1
|
Colón Rosado J, Sun L. Solid-Phase Microextraction-Aided Capillary Zone Electrophoresis-Mass Spectrometry: Toward Bottom-Up Proteomics of Single Human Cells. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1120-1127. [PMID: 38514245 PMCID: PMC11157658 DOI: 10.1021/jasms.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Capillary zone electrophoresis-mass spectrometry (CZE-MS) has been recognized as a valuable technique for the proteomics of mass-limited biological samples (i.e., single cells). However, its broad adoption for single cell proteomics (SCP) of human cells has been impeded by the low sample loading capacity of CZE, only allowing us to use less than 5% of the available peptide material for each measurement. Here we present a reversed-phase-based solid-phase microextraction (RP-SPME)-CZE-MS platform to solve the issue, paving the way for SCP of human cells using CZE-MS. The RP-SPME-CZE system was constructed in one fused silica capillary with zero dead volume for connection via in situ synthesis of a frit, followed by packing C8 beads into the capillary to form a roughly 2 mm long SPME section. Peptides captured by SPME were eluted with a buffer containing 30% (v/v) acetonitrile and 50 mM ammonium acetate (pH 6.5), followed by dynamic pH junction-based CZE-MS. The SPME-CZE-MS enabled the injection of nearly 40% of the available peptide sample for each measurement. The system identified 257 ± 24 proteins and 523 ± 69 peptides (N = 2) using a Q-Exactive HF mass spectrometer when only 0.25 ng of a commercial HeLa cell digest was available in the sample vial and 0.1 ng of the sample was injected. The amount of available peptide is equivalent to the protein mass of one HeLa cell. The data indicate that SPME-CZE-MS is ready for SCP of human cells.
Collapse
Affiliation(s)
- Jorge
A. Colón Rosado
- Department of Chemistry, Michigan
State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan
State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Nagy C, Andrasi M, Szabo R, Gaspar A. CZE-MS peptide mapping: To desalt or not to desalt? Anal Chim Acta 2024; 1288:342162. [PMID: 38220294 DOI: 10.1016/j.aca.2023.342162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND In "shotgun" approaches involving high-performance liquid chromatography or capillary zone electrophoresis (CZE), matrix removal prior to sample analysis is considered as an indispensable tool. Despite the fact that CZE offers a high tolerance towards salts, most publications reported on the use of desalting. There seems to be no clear consensus on the utilization of desalting in the CZE-MS community, most probably due to the absence of works addressing the comparison of desalted and non-desalted digests. Our aim was to fill this research gap using protein samples of varying complexity in different sample matrices. RESULTS First, standard protein digests were analyzed to build the knowledge on the effect of sample clean-up by solid-phase extraction (SPE) pipette tips and the possible stacking phenomena induced by different sample matrices. Desalting led to a somewhat altered peptide profile, the procedure affected mostly the hydrophilic peptides (although not to a devastating extent). Nevertheless, desalting samples allowed remarkable stacking efficiency owing to their low-conductivity sample background, enabling a so-called field-amplified sample stacking phenomenon. Non-desalted samples also produced a stacking event, the mechanism of which is based on transient-isotachophoresis due to the presence of high-mobility ions in the digestion buffer itself. Adding either extra ammonium ions or acetonitrile into the non-desalted digests enhanced the stacking efficiency. A complex sample (yeast cell lysate) was also analyzed with the optimal conditions, which yielded similar tendencies. SIGNIFICANCE Based on these results, we propose that sample clean-up in the bottom-up sample preparation process prior to CZE-MS analysis can be omitted. The preclusion of desalting can even enhance detection sensitivity, separation efficiency or sequence coverage.
Collapse
Affiliation(s)
- Cynthia Nagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, 4032, Hungary
| | - Melinda Andrasi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, 4032, Hungary
| | - Ruben Szabo
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, 4032, Hungary
| | - Attila Gaspar
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, 4032, Hungary.
| |
Collapse
|
3
|
Chen D, McCool EN, Yang Z, Shen X, Lubeckyj RA, Xu T, Wang Q, Sun L. Recent advances (2019-2021) of capillary electrophoresis-mass spectrometry for multilevel proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:617-642. [PMID: 34128246 PMCID: PMC8671558 DOI: 10.1002/mas.21714] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 05/06/2023]
Abstract
Multilevel proteomics aims to delineate proteins at the peptide (bottom-up proteomics), proteoform (top-down proteomics), and protein complex (native proteomics) levels. Capillary electrophoresis-mass spectrometry (CE-MS) can achieve highly efficient separation and highly sensitive detection of complex mixtures of peptides, proteoforms, and even protein complexes because of its substantial technical progress. CE-MS has become a valuable alternative to the routinely used liquid chromatography-mass spectrometry for multilevel proteomics. This review summarizes the most recent (2019-2021) advances of CE-MS for multilevel proteomics regarding technological progress and biological applications. We also provide brief perspectives on CE-MS for multilevel proteomics at the end, highlighting some future directions and potential challenges.
Collapse
Affiliation(s)
| | | | | | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Rachele A. Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Tian Xu
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Kašička V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci 2022; 45:4245-4279. [PMID: 36200755 DOI: 10.1002/jssc.202200664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.
Collapse
Affiliation(s)
- Václav Kašička
- Electromigration Methods, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
El Ouahabi O, Mancera-Arteu M, Pont L, Giménez E, Sanz-Nebot V, Benavente F. On-line solid-phase extraction to enhance sensitivity in peptide biomarker analysis by microseparation techniques coupled to mass spectrometry: Capillary liquid chromatography versus capillary electrophoresis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Mora MF, Kok MGM, Noell A, Willis PA. Detection of Biosignatures by Capillary Electrophoresis Mass Spectrometry in the Presence of Salts Relevant to Ocean Worlds Missions. ASTROBIOLOGY 2022; 22:914-925. [PMID: 35913998 DOI: 10.1089/ast.2021.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Capillary electrophoresis (CE) is a promising liquid-based technique for in situ chemical analysis on ocean worlds that allows the detection of a wide range of organic molecules relevant to the search for life. CE coupled with mass spectrometry (MS) is particularly valuable as it also enables the discovery of unknown compounds. Here we demonstrate that CE coupled to MS via electrospray ionization (ESI) can readily analyze samples containing up to half the saturation levels of salts relevant to ocean worlds when using 5 M acetic acid as the separation media. A mixture containing amino acids, peptides, nucleobases, and nucleosides was analyzed in the presence of two salts, NaCl and MgSO4, based on their relevance to Europa and Enceladus. We demonstrate here CE-MS limits of detection for these organics ranging from 0.05 to 1 μM (8 to 89 ppb) in the absence of salts. More importantly, we demonstrate here for the first time that organics in the low micromolar range (1-50 μM) are detected by CE-MS in the presence of 3 M NaCl without desalting, preconcentration, or derivatization. This demonstration highlights how CE-MS is uniquely suited for organic analysis on future missions to ocean worlds.
