is conducive to understand functions and regulation pathways of specific components in plants. Mass spectrometry imaging analysis of plant tissue is toward high sensitivity, high spatial resolution, and even single-cell analysis. Despite many challenges and technical barriers, such as difficulties of sample pretreatment caused by morphological diversity of plant tissues, obstacles for high spatial resolution imaging, and so on, lots of researches have contributed to remarkable progress, including improvement in tissue preparation, matrix innovation, and ionization mode development. This review focuses on the advances of mass spectrometry imaging analysis of plants in the last 5 years, including commonly used ionization techniques, technical advances, and recent applications of mass spectrometry imaging in plants.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yiqi Sheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
9
|
Wang Q, Dai X, Pang H, Cheng Y, Huang X, Li H, Yan X, Lu F, Wei H, Sederoff RR, Li Q. BEL1-like Homeodomain Protein BLH6a Is a Negative Regulator of CAl5H2 in Sinapyl Alcohol Monolignol Biosynthesis in Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:695223. [PMID: 34249068 PMCID: PMC8269948 DOI: 10.3389/fpls.2021.695223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Lignin is one of the major components of xylem cell walls in tree stems. The lignin in the wood of most flowering plants (dicotyledonous angiosperms) is typically polymerized from three monolignol precursors, coniferyl alcohol, sinapyl alcohol, and p-coumaroyl alcohol, resulting in guaiacyl (G), syringyl (S), and hydroxyphenyl (H) subunits, respectively. In this study, we focus on the transcriptional regulation of a coniferaldehyde 5-hydroxylase (CAld5H2) gene, which encodes a key enzyme for sinapyl alcohol biosynthesis. We carried out a yeast one-hybrid (Y1H) screen to identify candidate upstream transcription factors (TFs) regulating CAld5H2. We obtained 12 upstream TFs as potential regulators of CAld5H2. One of these TF genes, BLH6a, encodes a BEL1-like homeodomain (BLH) protein and negatively regulated the CAld5H2 promoter activity. The direct regulation of CAld5H2 promoter by BLH6a was supported by chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) and dominant repression of BLH6a in transgenic plants. Luciferase complementation imaging analyses showed extensive protein-protein interactions among these 12 TFs. We propose that BLH6a is a negative regulator of CAld5H2, which acts through combinatorial regulation of multiple TFs for sinapyl alcohol (S monolignol) biosynthesis in poplar.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Yanxia Cheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Fachuang Lu
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, United States
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
10
|
Zhang R, Qi Y, Ma C, Ge J, Hu Q, Yue FJ, Li SL, Volmer DA. Characterization of Lignin Compounds at the Molecular Level: Mass Spectrometry Analysis and Raw Data Processing. Molecules 2021; 26:molecules26010178. [PMID: 33401378 PMCID: PMC7795929 DOI: 10.3390/molecules26010178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Lignin is the second most abundant natural biopolymer, which is a potential alternative to conventional fossil fuels. It is also a promising material for the recovery of valuable chemicals such as aromatic compounds as well as an important biomarker for terrestrial organic matter. Lignin is currently produced in large quantities as a by-product of chemical pulping and cellulosic ethanol processes. Consequently, analytical methods are required to assess the content of valuable chemicals contained in these complex lignin wastes. This review is devoted to the application of mass spectrometry, including data analysis strategies, for the elemental and structural elucidation of lignin products. We describe and critically evaluate how these methods have contributed to progress and trends in the utilization of lignin in chemical synthesis, materials, energy, and geochemistry.
Collapse
Affiliation(s)
- Ruochun Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
- Correspondence: ; Fax: +86-022-27405051
| | - Chao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
| | - Jinfeng Ge
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
| | - Qiaozhuan Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; (R.Z.); (C.M.); (J.G.); (Q.H.); (F.-J.Y.); (S.-L.L.)
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
| | - Dietrich A. Volmer
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany;
| |
Collapse
|
11
|
Zhu Y, Huang J, Wang K, Wang B, Sun S, Lin X, Song L, Wu A, Li H. Characterization of Lignin Structures in Phyllostachys edulis (Moso Bamboo) at Different Ages. Polymers (Basel) 2020; 12:E187. [PMID: 31936794 PMCID: PMC7022663 DOI: 10.3390/polym12010187] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Abstract
Bamboo is a gramineous plant widely distributed in China and has great prospects. Normally, local people cut bamboo culm at first year for paper milling or at six years for construction. Understanding lignin changes in bamboo with aging is necessary for better exploring the application of bamboo at different ages and can also promote the application of bamboo more effectively. Based on the previous study, the chemical structure and the lignin content of bamboo at different ages were further explored by FT-IR, GPC, NMR and other chemical methods in this paper. Results showed that the lignin structures of bamboo at different ages were similar with three monomers of S, G and H, but the molecular weight increased with age. Quantitative structure estimation further confirmed that S-type lignin content and S/G ratio of bamboo lignin constantly increased with age.
Collapse
Affiliation(s)
- Yikui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (K.W.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Jiawei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (K.W.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Kaili Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (K.W.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Bo Wang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Shaolong Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, China; (X.L.); (L.S.)