Collapse
Affiliation(s)
- Maria F Mora
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Miranda G M Kok
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Aaron Noell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Peter A Willis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
7
|
Shamsi SA, Akter F. Capillary Electrophoresis Mass Spectrometry: Developments and Applications for Enantioselective Analysis from 2011-2020. Molecules 2022; 27:4126. [PMID: 35807372 PMCID: PMC9268241 DOI: 10.3390/molecules27134126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022] Open
Abstract
It is now more than 25 years since the first report of enantioselective analysis by capillary electrophoresis-mass spectrometry (CE-MS) appeared. This article reviews the power of chiral CE-MS in resolving issues on the use of chiral selector incompatibility with MS and poor detectability encountered for chiral compounds by UV detection. The review begins with the general principles, requirements, and critical aspects of chiral CE-MS instrumentation. Next, the review provides a survey of MS-compatible chiral selectors (CSs) reported during the past decade, and the key achievements encountered in the time period using these CSs. Within the context of the strategies used to combine CE and MS, special attention is paid to the approaches that feature partial filling technique, counter-migration techniques, and direct use of CS, such as molecular micelles. In particular, the development and application of moving and fixed CS for EKC-MS, MEKC-MS, and CEC-MS demonstrate how various chiral compounds analyses were solved in a simple and elegant way during the 2010-2020 review period. The most noteworthy applications in the determination of chiral compounds are critically examined. The operating analytical conditions are detailed in the Tables, and the authors provide commentary on future trends of chiral separations by CE-MS.
Collapse
Affiliation(s)
- Shahab A. Shamsi
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA;
| | | |
Collapse
|
8
|
Drown BS, Jooß K, Melani RD, Lloyd-Jones C, Camarillo JM, Kelleher NL. Mapping the Proteoform Landscape of Five Human Tissues. J Proteome Res 2022; 21:1299-1310. [PMID: 35413190 PMCID: PMC9087339 DOI: 10.1021/acs.jproteome.2c00034] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A functional understanding of the human body requires structure-function studies of proteins at scale. The chemical structure of proteins is controlled at the transcriptional, translational, and post-translational levels, creating a variety of products with modulated functions within the cell. The term "proteoform" encapsulates this complexity at the level of chemical composition. Comprehensive mapping of the proteoform landscape in human tissues necessitates analytical techniques with increased sensitivity and depth of coverage. Here, we took a top-down proteomics approach, combining data generated using capillary zone electrophoresis (CZE) and nanoflow reversed-phase liquid chromatography (RPLC) hyphenated to mass spectrometry to identify and characterize proteoforms from the human lungs, heart, spleen, small intestine, and kidneys. CZE and RPLC provided complementary post-translational modification and proteoform selectivity, thereby enhancing the overall proteome coverage when used in combination. Of the 11,466 proteoforms identified in this study, 7373 (64%) were not reported previously. Large differences in the protein and proteoform level were readily quantified, with initial inferences about proteoform biology operative in the analyzed organs. Differential proteoform regulation of defensins, glutathione transferases, and sarcomeric proteins across tissues generate hypotheses about how they function and are regulated in human health and disease.
Collapse
Affiliation(s)
- Bryon S Drown
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Kevin Jooß
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Cameron Lloyd-Jones
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeannie M Camarillo
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Molecular Biosciences, Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Johnson KR, Greguš M, Kostas JC, Ivanov AR. Capillary Electrophoresis Coupled to Electrospray Ionization Tandem Mass Spectrometry for Ultra-Sensitive Proteomic Analysis of Limited Samples. Anal Chem 2022; 94:704-713. [PMID: 34983182 PMCID: PMC8770592 DOI: 10.1021/acs.analchem.1c02929] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we developed an ultra-sensitive CE-MS/MS method for bottom-up proteomics analysis of limited samples, down to sub-nanogram levels of total protein. Analysis of 880 and 88 pg of the HeLa protein digest standard by CE-MS/MS yielded ∼1100 ± 46 and ∼160 ± 59 proteins, respectively, demonstrating higher protein and peptide identifications than the current state-of-the-art CE-MS/MS-based proteomic analyses with similar amounts of sample. To demonstrate potential applications of our ultra-sensitive CE-MS/MS method for the analysis of limited biological samples, we digested 500 and 1000 HeLa cells using a miniaturized in-solution digestion workflow. From 1-, 5-, and 10-cell equivalents injected from the resulted digests, we identified 744 ± 127, 1139 ± 24, and 1271 ± 6 proteins and 3353 ± 719, 5709 ± 513, and 8527 ± 114 peptide groups, respectively. Furthermore, we performed a comparative assessment of CE-MS/MS and two reversed-phased nano-liquid chromatography (RP-nLC-MS/MS) methods (monolithic and packed columns) for the analysis of a ∼10 ng HeLa protein digest standard. Our results demonstrate complementarity in the protein- and especially peptide-level identifications of the evaluated CE-MS- and RP-nLC-MS-based methods. The techniques were further assessed to detect post-translational modifications and highlight the strengths of the CE-MS/MS approach in identifying potentially important and biologically relevant modified peptides. With a migration window of ∼60 min, CE-MS/MS identified ∼2000 ± 53 proteins on average from a single injection of ∼8.8 ng of the HeLa protein digest standard. Additionally, an average of 232 ± 10 phosphopeptides and 377 ± 14 N-terminal acetylated peptides were identified in CE-MS/MS analyses at this sample amount, corresponding to 2- and 1.5-fold more identifications for each respective modification found by nLC-MS/MS methods.
Collapse
Affiliation(s)
- Kendall R Johnson
- Department of Chemistry and Chemical Biology, Northeastern University, Barnett Institute of Chemical and Biological Analysis, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Michal Greguš
- Department of Chemistry and Chemical Biology, Northeastern University, Barnett Institute of Chemical and Biological Analysis, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - James C Kostas
- Department of Chemistry and Chemical Biology, Northeastern University, Barnett Institute of Chemical and Biological Analysis, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Northeastern University, Barnett Institute of Chemical and Biological Analysis, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Pero-Gascon R, Pont L, Giménez E, Sanz-Nebot V, Benavente F. On-line Immobilized Enzyme Microreactor Capillary Zone Electrophoresis-Mass Spectrometry for Peptide Mapping. Methods Mol Biol 2022; 2531:77-91. [PMID: 35941480 DOI: 10.1007/978-1-0716-2493-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peptide mapping is a routine procedure for protein characterization in proteomics. This bottom-up analysis requires digestion of proteins into peptides before liquid chromatography- or capillary zone electrophoresis-mass spectrometry (LC-MS or CZE-MS, respectively). Proteins are usually digested off-line using proteolytic enzymes, typically trypsin, in solution or immobilized on appropriate supports. As an alternative, here we describe on-line immobilized enzyme microreactor capillary zone electrophoresis-mass spectrometry (IMER-CZE-MS) for a straightforward, rapid, and efficient protein digestion followed by separation, detection, and characterization of the generated peptides.
Collapse
Affiliation(s)
- Roger Pero-Gascon
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, Barcelona, Spain
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, Barcelona, Spain
| | - Estela Giménez
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, Barcelona, Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, Barcelona, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Patel VD, Shamsi SA, Sutherland K. Capillary electromigration techniques coupled to mass spectrometry: Applications to food analysis. Trends Analyt Chem 2021; 139. [DOI: 10.1016/j.trac.2021.116240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
François YN, Biacchi M, Gahoual R, Vezin A, Pansanel J. CEToolbox: Specialized calculator for capillary electrophoresis users as an android application. Electrophoresis 2021; 42:1431-1435. [PMID: 33890318 DOI: 10.1002/elps.202100036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022]
Abstract
CE has been demonstrated to be a useful and powerful separation method for the characterization of charged and neutral molecules. Since the end of the 1980s and the development of the first commercialized CE device, the use of this separation method has continued to grow for academic and industrial research involving inexorably increasing of the number of CE users. Whatever the application domain, each CE user is daily confronted to the same problems often based on basic calculations of separation properties. In order to help the community of CE users to get quickly and easily a lot of information, and desiring to provide a tool running on mobile platforms, CEToolbox has been developed as a free Android application. Within few clicks, CEToolbox offers extensive injection information as injected volume, total capillary volume, proportion and amount of injected sample, rinsing time, and electrical field. Moreover, three additional tabs allow to obtain the calculation of the viscosity and the conductivity of BGE, and the separation flow rates. Finally, a last tab is dedicated to the calculation of electroosmotic mobility and effective mobilities for a maximum of 20 compounds. CEToolbox, which can be downloaded for free on Google and F-Droid application stores, was developed to simplify the daily of CE users regardless of the CE devices.
Collapse
Affiliation(s)
- Yannis Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Michael Biacchi
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Rabah Gahoual
- Université de Paris, Faculté de sciences pharmaceutiques et biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRSUMR8258, Paris, Inserm U1022, France
| | - Aurélien Vezin
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | | |
Collapse
|
13
|
Yang Z, Sun L. Recent technical progress in sample preparation and liquid-phase separation-mass spectrometry for proteomic analysis of mass-limited samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1214-1225. [PMID: 33629703 DOI: 10.1039/d1ay00171j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mass spectrometry (MS)-based proteomics has enabled the identification and quantification of thousands of proteins from complex proteomes in a single experiment. However, its performance for mass-limited proteome samples (e.g., single cells and tissue samples from laser capture microdissection) is still not satisfying. The development of novel proteomic methodologies with better overall sensitivity is vital. During the last several years, substantial technical progress has been achieved for the preparation and liquid-phase separation-MS characterization of mass-limited proteome samples. In this review, we summarize recent technological progress of sample preparation, liquid chromatography (LC)-MS, capillary zone electrophoresis (CZE)-MS and MS instrumentation for bottom-up proteomics of trace biological samples, highlight some exciting applications of the novel techniques for single-cell proteomics, and provide a very brief perspective about the field at the end.
Collapse
Affiliation(s)
- Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
14
|
Huang L, Fang M, Cupp-Sutton KA, Wang Z, Smith K, Wu S. Spray-Capillary-Based Capillary Electrophoresis Mass Spectrometry for Metabolite Analysis in Single Cells. Anal Chem 2021; 93:4479-4487. [PMID: 33646748 PMCID: PMC8323477 DOI: 10.1021/acs.analchem.0c04624] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Single-cell capillary electrophoresis mass spectrometry (CE-MS) is a promising platform to analyze cellular contents and probe cell heterogeneity. However, current single-cell CE-MS methods often rely on offline microsampling processes and may demonstrate low sampling precision and accuracy. We have recently developed an electrospray-assisted device, spray-capillary, for low-volume sample extraction. With the spray-capillary, low-volume samples (pL-nL) are drawn into the sampling end of the device, which can be used directly for CE separation and online MS detection. Here, we redesigned the spray-capillary by utilizing a capillary with a <15 μm tapered tip so that it can be directly inserted into single cells for sample collection and on-capillary CE-MS analysis. We evaluated the performance of the modified spray-capillary by performing single-cell microsampling on single onion cells with varying sample injection times and direct MS analysis or online CE-MS analysis. We have demonstrated, for the first time, online sample collection and CE-MS for the analysis of single cells. This application of the modified spray-capillary device facilitates the characterization and relative quantification of hundreds of metabolites in single cells.
Collapse
Affiliation(s)
- Lushuang Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
15
|
Pont L, Kuzyk V, Benavente F, Sanz-Nebot V, Mayboroda OA, Wuhrer M, Lageveen-Kammeijer GSM. Site-Specific N-Linked Glycosylation Analysis of Human Carcinoembryonic Antigen by Sheathless Capillary Electrophoresis-Tandem Mass Spectrometry. J Proteome Res 2021; 20:1666-1675. [PMID: 33560857 PMCID: PMC8023805 DOI: 10.1021/acs.jproteome.0c00875] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
With 28 potential N-glycosylation sites, human
carcinoembryonic antigen (CEA) bears an extreme amount of N-linked glycosylation, and approximately 60% of its molecular
mass can be attributed to its carbohydrates. CEA is often overexpressed
and released by many solid tumors, including colorectal carcinomas.
CEA displays an impressive heterogeneity and variability in sugar
content; however, site-specific distribution of carbohydrate structures
has not been reported so far. The present study investigated CEA samples
purified from human colon carcinoma and human liver metastases and
enabled the characterization of 21 out of 28 potential N-glycosylation sites with respect to their occupancy. The coverage
was achieved by a multienzymatic digestion approach with specific
enzymes, such as trypsin, endoproteinase Glu-C, and the nonspecific enzyme, Pronase, followed by analysis using
sheathless CE-MS/MS. In total, 893 different N-glycopeptides
and 128 unique N-glycan compositions were identified.
Overall, a great heterogeneity was found both within (micro) and in
between (macro) individual N-glycosylation sites.
Moreover, notable differences were found on certain N-glycosylation sites between primary adenocarcinoma and metastatic
tumor in regard to branching, bisection, sialylation, and fucosylation.
Those features, if further investigated in a targeted manner, may
pave the way toward improved diagnostics and monitoring of colorectal
cancer progression and recurrence. Raw mass spectrometric data and
Skyline processed data files that support the findings of this study
are available in the MassIVE repository with the identifier MSV000086774
[DOI: 10.25345/C5Z50X].
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08007 Barcelona, Spain
| | - Valeriia Kuzyk
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.,Division of Bioanalytical Chemistry, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08007 Barcelona, Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08007 Barcelona, Spain
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | |
Collapse
|
16
|
Wang L, Li Y, Chen D, Chen DDY. Electrospray ionization stability and concentration sensitivity in capillary electrophoresis-mass spectrometry using a flow-through microvial interface. Electrophoresis 2021; 42:360-368. [PMID: 33345341 DOI: 10.1002/elps.202000239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 01/02/2023]
Abstract
Concentration sensitivity is a key performance indicator for analytical techniques including for capillary electrophoresis-mass spectrometry (CE-MS) with electrospray ionization (ESI). In this study, a flow-through microvial interface was used to couple CE with MS and improve the ESI stability and detection sensitivity. By infusing a peptide mixture through the interface into an MS detector at a typical flow rate for CE-MS analysis, the spatial region near the interface was mapped for MS signal intensity. When the sprayer tip was within a 6 × 6.5 × 5 mm region in front of the MS inlet, the ESI was stable with no significant loss of signal intensity for ions with m/z 239. Finite element simulations showed that the average electric field strength at the emitter tip did not change significantly with minor changes in emitter tip location. Experiments were conducted with four different mass spectrometer platforms coupled to CE via the flow-through microvial interface. Key performance indicators, that is, limit of detection (LOD) and linearity of calibration curves were measured for nine amino acids and five peptides. Inter- and intraday reproducibility were also tested. The results were shown to be suitable for quantification when internal standards were used.