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an 311300, China; (X.L.); (L.S.)
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (K.W.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.H.); (K.W.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Maceda A, Soto-Hernández M, Peña-Valdivia CB, Trejo C, Terrazas T. Differences in the Structural Chemical Composition of the Primary Xylem of Cactaceae: A Topochemical Perspective. FRONTIERS IN PLANT SCIENCE 2019; 10:1497. [PMID: 31850014 PMCID: PMC6892835 DOI: 10.3389/fpls.2019.01497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/29/2019] [Indexed: 05/25/2023]
Abstract
The xylem of Cactaceae is a complex system with different types of cells whose main function is to conduct and store water, mostly during the development of primary xylem, which has vessel elements and wide-band tracheids. The anatomy of primary xylem of Cactaceae has been widely studied, but little is known about its chemical composition. The aim of this study was to determine the structural chemical composition of the primary xylem of Cactaceae and to compare it with the anatomy in the group. Seeds from eight cacti species were used, representing the Pereskioideae, Opuntioideae, and Cactoideae subfamilies. Seeds were germinated and grown for 8 months. Subsequently, only the stem of the seedling was selected, dried, milled, and processed following the TAPPI T-222 om-02 norm; lignin was quantified using the Klason method and cellulose with the Kurshner-Höffer method. Using Fourier transform infrared spectroscopy, the percentage of syringyl and guaiacyl in lignin was calculated. Seedlings of each species were fixed, sectioned, and stained for their anatomical description and fluorescence microscopy analysis for the topochemistry of the primary xylem. The results showed that there were significant differences between species (p < 0.05), except in the hemicelluloses. Through a principal component analysis, it was found that the amount of extractive-free stem and hot water-soluble extractives were the variables that separated the species, followed by cellulose and hemicelluloses since the seedlings developed mainly parenchyma cells and the conductive tissue showed vessel elements and wide-band tracheids, both with annular and helical thickenings in secondary walls. The type of lignin with the highest percentage was guaiacyl-type, which is accumulated mainly in the vessels, providing rigidity. Whereas in the wide-band tracheids from metaxylem, syringyl lignin accumulated in the secondary walls S2 and S3, which permits an efficient flow of water and gives the plant the ability to endure difficult conditions during seedling development. Only one species can be considered to have paedomorphosis since the conductive elements had a similar chemistry in primary and secondary xylem.
Collapse
Affiliation(s)
- Agustín Maceda
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas, Texcoco, Mexico
| | - Marcos Soto-Hernández
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas, Texcoco, Mexico
| | | | - Carlos Trejo
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas, Texcoco, Mexico
| | - Teresa Terrazas
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
13
|
Chen WJ, Zhao BC, Cao XF, Yuan TQ, Shi Q, Wang SF, Sun RC. Structural Features of Alkaline Dioxane Lignin and Residual Lignin from Eucalyptus grandis × E. urophylla. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:968-974. [PMID: 30580517 DOI: 10.1021/acs.jafc.8b05760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the present study, lignin from eucalyptus was extracted with 80% alkaline dioxane (0.05 M NaOH) from ball-milled wood and subsequently fractionated by gradient acid precipitation from the filtrate. Meanwhile, the residual lignin was prepared by a double enzymatic hydrolysis process. The yield of the lignin extracted by alkaline dioxane (LA-2) was 29.5%. The carbohydrate contents and molecular weights of the gradient acid precipitated lignin fractions gradually decreased from 4.90 to 1.36% and from 7770 to 5510 g/mol, respectively, with the decline of the pH value from 6 to 2. Results from two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (NMR) and 31P NMR spectroscopy showed an evident reduction of β- O-4 ' linkages with the pH value decrease, while the contents of aliphatic -OH, phenolic -OH, and carboxylic groups displayed an increasing trend. Moreover, the residual lignin exhibited the highest molecular weight (11690 g/mol), the most abundant β- O-4 ' linkages (71.1%), and the highest S/G ratio (4.68).
Collapse
Affiliation(s)
- Wei-Jing Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , No. 35 Tsinghua East Road , Haidian District, Beijing 100083 , China
| | - Bao-Cheng Zhao
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , No. 35 Tsinghua East Road , Haidian District, Beijing 100083 , China
- Power Dekor (JiangSu) Wood Research Co., Ltd. , Dare Industrial Park , Economic and Technological Development Zone, Danyang City 212300 , China
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , No. 35 Tsinghua East Road , Haidian District, Beijing 100083 , China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , No. 35 Tsinghua East Road , Haidian District, Beijing 100083 , China
| | - Quentin Shi
- Jining Mingsheng New Materials Co., Ltd , Xinglong Industrial Park , Jining 272000 , China
| | - Shuang-Fei Wang
- College of Light Industry and Food Engineering , Guangxi University , No. 100 Daxue East Road , Nanning 530000 , China
| | - Run-Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , No. 35 Tsinghua East Road , Haidian District, Beijing 100083 , China
| |
Collapse
|
14
|
Goacher RE, Braham EJ, Michienzi CL, Flick RM, Yakunin AF, Master ER. Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples. PHYSIOLOGIA PLANTARUM 2018; 164:5-16. [PMID: 29286544 DOI: 10.1111/ppl.12688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
The modification and degradation of lignin play a vital role in carbon cycling as well as production of biofuels and bioproducts. The possibility of using bacterial laccases for the oxidation of lignin offers a route to utilize existing industrial protein expression techniques. However, bacterial laccases are most frequently studied on small model compounds that do not capture the complexity of lignocellulosic materials. This work studied the action of laccases from Bacillus subtilis and Salmonella typhimurium (EC 1.10.3.2) on ground wood samples from yellow birch (Betula alleghaniensis) and red spruce (Picea rubens). The ability of bacterial laccases to modify wood can be facilitated by small molecule mediators. Herein, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), gallic acid and sinapic acid mediators were tested. Direct analysis of the wood samples was achieved by time-of-flight secondary ion mass spectrometry (ToF-SIMS), a surface sensitive mass spectrometry technique that has characteristic peaks for H, G and S lignin. The action of the bacterial laccases on both wood samples was demonstrated and revealed a strong mediator influence. The ABTS mediator led to delignification, evident in an overall increase of polysaccharide peaks in the residual solid, along with equal loss of G and S-lignin peaks. The gallic acid mediator demonstrated minimal laccase activity. Meanwhile, the sinapic acid mediator altered the S/G peak ratio consistent with mediator attaching to the wood solids. The current investigation demonstrates the action of bacterial laccase-mediator systems directly on woody materials, and the potential of using ToF-SIMS to uncover the fundamental and applied role of bacterial enzymes in lignocellulose conversion.
Collapse
Affiliation(s)
- Robyn E Goacher
- Department of Biochemistry, Chemistry and Physics, Niagara University, 5795 Lewiston Road, Lewiston, NY, 14109, USA
| | - Erick J Braham
- Department of Biochemistry, Chemistry and Physics, Niagara University, 5795 Lewiston Road, Lewiston, NY, 14109, USA
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77843, USA
| | - Courtney L Michienzi
- Department of Biochemistry, Chemistry and Physics, Niagara University, 5795 Lewiston Road, Lewiston, NY, 14109, USA
| | - Robert M Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Kemistintie 1, Espoo, Finland
| |
Collapse
|
15
|
Wang JP, Liu B, Sun Y, Chiang VL, Sederoff RR. Enzyme-Enzyme Interactions in Monolignol Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1942. [PMID: 30693007 PMCID: PMC6340093 DOI: 10.3389/fpls.2018.01942] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/13/2018] [Indexed: 05/18/2023]
Abstract
The enzymes that comprise the monolignol biosynthetic pathway have been studied intensively for more than half a century. A major interest has been the role of pathway in the biosynthesis of lignin and the role of lignin in the formation of wood. The pathway has been typically conceived as linear steps that convert phenylalanine into three major monolignols or as a network of enzymes in a metabolic grid. Potential interactions of enzymes have been investigated to test models of metabolic channeling or for higher order interactions. Evidence for enzymatic or physical interactions has been fragmentary and limited to a few enzymes studied in different species. Only recently the entire pathway has been studied comprehensively in any single plant species. Support for interactions comes from new studies of enzyme activity, co-immunoprecipitation, chemical crosslinking, bimolecular fluorescence complementation, yeast 2-hybrid functional screening, and cell type-specific gene expression based on light amplification by stimulated emission of radiation capture microdissection. The most extensive experiments have been done on differentiating xylem of Populus trichocarpa, where genomic, biochemical, chemical, and cellular experiments have been carried out. Interactions affect the rate, direction, and specificity of both 3 and 4-hydroxylation in the monolignol biosynthetic pathway. Three monolignol P450 mono-oxygenases form heterodimeric and heterotetrameric protein complexes that activate specific hydroxylation of cinnamic acid derivatives. Other interactions include regulatory kinetic control of 4-coumarate CoA ligases through subunit specificity and interactions between a cinnamyl alcohol dehydrogenase and a cinnamoyl-CoA reductase. Monolignol enzyme interactions with other pathway proteins have been associated with biotic and abiotic stress response. Evidence challenging or supporting metabolic channeling in this pathway will be discussed.
Collapse
Affiliation(s)
- Jack P. Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Baoguang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Department of Forestry, Beihua University, Jilin, China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Vincent L. Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Ronald R. Sederoff,
| |
Collapse
|
16
|
Tolbert AK, Yoo CG, Ragauskas AJ. Understanding the Changes to Biomass Surface Characteristics after Ammonia and Organosolv Pretreatments by Using Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS). Chempluschem 2017; 82:686-690. [PMID: 31961521 DOI: 10.1002/cplu.201700138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 11/08/2022]
Abstract
Surface characteristic changes to poplar after ammonia and organosolv pretreatments were investigated by means of time-of-flight secondary-ion mass spectrometry (TOF-SIMS) analysis. Whereas normalized total polysaccharides and lignin contents on the surface differed from bulk chemical compositions, the surface cellulose ions detected by TOF-SIMS showed the same value trend as the cellulose content in the biomass. In addition, the lignin syringyl/guaiacyl ratio according to TOF-SIMS results showed the same trend as the ratio measured by means of NMR spectroscopic analysis, even though the ratio scales for each method were different. A similar correlation was determined between the surface cellulose and glucose release after enzymatic hydrolysis. These results demonstrate that surface characterization using TOF-SIMS can provide important information about the effects of pretreatment on biomass properties and its hydrolysis.