Collapse
Affiliation(s)
- Lingyu Wang
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Yueyang Li
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Dazhou Chen
- Department of Analytical Chemistry and Stoichiometry, National Institution of Metrology, Beijing, P. R. China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| |
Collapse
|
17
|
Tang J, Wu H, Hu JJ, Yu J, Zhang J, Wang C, Yin T, Tang K. On a separation voltage polarity switching transient capillary isotachophoresis method for higher sample loading capacity and better separation performance. Analyst 2021; 146:124-131. [PMID: 33104142 DOI: 10.1039/d0an01640c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Limited sample loading capacity is one of the major reasons that prevents the utility of capillary electrophoresis (CE) as a routine separation method as compared to liquid chromatography (LC). In our previous study, separation voltage polarity switching transient capillary isotachophoresis (PS-tCITP) was proposed. Both sample loading capacity and separation resolution could be improved using a single PS-tCITP instead of routine transient capillary isotachophoresis (tCITP). In this study, a detailed investigation on the optimization strategy of the PS-tCITP method was performed systematically. A possible mechanism of sample preconcentration in multiple PS-tCITP was first proposed to better understand the multiple PS-tCITP process. Several optimization experiments were then performed, including single PS-tCITP, paused PS-tCITP and multiple PS-tCITP, sequentially using a mixture of five peptides. By selecting an optimum polarity switching time, sample loading capacity of 100% capillary volume could be achieved in a single PS-tCITP. Introducing an additional pause between each polarity switching in a single PS-tCITP further improved the separation resolution. Experimental results showed a baseline separation of five selected peptide standards at 100% sample loading volume using a 100 min pause in a single PS-tCITP. To further improve separation efficiency while still maintaining 100% sample loading volume, a multiple PS-tCITP technique was developed through this study. Compared to the separation performance of the optimal single PS-tCITP at 100% sample loading volume with a 10 min pause, the separation window was improved by 54% and the peak capacity was improved by 48% in the optimal four PS-tCITP with the same sample loading volume and pause.
Collapse
Affiliation(s)
- Ji Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zheng Y, Liu Z, Xing J, Zheng Z, Pi Z, Song F, Liu S. In situ analysis of single cell and biological samples with rGO-Cu functional probe ESI-MS spectrometry. Talanta 2020; 211:120751. [DOI: 10.1016/j.talanta.2020.120751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 01/17/2023]
|
19
|
Cheng J, Morin GB, Chen DDY. Bottom‐up proteomics of envelope proteins extracted from spinach chloroplast via high organic content CE‐MS. Electrophoresis 2020; 41:370-378. [DOI: 10.1002/elps.201900452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Jianhui Cheng
- Department of ChemistryUniversity of British Columbia Vancouver BC Canada
| | - Gregg B. Morin
- Michael Smith Genome Sciences CentreBritish Columbia Cancer Agency Vancouver BC Canada
- Department of Medical GeneticsUniversity of British Columbia Vancouver BC Canada
| | - David D. Y. Chen
- Department of ChemistryUniversity of British Columbia Vancouver BC Canada
| |
Collapse
|
20
|
Application of CE-MS for the analysis of histones and histone modifications. Methods 2020; 184:125-134. [PMID: 32014606 DOI: 10.1016/j.ymeth.2020.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/02/2019] [Accepted: 01/26/2020] [Indexed: 02/02/2023] Open
Abstract
The analysis, identification and quantification of histones and their post-translational modifications plays a central role in chromatin research and in studying epigenetic regulations during physiological processes. In the last decade analytical strategies based on mass spectrometry have been greatly improved for providing a global view of single modification abundances or to determine combinatorial patterns of modifications. Presented here is a newly developed strategy for histone protein analysis and a number of applications are illustrated with an emphasis on PTM characterization. Capillary electrophoresis is coupled to mass spectrometry (CE-MS) and has proven to be a very promising concept as it enables to study intact histones (top-down proteomics) as well as the analysis of enzymatically digested proteins (bottom-up proteomics). This technology combines highly efficient low-flow CE separations with ionization in a single device and offers an orthogonal separation principle to conventional LC-MS analysis, thus expanding the existing analytical repertoire in a perfect manner.
Collapse
|
21
|
Gomes FP, Diedrich JK, Saviola AJ, Memili E, Moura AA, Yates JR. EThcD and 213 nm UVPD for Top-Down Analysis of Bovine Seminal Plasma Proteoforms on Electrophoretic and Chromatographic Time Frames. Anal Chem 2020; 92:2979-2987. [DOI: 10.1021/acs.analchem.9b03856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fabio P. Gomes
- The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jolene K. Diedrich
- The Scripps Research Institute, La Jolla, California 92037, United States
| | - Anthony J. Saviola
- The Scripps Research Institute, La Jolla, California 92037, United States
| | - Erdogan Memili
- Mississippi State University, Starkville, Mississippi 39762, United States
| | | | - John R. Yates
- The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
22
|
Huang L, Wang Z, Cupp-Sutton KA, Smith K, Wu S. Spray-Capillary: An Electrospray-Assisted Device for Quantitative Ultralow-Volume Sample Handling. Anal Chem 2020; 92:640-646. [PMID: 31793760 PMCID: PMC7558432 DOI: 10.1021/acs.analchem.9b04131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The analysis of low-volume samples provides valuable insight into complex biological systems. However, the proteomic and metabolomic analysis of low-volume samples remains challenging due to the lack of simple, efficient, and reproducible microsampling techniques. We have developed an electrospray-assisted device for quantitative low-volume sample extraction, referred to here as "Spray-Capillary". Stable electrospray was achieved through a chemically etched tip from a long (e.g., 50 cm) capillary with a conductive sheath flow. This electrospray provided the driving force to quantitatively draw low-volume samples into the capillary. We evaluated the precision and accuracy of sample injection volumes using our spray-capillary as the electrospray voltage, capillary ID, and column length were varied. Our results demonstrate that spray-capillary allows for reproducible and quantitative microsampling with low injection flow rates (as low as 15 pL/s). Furthermore, spray-capillary can be directly coupled with capillary zone electrophoresis (CZE) for separation. Overall, spray-capillary is a simple microsampling device that holds great potential for high-throughput quantitative omics analysis of ultralow-volume samples.
Collapse
Affiliation(s)
- Lushuang Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Kellye A. Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
23
|
Faserl K, Chetwynd AJ, Lynch I, Thorn JA, Lindner HH. Corona Isolation Method Matters: Capillary Electrophoresis Mass Spectrometry Based Comparison of Protein Corona Compositions Following On-Particle versus In-Solution or In-Gel Digestion. NANOMATERIALS 2019; 9:nano9060898. [PMID: 31226785 PMCID: PMC6631359 DOI: 10.3390/nano9060898] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
Abstract
Increased understanding of the role of the nanomaterial protein corona in driving nanomaterial uptake into, and impacts on, cells and organisms, and the consequent need for characterization of the corona, has led to a flourishing of methods for isolation and analysis of the constituent proteins over the past decade. However, despite over 700 corona studies to date, very little is understood in terms of which methods provide the most precise and comprehensive characterization of the corona. With the increasing importance of the modeling of corona formation and its correlation with biological impacts, it is timely to properly characterize and validate the isolation approaches used to determine the protein corona. The current work introduces Capillary Electrophoresis with Electro Spray Ionization Mass Spectrometry (CESI-MS) as a novel method for protein corona characterizations and develops an on-particle tryptic digestion method, comparing peptide solubilization solutions and characterizing the recovery of proteins from the nanomaterial surface. The CESI-MS was compared to the gold standard nano-LC-MS for corona analysis and maintained a high degree of reproducibility, while increasing throughput by >3-fold. The on-particle digestion is compared to an in-solution digestion and an in-gel digestion of the protein corona. Interestingly, a range of different protein classes were found to be recovered to greater or lesser extents among the different methods. Apolipoproteins were detected at lower concentrations when a surfactant was used to solubilize peptides, whereas immunoglobulins in general have a high affinity for nanomaterials, and thus show lower recovery using on-particle digestion. The optimized on-particle digestion was validated using 6 nanomaterials and proved capable of recovering in excess of 97% of the protein corona. These are important factors to consider when designing corona studies and modeling corona formation and impacts, highlighting the significance of a comprehensive validation of nanomaterial corona analysis methods.
Collapse
Affiliation(s)
- Klaus Faserl
- Division of Clinical Biochemistry, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - Andrew J Chetwynd
- AB Sciex UK Ltd., Phoenix House, Lakeside Drive, Warrington, Cheshire WA1 1RX, UK.
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James A Thorn
- AB Sciex UK Ltd., Phoenix House, Lakeside Drive, Warrington, Cheshire WA1 1RX, UK.
| | - Herbert H Lindner
- Division of Clinical Biochemistry, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
24
|
Giorgetti J, Lechner A, Del Nero E, Beck A, François YN, Leize-Wagner E. Intact monoclonal antibodies separation and analysis by sheathless capillary electrophoresis-mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:324-332. [PMID: 30351978 DOI: 10.1177/1469066718807798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Capillary electrophoresis-mass spectrometry coupling is a growing technique in biopharmaceutics characterization. Assessment of monoclonal antibodies is well known at middle-up and bottom-up levels to obtain information about the sequence, post-translational modifications and degradation products. Intact protein analysis is an actual challenge to be closer to the real protein structure. At this level, actual techniques are time consuming or cumbersome processes. In this work, a 20 minutes separation method has been developed to optimize characterization of intact monoclonal antibodies. Thus, separation has been done on a positively charged coated capillary with optimized volatile background electrolyte and sample buffer. Three world-wide health authorities approved monoclonal antibodies have been used to set up a rapid and ease of use method. Intact trastuzumab, rituximab and palivizumab isoforms have been partially separated with this method in less than 20 minutes under denaturing conditions. For each monoclonal antibody, 2X-glycosylated and 1X-glycosylated structures have been identified and separated. Concerning basic and acidic variants, potential aspartic acid isomerization modification and asparagine deamidation have been observed. Accurate mass determination for high-mass molecular species remains a challenge, but the progress in intact monoclonal antibodies separation appears very promising for biopharmaceutics characterization.
Collapse
Affiliation(s)
- Jérémie Giorgetti
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Antony Lechner
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Elise Del Nero
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Alain Beck
- 2 Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Yannis-Nicolas François
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Emmanuelle Leize-Wagner
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
25
|
Antibody-free detection of amyloid beta peptides biomarkers in cerebrospinal fluid using capillary isotachophoresis coupled with mass spectrometry. J Chromatogr A 2019; 1601:350-356. [PMID: 31101465 DOI: 10.1016/j.chroma.2019.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
This study reports a capillary isotachophoresis (ITP) - electrospray ionization mass spectrometry (ESI-MS) method for the determination of several amyloid β (Aβ) peptides, which are biomarkers of Alzheimer's disease (AD) in cerebrospinal fluids (CSF). For the first time, these peptides have been detected directly from CSF by MS without recourse to an immunocapture-based sample pre-treatment. The antibody-free approach is based on the marriage between capillary ITP, a powerful on-line electrokinetic preconcentration technique, and MS for simultaneous detection of different Aβ peptides. To ensure a good performance, the ITP process of fluorescently labelled Aβ peptides was for the first time implemented and verified with laser induced fluorescent detection, prior to methodology transfer to MS detection. Better detection sensitivity was achieved with labelled Aβ peptides for both detection modes. Using hydroxyl ions as the terminating and acetate as the leading ions, our method allows efficient ITP preconcentration under alkaline conditions of the slowly migrating Aβ peptides to reach quantifiable concentration down to 50 pM. The developed ITP-MS approach allows reliable quantification of different fluorescently derivatized Aβ peptides, i.e. Aβ 1-42, Aβ 1-40 and Aβ 1-38 down to sub nM ranges in CSF samples from AD and non-demented (healthy control) patients. Good agreement (<20% deviation) for the determination of Aβ 1-42/Aβ 1-40 ratio in CSF was achieved between results obtained with this new ITP-MS and our recently developed method based on large volume sample stacking coupled to CE. Discrimination of one AD patient from two healthy controls was successfully made with the Aβ 1-42/Aβ 1-40 ratio obtained by the developed ITP-MS method for the tested cerebrospinal fluid samples.
Collapse
|
26
|
Gahoual R, Leize-Wagner E, Houzé P, François YN. Revealing the potential of capillary electrophoresis/mass spectrometry: the tipping point. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:11-19. [PMID: 30022554 DOI: 10.1002/rcm.8238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
The hyphenation of capillary electrophoresis and mass spectrometry (CE/MS) remains a minor technique compared with liquid chromatography/mass spectrometry (LC/MS), which represents nowadays the standard instrumentation, regardless of its introduction thirty years ago. However, from a theoretical point of view, CE coupling should be quite favorable especially with electrospray ionization mass spectrometry (ESI-MS). At the time, the sensitivity provided by CE/MS was often limited, due to hyphenation requirements, which at some point appeared to disqualify CE/MS from benefiting from the performance gain driving the evolution of MS instruments. However, this context has been significantly modified in a matter of a few years. The development of innovative CE/MS interfacing systems has enabled an important improvement regarding sensitivity and reinforced robustness in order to provide an instrumentation accessible to the largest scientific community. Because of the unique selectivity delivered by the electrophoretic separation, CE/MS has proved to be particularly relevant for the analysis of biological molecules. The conjunction of these aspects is motivating the interest in CE/MS analysis and shows that CE/MS is mature enough to enrich the toolbox of analytical techniques for the analysis of complex biological samples. Here we discuss the characteristics of the major types of high-sensitivity CE/ESI-MS instrumentation and emphasize the late evolution and future positioning of CE/MS analysis for the characterization of biological molecules like peptides and proteins, through some pertinent applications.
Collapse
Affiliation(s)
- Rabah Gahoual
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de spectrométrie de masse des interactions et des systèmes (LSMIS), Unistra-CNRS UMR7140, Université de Strasbourg, Strasbourg, France
| | - Pascal Houzé
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
- Laboratoire de Biochimie, Hôpital Universitaire Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Yannis-Nicolas François
- Laboratoire de spectrométrie de masse des interactions et des systèmes (LSMIS), Unistra-CNRS UMR7140, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
Nyssen L, Fillet M, Cavalier E, Servais A. Highly sensitive and selective separation of intact parathyroid hormone and variants by sheathless CE‐ESI‐MS/MS. Electrophoresis 2019; 40:1550-1557. [DOI: 10.1002/elps.201800507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/28/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Laurent Nyssen
- Department of Clinical ChemistryCenter for Interdisciplinary Research on Medicines (CIRM)University of Liège Liège Belgium
- Laboratory for the Analysis of Medicines (LAM)Center for Interdisciplinary Research on Medicines (CIRM)University of Liège Liège Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM)Center for Interdisciplinary Research on Medicines (CIRM)University of Liège Liège Belgium
| | - Etienne Cavalier
- Department of Clinical ChemistryCenter for Interdisciplinary Research on Medicines (CIRM)University of Liège Liège Belgium
| | - Anne‐Catherine Servais
- Laboratory for the Analysis of Medicines (LAM)Center for Interdisciplinary Research on Medicines (CIRM)University of Liège Liège Belgium
| |
Collapse
|
28
|
Krenkova J, Kleparnik K, Luksch J, Foret F. Microfabricated liquid junction hybrid capillary electrophoresis-mass spectrometry interface for fully automated operation. Electrophoresis 2019; 40:2263-2270. [PMID: 30794321 DOI: 10.1002/elps.201900049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/07/2022]
Abstract
One of the challenging instrumental aspects in coupling an automated CE instrument with ESI mass spectrometry (CE-MS) is finding the balance between the stability, reproducibility and sensitivity of the analysis and compatibility with the standard CE instrumentation. Here, we present a development of a new liquid junction based electrospray interface for automated CE-MS, with a focus on the technical design followed by computer modeling of transport conditions as well as characterization of basic performance of the interface. This hybrid arrangement designed as a microfabricated unit attachable to the automated CE instrument allows using of a wide range of separation capillaries with respect to their diameter, length or internal coating (e.g., for suppressed electroosmotic flow). Different compositions of the ESI liquid and background electrolyte solutions can be used if needed. The microfabricated part, prepared by laser machining from polyimide, includes a self-aligning liquid junction, a short transport channel, and a pointed sprayer for the electrospray ionization. This microfabricated part is positioned in a plastic connection block securing the separation capillary and flushing ports. Transport conditions were modelled using computer simulation and the real life performance of the interface was compared to that of a commercial sheath liquid interface. The basic performance of the interface was demonstrated by separations of peptides, proteins, and oligosaccharides.