Collapse
Affiliation(s)
- Allison K Tolbert
- School of Chemistry and Biochemistry & Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,BioEnergy Science Center (BESC), Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Chang Geun Yoo
- BioEnergy Science Center (BESC), Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,UT-ORNL Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Arthur J Ragauskas
- BioEnergy Science Center (BESC), Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,UT-ORNL Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA.,Center of Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| |
Collapse
|
17
|
Vanbellingen QP, Fu T, Bich C, Amusant N, Stien D, Della-Negra S, Touboul D, Brunelle A. Mapping Dicorynia guianensis Amsh. wood constituents by submicron resolution cluster-TOF-SIMS imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:412-423. [PMID: 27270864 DOI: 10.1002/jms.3762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 06/06/2023]
Abstract
The preparation of tropical wood surface sections for time-of-flight secondary ion mass spectrometry imaging is described, and the use of delayed extraction of secondary ions and its interest for the analysis of vegetal surface are shown. The method has been applied to the study by time-of-flight secondary ion mass spectrometry imaging with a resolution of less than one micron of a tropical wood species, Dicorynia guianensis, which is one of the most exploited wood in French Guiana for its durable heartwood. The heartwood of this species exhibits an economical importance, but its production is not controlled in forestry. Results show an increase of tryptamine from the transition zone and a concomitant decrease of inorganic ions and starch fragment ions. These experiments lead to a better understanding of the heartwood formation and the origin of the natural durability of D. guianensis. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Quentin P Vanbellingen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Tingting Fu
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
- Institut de Physique Nucléaire, UMR8608, IN2P3-CNRS, Université Paris-Sud, 91406, Orsay, France
| | - Claudia Bich
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Nadine Amusant
- CIRAD, UMR EcoFoG, CNRS, AgroParisTech, INRA, Université des Antilles, Université de Guyane, 97310, Kourou, France
| | - Didier Stien
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| | - Serge Della-Negra
- Institut de Physique Nucléaire, UMR8608, IN2P3-CNRS, Université Paris-Sud, 91406, Orsay, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Alain Brunelle
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Comparative analysis of lignin peroxidase and manganese peroxidase activity on coniferous and deciduous wood using ToF-SIMS. Appl Microbiol Biotechnol 2016; 100:8013-20. [DOI: 10.1007/s00253-016-7560-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/10/2016] [Accepted: 04/16/2016] [Indexed: 11/30/2022]
|
19
|
Dong Y, Li B, Malitsky S, Rogachev I, Aharoni A, Kaftan F, Svatoš A, Franceschi P. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review. FRONTIERS IN PLANT SCIENCE 2016; 7:60. [PMID: 26904042 PMCID: PMC4748743 DOI: 10.3389/fpls.2016.00060] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/14/2016] [Indexed: 05/18/2023]
Abstract
Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites.
Collapse
Affiliation(s)
- Yonghui Dong
- Biostatistics and Data Management, Research and Innovation Centre - Fondazione Edmund MachS. Michele all'Adige, Italy
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Bin Li
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Filip Kaftan
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical EcologyJena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical EcologyJena, Germany
| | - Pietro Franceschi
- Biostatistics and Data Management, Research and Innovation Centre - Fondazione Edmund MachS. Michele all'Adige, Italy
- *Correspondence: Pietro Franceschi
| |
Collapse
|
20
|
Boughton BA, Thinagaran D, Sarabia D, Bacic A, Roessner U. Mass spectrometry imaging for plant biology: a review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2015; 15:445-488. [PMID: 27340381 PMCID: PMC4870303 DOI: 10.1007/s11101-015-9440-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/25/2015] [Indexed: 05/09/2023]
Abstract
Mass spectrometry imaging (MSI) is a developing technique to measure the spatio-temporal distribution of many biomolecules in tissues. Over the preceding decade, MSI has been adopted by plant biologists and applied in a broad range of areas, including primary metabolism, natural products, plant defense, plant responses to abiotic and biotic stress, plant lipids and the developing field of spatial metabolomics. This review covers recent advances in plant-based MSI, general aspects of instrumentation, analytical approaches, sample preparation and the current trends in respective plant research.
Collapse
Affiliation(s)
- Berin A. Boughton
- />Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Dinaiz Thinagaran
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Daniel Sarabia
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Antony Bacic
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
- />ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC 3010 Australia
- />Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Ute Roessner
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
21
|
Analysis of a Modern Hybrid and an Ancient Sugarcane Implicates a Complex Interplay of Factors in Affecting Recalcitrance to Cellulosic Ethanol Production. PLoS One 2015; 10:e0134964. [PMID: 26252208 PMCID: PMC4529190 DOI: 10.1371/journal.pone.0134964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022] Open
Abstract
Abundant evidence exists to support a role for lignin as an important element in biomass recalcitrance. However, several independent studies have also shown that factors apart from lignin are also relevant and overall, the relative importance of different recalcitrance traits remains in dispute. In this study we used two genetically distant sugarcane genotypes, and performed a correlational study with the variation in anatomical parameters, cell wall composition, and recalcitrance factors between these genotypes. In addition we also tracked alterations in these characteristics in internodes at different stages of development. Significant differences in the development of the culm between the genotypes were associated with clear differential distributions of lignin content and composition that were not correlated with saccharification and fermentation yield. Given the strong influence of the environment on lignin content and composition, we hypothesized that sampling within a single plant could allow us to more easily interpret recalcitrance and changes in lignin biosynthesis than analysing variations between different genotypes with extensive changes in plant morphology and culm anatomy. The syringyl/guaiacyl (S/G) ratio was higher in the oldest internode of the modern genotype, but S/G ratio was not correlated with enzymatic hydrolysis yield nor fermentation efficiency. Curiously we observed a strong positive correlation between ferulate ester level and cellulose conversion efficiency. Together, these data support the hypothesis that biomass enzymatic hydrolysis recalcitrance is governed by a quantitative heritage rather than a single trait.
Collapse
|
22
|
Wen JL, Sun SL, Xue BL, Sun RC. Structural elucidation of inhomogeneous lignins from bamboo. Int J Biol Macromol 2015; 77:250-9. [DOI: 10.1016/j.ijbiomac.2015.03.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/05/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
|
23
|
Tsai AY, Goacher RE, Master ER. Detecting changes in arabidopsis cell wall composition using time‐of‐flight secondary ion mass spectrometry. SURF INTERFACE ANAL 2015. [DOI: 10.1002/sia.5756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alex Yi‐Lin Tsai
- Department of Cell & Systems BiologyUniversity of Toronto Toronto ON Canada
| | - Robyn E. Goacher
- Department of Biochemistry, Chemistry and PhysicsNiagara University Lewiston NY USA
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto Toronto ON Canada
| | - Emma R. Master
- Department of Cell & Systems BiologyUniversity of Toronto Toronto ON Canada
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto Toronto ON Canada
| |
Collapse
|
24
|
Couturier M, Navarro D, Chevret D, Henrissat B, Piumi F, Ruiz-Dueñas FJ, Martinez AT, Grigoriev IV, Riley R, Lipzen A, Berrin JG, Master ER, Rosso MN. Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:216. [PMID: 26692083 PMCID: PMC4683735 DOI: 10.1186/s13068-015-0407-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/03/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND White-rot basidiomycete fungi are potent degraders of plant biomass, with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown. The Polyporale fungus Pycnoporus coccineus BRFM310 grows well on both coniferous and deciduous wood. In the present study, we analyzed the early response of the fungus to softwood (pine) and hardwood (aspen) feedstocks and tested the effect of the secreted enzymes on lignocellulose deconstruction. RESULTS Transcriptomic and proteomic analyses revealed that P. coccineus grown separately on pine and aspen displayed similar sets of transcripts and enzymes implicated in lignin and polysaccharide degradation. In particular, the expression of lignin-targeting oxidoreductases, such as manganese peroxidases, increased upon cultivation on both woods. The sets of enzymes secreted during growth on both pine and aspen were more efficient in saccharide release from pine than from aspen, and characterization of the residual solids revealed polysaccharide conversion on both pine and aspen fiber surfaces. CONCLUSION The combined analysis of soluble sugars and solid residues showed the suitability of P. coccineus secreted enzymes for softwood degradation. Analyses of solubilized products and residual surface chemistries of enzyme-treated wood samples pointed to differences in fiber penetration by different P. coccineus secretomes. Accordingly, beyond the variety of CAZymes identified in P. coccineus genome, transcriptome and secretome, we discuss several parameters such as the abundance of manganese peroxidases and the potential role of cytochrome P450s and pectin degradation on the efficacy of fungi for softwood conversion.