Collapse
Affiliation(s)
- Jana Krenkova
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Karel Kleparnik
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jaroslav Luksch
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frantisek Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic.,CEITEC Masaryk University, Brno, Czech Republic
| |
Collapse
|
29
|
Chen D, Ludwig KR, Krokhin OV, Spicer V, Yang Z, Shen X, Hummon AB, Sun L. Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Large-Scale Phosphoproteomics with the Production of over 11,000 Phosphopeptides from the Colon Carcinoma HCT116 Cell Line. Anal Chem 2019; 91:2201-2208. [PMID: 30624053 DOI: 10.1021/acs.analchem.8b04770] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphoproteomics requires better separation of phosphopeptides to boost the coverage of the phosphoproteome. We argue that an alternative separation method that produces orthogonal phosphopeptide separation to the widely used LC needs to be considered. Capillary zone electrophoresis (CZE) is one important alternative because CZE and LC are orthogonal for phosphopeptide separation and because the migration time of peptides in CZE can be accurately predicted. In this work, we coupled strong cation exchange (SCX)-reversed-phase LC (RPLC) to CZE-MS/MS for large-scale phosphoproteomics of the colon carcinoma HCT116 cell line. The CZE-MS/MS-based platform identified 11,555 phosphopeptides. The phosphopeptide data set is at least 100% larger than that from previous CZE-MS/MS studies and will be a valuable resource for building a model for predicting the migration time of phosphopeptides in CZE. Phosphopeptides migrate significantly slower than corresponding unphosphopeptides under acidic conditions of CZE separations and in a normal polarity. According to our modeling data, phosphorylation decreases peptide's charge roughly by one charge unit, resulting in dramatic decrease in electrophoretic mobility. Preliminary investigations demonstrate that electrophoretic mobility of phosphopeptides containing one phosphoryl group can be predicted with the same accuracy as for nonmodified peptides ( R2 ≈ 0.99). The CZE-MS/MS and LC-MS/MS were complementary in large-scale phosphopeptide identifications and produced different phosphosite motifs from the HCT116 cell line. The data highlight the value of CZE-MS/MS for phosphoproteomics as a complementary separation approach for not only improving the phosphoproteome coverage but also providing more insight into the phosphosite motifs.
Collapse
Affiliation(s)
- Daoyang Chen
- Department of Chemistry , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Katelyn R Ludwig
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | | | | | - Zhichang Yang
- Department of Chemistry , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Xiaojing Shen
- Department of Chemistry , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center , The Ohio State University , 414 Biomedical Research Tower , Columbus , Ohio 43201 , United States
| | - Liangliang Sun
- Department of Chemistry , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| |
Collapse
|
30
|
Wu H, Yi L, Wojcik R, Shi T, Tang K. A separation voltage polarity switching method for higher sample loading capacity and better separation resolution in transient capillary isotachophoresis separation. Analyst 2019; 144:454-462. [PMID: 30444223 DOI: 10.1039/c8an01779d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A separation voltage polarity switching transient capillary isotachophoresis (PS-tCITP) was developed to overcome a major sample loading volume limitation in transient capillary isotachophoresis (tCITP). The fundamental idea of PS-tCITP is to let sample ions move back and forth in a separation capillary during their initial isotachophoresis focusing stage by switching the polarity of the separation voltage, in order to both increase the sample loading volume and improve the separation efficiency as compared to the conventional tCITP method. The experimental evaluation of the novel PS-tCITP method by using two peptide standards at 2 μM concentration showed that the maximum sample loading volume could be increased from 45% of the total separation capillary volume in tCITP to 70% in PS-tCITP, which resulted in a more than 1.5 fold increase in the peptide peak intensity at a given length/volume of the separation capillary. Due to the consecutive focusing of sample volume from each polarity switching of the separation voltage, the separation time window at a given sample loading volume was also increased significantly in PS-tCITP as compared to tCITP. Experiment comparison between tCITP and PS-tCITP at 45% sample loading volume using the same setup showed that the migration time difference between the two peptide peaks increased from 0.3 min in tCITP to 0.363 min in PS-tCITP with similar peak widths and heights, resulting in roughly a 21% improvement in separation resolution. The performance advantages of PS-tCITP separation over tCITP separation were further verified by using a mixture of six peptide standards.
Collapse
Affiliation(s)
- Huanming Wu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, P. R. China
| | | | | | | | | |
Collapse
|
31
|
Sasaki K, Sagawa H, Suzuki M, Yamamoto H, Tomita M, Soga T, Ohashi Y. Metabolomics Platform with Capillary Electrophoresis Coupled with High-Resolution Mass Spectrometry for Plasma Analysis. Anal Chem 2018; 91:1295-1301. [PMID: 30500154 DOI: 10.1021/acs.analchem.8b02994] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolome analysis using capillary electrophoresis (CE) coupled with high-resolution mass spectrometry (HRMS) has the potential to improve coverage of metabolite detection because of its high selectivity and sensitivity. Configuration of the interface between CE and HRMS to meet the ground connection is essential for enabling independent regulation of the electrical currents in the CE and electrospray field. In the present study, we applied an electrospray-ionization adapter equipped with a grounded nebulizer to CE-HRMS and tested the analytical performance for 34 charged compounds. The extracted-ion electropherograms, consisting of seven sets of isomers, showed reasonable peak shapes and separation for the annotation of each metabolite. The levels of 34 target analytes in a standard mixture were determined with a dynamic range of at least 102, maintaining linearity with r2 > 0.9. The repeatability and intermediate precision above the lower limit of quantification showed the relative standard deviation to be lower than 20%. In the spike-recovery experiment, 27 of the 34 metabolites in plasma extract were recovered at a rate of 80 to 120%, suggesting high accuracy. Furthermore, we assessed the feasibility of our platform in metabolome analysis using human-plasma extract. The results showed successful detection of 270 metabolites, indicating the potential of our platform to yield higher coverage of the metabolome. In addition, analysis of dilution integrity demonstrated the quantitative ability of metabolome analysis with CE-HRMS, although the existence of saturation or matrix effects were seen in the case of 33 of the metabolites. This study indicates that our platform has great potential for large-scale metabolome analysis of plasma for biological studies and clinical biomarker screening.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Human Metabolome Technologies Inc. , 246-2 Mizukami , Kakuganji, Tsuruoka , Yamagata 997-0052 , Japan.,Institute for Advanced Biosciences , Keio University , 246-2 Mizukami , Kakuganji, Tsuruoka , Yamagata 997-0052 , Japan
| | - Hitoshi Sagawa
- Human Metabolome Technologies Inc. , 246-2 Mizukami , Kakuganji, Tsuruoka , Yamagata 997-0052 , Japan
| | - Makoto Suzuki
- Human Metabolome Technologies Inc. , 246-2 Mizukami , Kakuganji, Tsuruoka , Yamagata 997-0052 , Japan
| | - Hiroyuki Yamamoto
- Human Metabolome Technologies Inc. , 246-2 Mizukami , Kakuganji, Tsuruoka , Yamagata 997-0052 , Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences , Keio University , 246-2 Mizukami , Kakuganji, Tsuruoka , Yamagata 997-0052 , Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences , Keio University , 246-2 Mizukami , Kakuganji, Tsuruoka , Yamagata 997-0052 , Japan
| | - Yoshiaki Ohashi
- Human Metabolome Technologies Inc. , 246-2 Mizukami , Kakuganji, Tsuruoka , Yamagata 997-0052 , Japan
| |
Collapse
|
32
|