Collapse
Affiliation(s)
- Marie Couturier
- />Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />Polytech’Marseille, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON Canada
| | - David Navarro
- />Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />Polytech’Marseille, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
| | - Didier Chevret
- />INRA, UMR1319 Micalis, Plateforme d’Analyse Protéomique de Paris Sud-Ouest, 78352 Jouy-En-Josas, France
| | - Bernard Henrissat
- />Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 CNRS, Université Aix-Marseille, 13288 Marseille, France
- />Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- />INRA, USC 1408 AFMB, 13288 Marseille, France
| | - François Piumi
- />Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />Polytech’Marseille, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
| | | | | | - Igor V. Grigoriev
- />US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Robert Riley
- />US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Anna Lipzen
- />US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Jean-Guy Berrin
- />Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />Polytech’Marseille, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
| | - Emma R. Master
- />Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON Canada
| | - Marie-Noëlle Rosso
- />Aix Marseille Université, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />INRA, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
- />Polytech’Marseille, UMR1163 Biodiversité et Biotechnologie Fongiques, 163 avenue de Luminy, 13288 Marseille, France
| |
Collapse
|
25
|
Zeng J, Singh D, Gao D, Chen S. Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:161. [PMID: 25516769 PMCID: PMC4266972 DOI: 10.1186/s13068-014-0161-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/16/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND A key focus in sustainable biofuel research is to develop cost-effective and energy-saving approaches to increase saccharification of lignocellulosic biomass. Numerous efforts have been made to identify critical issues in cellulose hydrolysis. Aerobic fungal species are an integral part of the carbon cycle, equip the hydrolytic enzyme consortium, and provide a gateway for understanding the systematic degradation of lignin, hemicelluloses, and cellulose. This study attempts to reveal the complex biological degradation process of lignocellulosic biomass by Phanerochaete chrysosporium in order to provide new knowledge for the development of energy-efficient biorefineries. RESULTS In this study, we evaluated the performance of a fungal biodegradation model, Phanerochaete chrysosporium, in wheat straw through comprehensive analysis. We isolated milled straw lignin and cellulase enzyme-treated lignin from fungal-spent wheat straw to determine structural integrity and cellulase absorption isotherms. The results indicated that P. chrysosporium increased the total lignin content in residual biomass and also increased the cellulase adsorption kinetics in the resulting lignin. The binding strength increased from 117.4 mL/g to 208.7 mL/g in milled wood lignin and from 65.3 mL/g to 102.4 mL/g in cellulase enzyme lignin. A detailed structural dissection showed a reduction in the syringyl lignin/guaiacyl lignin ratio and the hydroxycinnamate/lignin ratio as predominant changes in fungi-spent lignin by heteronuclear single quantum coherence spectroscopy. CONCLUSION P. chrysosporium shows a preference for degradation of phenolic terminals without significantly destroying other lignin components to unzip carbohydrate polymers. This is an important step in fungal growth on wheat straw. The phenolics presumably locate at the terminal region of the lignin moiety and/or link with hemicellulose to form the lignin-carbohydrate complex. Findings may inform the development of a biomass hydrolytic enzyme combination to enhance lignocellulosic biomass hydrolysis and modify the targets in plant cell walls.
Collapse
Affiliation(s)
- Jijiao Zeng
- Department of Biological Systems Engineering, Bioprocessing and Bioproduct Engineering Laboratory (BBEL), Washington State University, L.J. Smith 213, Pullman, Washington 99163 USA
| | - Deepak Singh
- Department of Biological Systems Engineering, Bioprocessing and Bioproduct Engineering Laboratory (BBEL), Washington State University, L.J. Smith 213, Pullman, Washington 99163 USA
| | - Difeng Gao
- Department of Biological Systems Engineering, Bioprocessing and Bioproduct Engineering Laboratory (BBEL), Washington State University, L.J. Smith 213, Pullman, Washington 99163 USA
| | - Shulin Chen
- Department of Biological Systems Engineering, Bioprocessing and Bioproduct Engineering Laboratory (BBEL), Washington State University, L.J. Smith 213, Pullman, Washington 99163 USA
| |
Collapse
|
26
|
Gerber L, Hoang VM, Tran L, Kiet HAT, Malmberg P, Hanrieder J, Ewing A. Using imaging ToF‐SIMS data to determine the cell wall thickness of fibers in wood. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lorenz Gerber
- Analytical Chemistry, Department of Chemical and Biological Engineering Chalmers University of Technology Gothenburg Sweden
- Department of Forest Genetics and Plant Physiology Swedish University of Agricultural Sciences Umeå Sweden
| | - Viet Mai Hoang
- TMA:Research TMA Tower Quang Trung Software City Ho Chi Minh City Vietnam
| | - Linh Tran
- TMA:Research TMA Tower Quang Trung Software City Ho Chi Minh City Vietnam
| | | | - Per Malmberg
- Department of Chemistry and Molecular Biology University of Gothenburg 405 30 Gothenburg
| | - Jörg Hanrieder
- Department of Chemistry and Molecular Biology University of Gothenburg 405 30 Gothenburg
| | - Andrew Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg 405 30 Gothenburg
| |
Collapse
|
27
|
Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE. Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science 2014; 344:1246843. [DOI: 10.1126/science.1246843] [Citation(s) in RCA: 2410] [Impact Index Per Article: 219.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Araújo P, Ferreira MS, de Oliveira DN, Pereira L, Sawaya ACHF, Catharino RR, Mazzafera P. Mass spectrometry imaging: an expeditious and powerful technique for fast in situ lignin assessment in Eucalyptus. Anal Chem 2014; 86:3415-9. [PMID: 24451041 DOI: 10.1021/ac500220r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant biomass has been suggested as an alternative to produce bioethanol. The recalcitrance of plant biomass to convert cellulose into simpler carbohydrates used in the fermentation process is partially due to lignin, but the standard methods used to analyze lignin composition frequently use toxic solvents and are laborious and time-consuming. MS imaging was used to study lignin in Eucalyptus, since this genus is the main source of cellulose in the world. Hand-cut sections of stems of two Eucalyptus species were covered with silica and directly analyzed by matrix-assisted laser sesorption ionization (MALDI)-imaging mass spectrometry (MS). Information available in the literature about soluble lignin subunits and structures were used to trace their distribution in the sections and using a software image a relative quantification could be made. Matrixes routinely used in MALDI-imaging analysis are not satisfactory to analyze plant material and were efficiently substituted by thin layer chromatography (TLC) grade silica. A total of 22 compounds were detected and relatively quantified. It was also possible to establish a proportion between syringyl and guaiacyl monolignols, characteristic for each species. Because of the simple way that samples are prepared, the MALDI-imaging approach presented here can replace, in routine analysis, complex and laborious MS methods in the study of lignin composition.
Collapse
Affiliation(s)
- Pedro Araújo
- Departamento de Biologia Vegetal, Instituto de Biologia, University of Campinas , CP 6109, 13083-970, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
29
|
Goacher RE, Selig MJ, Master ER. Advancing lignocellulose bioconversion through direct assessment of enzyme action on insoluble substrates. Curr Opin Biotechnol 2014; 27:123-33. [PMID: 24525082 DOI: 10.1016/j.copbio.2014.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 11/26/2022]
Abstract
Microbial utilization of lignocellulose from plant cell walls is integral to carbon cycling on Earth. Correspondingly, secreted enzymes that initiate lignocellulose depolymerization serve a crucial step in the bioconversion of lignocellulosic biomass to fuels and chemicals. Genome and metagenome sequencing efforts that span the past decade reveal the diversity of enzymes that have evolved to transform lignocellulose from wood, herbaceous plants and grasses. Nevertheless, there are relatively few examples where 'omic' technologies have identified novel enzyme activities or combinations thereof that dramatically improve the economics of lignocellulose bioprocessing and utilization. A likely factor contributing to the discrepancy between sequence-based enzyme discovery and enzyme application is the common practice to screen enzyme candidates based on activity measurements using soluble model compounds. In this context, the development and application of imaging, physicochemical, and spectromicroscopic techniques that allow direct assessment of enzyme action on relevant lignocellulosic substrates is reviewed.
Collapse
Affiliation(s)
- Robyn E Goacher
- Department of Biochemistry, Chemistry and Physics, Niagara University, NY, USA
| | - Michael J Selig
- Department of Geoscience and Natural Resource Management, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Zeng J, Tong Z, Wang L, Zhu JY, Ingram L. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis. BIORESOURCE TECHNOLOGY 2014; 154:274-81. [PMID: 24412855 DOI: 10.1016/j.biortech.2013.12.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 05/09/2023]
Abstract
The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation chromatography (GPC), quantitative (13)C, and 2-D nuclear magnetic resonance (NMR). The structural analysis revealed that ethanol extractable lignin preserved basic lignin structure, but had relatively lower amount of β-O-4 linkages, syringyl/guaiacyl units ratio (S/G), p-coumarate/ferulate ratio, and other ending structures. The results also indicated that approximately 8% of mass weight was extracted by pure ethanol. The bagasse after ethanol extraction had an approximate 22% higher glucose yield after enzyme hydrolysis compared to pretreated bagasse without extraction.
Collapse
Affiliation(s)
- Jijiao Zeng
- Department of Agriculture & Biological Engineering, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Zhaohui Tong
- Department of Agriculture & Biological Engineering, IFAS, University of Florida, Gainesville, FL 32611, USA.
| | - Letian Wang
- Department of Agriculture & Biological Engineering, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - J Y Zhu
- USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Dr., Madison, WI 53726, USA
| | - Lonnie Ingram
- Department of Microbiology & Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32606, USA
| |
Collapse
|
31
|
Bjarnholt N, Li B, D'Alvise J, Janfelt C. Mass spectrometry imaging of plant metabolites--principles and possibilities. Nat Prod Rep 2014; 31:818-37. [PMID: 24452137 DOI: 10.1039/c3np70100j] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to the end of 2013 New mass spectrometry imaging (MSI) techniques are gaining importance in the analysis of plant metabolite distributions, and significant technological improvements have been introduced in the past decade. This review provides an introduction to the different MSI techniques and their applications in plant science. The most common methods for sample preparation are described, and the review also features a comprehensive table of published studies in MSI of plant material. A number of significant works are highlighted for their contributions to advance the understanding of plant biology through applications of plant metabolite imaging. Particular attention is given to the possibility for imaging of surface metabolites since this is highly dependent on the methods and techniques which are applied in imaging studies.