Pandeswari PB, Sabareesh V. Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry. RSC Adv 2018; 9:313-344. [PMID: 35521579 PMCID: PMC9059502 DOI: 10.1039/c8ra07200k] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Owing to rapid growth in the elucidation of genome sequences of various organisms, deducing proteome sequences has become imperative, in order to have an improved understanding of biological processes. Since the traditional Edman method was unsuitable for high-throughput sequencing and also for N-terminus modified proteins, mass spectrometry (MS) based methods, mainly based on soft ionization modes: electrospray ionization and matrix-assisted laser desorption/ionization, began to gain significance. MS based methods were adaptable for high-throughput studies and applicable for sequencing N-terminus blocked proteins/peptides too. Consequently, over the last decade a new discipline called 'proteomics' has emerged, which encompasses the attributes necessary for high-throughput identification of proteins. 'Proteomics' may also be regarded as an offshoot of the classic field, 'biochemistry'. Many protein sequencing and proteomic investigations were successfully accomplished through MS dependent sequence elucidation of 'short proteolytic peptides (typically: 7-20 amino acid residues), which is called the 'shotgun' or 'bottom-up (BU)' approach. While the BU approach continues as a workhorse for proteomics/protein sequencing, attempts to sequence intact proteins without proteolysis, called the 'top-down (TD)' approach started, due to ambiguities in the BU approach, e.g., protein inference problem, identification of proteoforms and the discovery of posttranslational modifications (PTMs). The high-throughput TD approach (TD proteomics) is yet in its infancy. Nevertheless, TD characterization of purified intact proteins has been useful for detecting PTMs. With the hope to overcome the pitfalls of BU and TD strategies, another concept called the 'middle-down (MD)' approach was put forward. Similar to BU, the MD approach also involves proteolysis, but in a restricted manner, to produce 'longer' proteolytic peptides than the ones usually obtained in BU studies, thereby providing better sequence coverage. In this regard, special proteases (OmpT, Sap9, IdeS) have been used, which can cleave proteins to produce longer proteolytic peptides. By reviewing ample evidences currently existing in the literature that is predominantly on PTM characterization of histones and antibodies, herein we highlight salient features of the MD approach. Consequently, we are inclined to claim that the MD concept might have widespread applications in future for various research areas, such as clinical, biopharmaceuticals (including PTM analysis) and even for general/routine characterization of proteins including therapeutic proteins, but not just limited to analysis of histones or antibodies.
Collapse
Affiliation(s)
- P Boomathi Pandeswari
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| | - Varatharajan Sabareesh
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| |
Collapse
|
33
|
|
34
|
Yang Z, Shen X, Chen D, Sun L. Microscale Reversed-Phase Liquid Chromatography/Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Deep and Highly Sensitive Bottom-Up Proteomics: Identification of 7500 Proteins with Five Micrograms of an MCF7 Proteome Digest. Anal Chem 2018; 90:10479-10486. [PMID: 30102516 PMCID: PMC6156779 DOI: 10.1021/acs.analchem.8b02466] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has been well recognized for bottom-up proteomics. It has approached 4000-8000 protein identifications (IDs) from a human cell line, mouse brains, or Xenopus embryos via coupling with liquid chromatography (LC) prefractionation. However, at least 500 μg of complex proteome digests were required for the LC/CZE-MS/MS studies. This requirement of a large amount of initial peptide material impedes the application of CZE-MS/MS for deep bottom-up proteomics of mass-limited samples. In this work, we coupled microscale reversed-phase LC (μRPLC)-based peptide prefractionation to dynamic pH-junction-based CZE-MS/MS for deep bottom-up proteomics of the MCF7 breast cancer cell proteome starting with only 5 μg of peptides. The dynamic pH-junction-based CZE enabled a 500 nL sample injection from as low as a 1.5 μL peptide sample, using up to 33% of the available peptide material for an analysis. Two kinds of μRPLC prefractionation were investigated, C18 ZipTip and nanoflow RPLC. C18 ZipTip/CZE-MS/MS identified 4453 proteins from 5 μg of the MCF7 proteome digest and showed good qualitative and quantitative reproducibility. Nanoflow RPLC/CZE-MS/MS produced over 7500 protein IDs and nearly 60 000 peptide IDs from the 5 μg of MCF7 proteome digest. The nanoflow RPLC/CZE-MS/MS platform reduced the required amount of complex proteome digests for LC/CZE-MS/MS-based deep bottom-up proteomics by 2 orders of magnitude. Our work provides the proteomics community with a powerful tool for deep and highly sensitive proteomics.
Collapse
Affiliation(s)
- Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824 USA
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824 USA
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824 USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824 USA
| |
Collapse
|
35
|
Optimization of dynamic pH barrage junction focusing for weakly alkaline or zwitterionic analytes in capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1095:94-102. [DOI: 10.1016/j.jchromb.2018.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 01/17/2023]
|
36
|
Wang L, Bo T, Zhang Z, Wang G, Tong W, Da Yong Chen D. High Resolution Capillary Isoelectric Focusing Mass Spectrometry Analysis of Peptides, Proteins, And Monoclonal Antibodies with a Flow-through Microvial Interface. Anal Chem 2018; 90:9495-9503. [PMID: 29993237 DOI: 10.1021/acs.analchem.8b02175] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lingyu Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China 210023
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Tao Bo
- Thermo Fisher Scientific, 7th Floor, Building F, Tower West, Yonghe Plaza, No. 28 Andingmen Street East, Beijing, China 100007
| | - Zhengxiang Zhang
- Thermo Fisher Scientific, 7th Floor, Building F, Tower West, Yonghe Plaza, No. 28 Andingmen Street East, Beijing, China 100007
| | - Guanbo Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China 210023
| | - Wenjun Tong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China 210023
| | - David Da Yong Chen
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China 210023
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
37
|
Chen H, Shi P, Fan F, Tu M, Xu Z, Xu X, Du M. Complementation of UPLC-Q-TOF-MS and CESI-Q-TOF-MS on identification and determination of peptides from bovine lactoferrin. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1084:150-157. [DOI: 10.1016/j.jchromb.2018.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/05/2018] [Accepted: 03/10/2018] [Indexed: 12/27/2022]
|
38
|
Gusenkov S, Stutz H. Top-down and bottom-up characterization of nitrated birch pollen allergen Bet v 1a with CZE hyphenated to an Orbitrap mass spectrometer. Electrophoresis 2018; 39:1190-1200. [PMID: 29389018 PMCID: PMC6175448 DOI: 10.1002/elps.201700413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/19/2022]
Abstract
Tyrosine (Tyr) residues of the major pollen allergen of birch Betula verrucosa, Bet v 1a, were nitrated by peroxynitrite. This modification enhances the allergenicity. Modified tyrosines were identified by analyzing intact allergen variants in combination with top-down and bottom-up approaches. Therefore, a laboratory-built sheath-liquid assisted ESI interface was applied for hyphenation of CE to an Orbitrap mass spectrometer to localize individual nitration sites. The major focus was on identification of primary nitration sites. The top-down approach unambiguously identified Tyr 5 as the most prominent modification site. Fragments from the allergen core and the C-terminal part carried up to three potential nitration sites, respectively. Thus, a bottom-up approach with tryptic digest was used as a complementary strategy which allowed for the unambiguous localization of nitration sites within the respective peptides. Nitration propensity for individual Tyr residues was addressed by comparison of MS signals of nitrated peptides relative to all cognates of homolog primary sequence. Combined data identified surface exposed Tyr 5 and Tyr 66 as major nitration sites followed by less accessible Tyr 158 whereas Tyr 81, 83 and 150 possess a lower nitration tendency and are apparently modified in variants with higher nitration levels.