Collapse
Affiliation(s)
- Nanna Bjarnholt
- Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 17, 1870 Frederiksberg C, Copenhagen, Denmark
| | | | | | | |
Collapse
|
32
|
Arora R, Petrov GI, Yakovlev VV, Scully MO. Chemical analysis of molecular species through turbid medium. Anal Chem 2014; 86:1445-51. [PMID: 24380569 DOI: 10.1021/ac4023633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Subsurface analysis of chemical species is imperative for biomedical diagnostics and imaging, homeland security, and pharmaceutical and other industries; however, the access to the object of interest is often obscured by an optically scattering medium which limits the ability to inspect the chemical composition of the sample. In this report, we employ coherent Raman microspectroscopy in a combination with a hierarchical cluster analysis to mitigate the effect of scattering and demonstrate the identification of multiple chemical species.
Collapse
Affiliation(s)
- Rajan Arora
- Corning, Inc. , Hickory, North Carolina 28602, United States
| | | | | | | |
Collapse
|
33
|
Zeng J, Helms GL, Gao X, Chen S. Quantification of wheat straw lignin structure by comprehensive NMR analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10848-57. [PMID: 24143908 DOI: 10.1021/jf4030486] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A further understanding of the structure of lignin from herbaceous crops is needed for advancing technologies of lignocellulosic biomass processing and utilization. A method was established in this study for analyzing structural motifs found in milled straw lignin (MSL) and cellulase-digested lignin (CEL) isolated from wheat straw by combining quantitative (13)C and HSQC NMR spectral analyses. The results showed that guaiacyl (G) was the predominant unit in wheat straw cell wall lignin over syringyl (S) and hydroxyphenyl (H) units. Up to 8.0 units of tricin were also detected in wheat straw lignin per 100 aromatic rings. Various interunit linkages, including β-O-4, β-5, β-β', β-1, α, β-diaryl ether, and 5-5'/4-O-β' as well as potential lignin-carbohydrate complex (LCC) bonds, were identified and quantified. These findings provide useful information for the development of biofuels and lignin-based materials.
Collapse
Affiliation(s)
- Jijiao Zeng
- Department of Biological Systems Engineering, The Bioprocessing and Bioproduct Engineering Laboratory (BBEL), L. J. Smith 213, Washington State University , Pullman, Washington 99163 United States
| | | | | | | |
Collapse
|
34
|
Zhou C, Li M, Garcia R, Crawford A, Beck K, Hinks D, Griffis DP. Time-of-flight-secondary ion mass spectrometry method development for high-sensitivity analysis of acid dyes in nylon fibers. Anal Chem 2012; 84:10085-90. [PMID: 23113618 DOI: 10.1021/ac3025569] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A minimally destructive technique for the determination of dyes in finished fibers provides an important tool for crime scene and other forensic investigations. The analytical power and the minimal sample consumption of time-of-flight-secondary ion mass spectrometric (TOF-SIMS) analysis provides the ability to obtain definitive molecular and elemental information relevant to fiber identification, including identification of dyes, from a very small volume of sample. For both fiber surface analysis and, with the aid of cryomicrotomy, fiber cross-section analysis, TOF-SIMS was used to identify various dyes in finished textile fibers. The analysis of C.I. Acid Blue 25 in nylon is presented as a representative example. The molecular ion of C.I. Acid Blue 25 with lower than 3% on weight-of-fiber (owf) dye loading cannot be identified on dyed nylon surfaces by TOF-SIMS using a Bi(3)(+) primary ion beam. Sputtering with C(60)(+) provided the ability to remove surface contamination as well as at least partially remove Bi-induced damage, resulting in a greatly improved signal-to-noise ratio for the Acid Blue 25 molecular ion. The use of C(60)(+) for damage removal in a cyclic manner along with Bi for data acquisition provided the ability to unambiguously identify Acid Blue 25 via its molecular ion at a concentration of 0.1% owf from both fiber surfaces and cross sections.
Collapse
Affiliation(s)
- Chuanzhen Zhou
- Analytical Instrumentation Facility, College of Engineering, North Carolina State University, Campus Box 7531, Room 318 MRC, 2410 Campus Shore Drive, Raleigh, North Carolina 27695, United States.
| | | | | | | | | | | | | |
Collapse
|
35
|
Foston M, Ragauskas AJ. Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance. Ind Biotechnol (New Rochelle N Y) 2012. [DOI: 10.1089/ind.2012.0015] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marcus Foston
- BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA
| | - Arthur J. Ragauskas
- BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
36
|
Imaging mass spectrometry of thin tissue sections: a decade of collective efforts. J Proteomics 2012; 75:4883-4892. [PMID: 22525544 DOI: 10.1016/j.jprot.2012.04.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 12/21/2022]
Abstract
Imaging mass spectrometry (MS) allows to monitor the spatial distribution and abundance of endogenous and administered compounds present within tissue specimens. Several different but complementary imaging MS technologies have been developed allowing the analysis of a wide variety of compounds including inorganic elementals, metabolites, lipids, peptides, proteins and xenobiotics with spatial resolutions from micrometer to nanometer scales. In the past decade, an enormous collective body of work has been done to develop and improve the imaging MS technology. This article gives a historical perspective, an overview of the principle and status of the technology and lists the main fields of applications. It also enumerates some of the critical challenges we need to collectively address for imaging MS to be considered a mainstream analytical method.
Collapse
|