Collapse
Affiliation(s)
- Sergey Gusenkov
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| | - Hanno Stutz
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| |
Collapse
|
39
|
Faserl K, Sarg B, Gruber P, Lindner HH. Investigating capillary electrophoresis-mass spectrometry for the analysis of common post-translational modifications. Electrophoresis 2018; 39:1208-1215. [PMID: 29389038 PMCID: PMC6001557 DOI: 10.1002/elps.201700437] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Capillary electrophoresis coupled to mass spectrometry is a very efficient analytical method for the analysis of post-translational modifications because of its high separation efficiency and high detection sensitivity. Here we applied CE-MS using three differently coated separation capillaries for in-depth analysis of a set of 70 synthetic post-translationally modified peptides (including phosphorylation, acetylation, methylation, and nitration). We evaluated the results in terms of peptide detection and separation characteristics and found that the use of a neutrally coated capillary resulted in highest overall signal intensity of singly modified peptides. In contrast, the use of a bare-fused silica capillary was superior in the identification of multi-phosphorylated peptides (12 out of 15 were identified). Fast separations of approximately 12 min could be achieved using a positively coated capillary, however, at the cost of separation efficiency. A comparison to nanoLC-MS revealed that multi-phosphorylated peptides interact with the RP material very poorly so that these peptides were either washed out or elute as very broad peaks from the nano column which results in a reduced peptide identification rate (7 out of 15). Moreover, the methods applied were found to be very well suited for the analysis of the acetylated, nitrated and methylated peptides. All 36 synthetic peptides, which exhibit one of those modifications, could be identified regardless of the method applied. As a final step in this study and as a proof of principle, the phosphoproteome enriched from PC-12 pheochromocytoma cells was analyzed by CE-MS resulting in 5686 identified and 4088 quantified phosphopeptides. We compared the characterized analytes to those identified by a nanoLC-MS proteomics study and found that less than one third of the phosphopeptides were identical, which demonstrates the benefit by combining different approaches quite impressively.
Collapse
Affiliation(s)
- Klaus Faserl
- Division of Clinical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| | - Bettina Sarg
- Division of Clinical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| | - Peter Gruber
- Division of Medical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| | - Herbert H. Lindner
- Division of Clinical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| |
Collapse
|
40
|
Hirayama A, Abe H, Yamaguchi N, Tabata S, Tomita M, Soga T. Development of a sheathless CE-ESI-MS interface. Electrophoresis 2018; 39:1382-1389. [PMID: 29493797 DOI: 10.1002/elps.201800017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/20/2022]
Abstract
A sheath-flow interface is the most common ionization technique in CE-ESI-MS. However, this interface dilutes the analytes with the sheath liquid and decreases the sensitivity. In this study, we developed a sheathless CE-MS interface to improve sensitivity. The interface was fabricated by making a small crack approximately 2 cm from the end of a capillary column fixed on a plastic plate, and then covering the crack with a dialysis membrane to prevent metabolite loss during separation. A voltage for CE separation was applied between the capillary inlet and the buffer reservoir. Under optimum conditions, 52 cationic metabolite standards were separated and selectively detected using MS. With a pressure injection of 5 kPa for 15 s (ca. 1.4 nL), the detection limits for the tested compounds were between 0.06 and 1.7 μmol/L (S/N = 3). The method was applied to analysis of cationic metabolites extracted from a small number (12 000) of cancer cells, and the number of peaks detected was about 2.5 times higher than when using conventional sheath-flow CE-MS. Because the interface is easy to construct, it is cost-effective and can be adapted to any commercially available capillaries. This method is a powerful new tool for highly sensitive CE-MS-based metabolomic analysis.
Collapse
Affiliation(s)
- Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Hiroshi Abe
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Nozomi Yamaguchi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Sho Tabata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| |
Collapse
|
41
|
Chetwynd AJ, Guggenheim EJ, Briffa SM, Thorn JA, Lynch I, Valsami-Jones E. Current Application of Capillary Electrophoresis in Nanomaterial Characterisation and Its Potential to Characterise the Protein and Small Molecule Corona. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E99. [PMID: 29439415 PMCID: PMC5853730 DOI: 10.3390/nano8020099] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
Due to the increasing use and production of nanomaterials (NMs), the ability to characterise their physical/chemical properties quickly and reliably has never been so important. Proper characterisation allows a thorough understanding of the material and its stability, and is critical to establishing dose-response curves to ascertain risks to human and environmental health. Traditionally, methods such as Transmission Electron Microscopy (TEM), Field Flow Fractionation (FFF) and Dynamic Light Scattering (DLS) have been favoured for size characterisation, due to their wide-availability and well-established protocols. Capillary Electrophoresis (CE) offers a faster and more cost-effective solution for complex dispersions including polydisperse or non-spherical NMs. CE has been used to rapidly separate NMs of varying sizes, shapes, surface modifications and compositions. This review will discuss the literature surrounding the CE separation techniques, detection and NM characteristics used for the analysis of a wide range of NMs. The potential of combining CE with mass spectrometry (CE-MS) will also be explored to further expand the characterisation of NMs, including the layer of biomolecules adsorbed to the surface of NMs in biological or environmental compartments, termed the acquired biomolecule corona. CE offers the opportunity to uncover new/poorly characterised low abundance and polar protein classes due to the high ionisation efficiency of CE-MS. Furthermore, the possibility of using CE-MS to characterise the poorly researched small molecule interactions within the NM corona is discussed.
Collapse
Affiliation(s)
- Andrew J. Chetwynd
- AB Sciex UK Ltd., Phoenix House, Lakeside Drive, Warrington, Cheshire WA1 1RX, UK;
| | - Emily J. Guggenheim
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - Sophie M. Briffa
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - James A. Thorn
- AB Sciex UK Ltd., Phoenix House, Lakeside Drive, Warrington, Cheshire WA1 1RX, UK;
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - Eugenia Valsami-Jones
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| |
Collapse
|
42
|
Chen D, Shen X, Sun L. Strong cation exchange-reversed phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry platform with high peak capacity for deep bottom-up proteomics. Anal Chim Acta 2018; 1012:1-9. [PMID: 29475469 DOI: 10.1016/j.aca.2018.01.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 11/29/2022]
Abstract
Two-dimensional (2D) liquid chromatography (LC)-tandem mass spectrometry (MS/MS) are typically employed for deep bottom-up proteomics, and the state-of-the-art 2D-LC-MS/MS has approached over 8000 protein identifications (IDs) from mammalian cell lines or tissues in 1-3 days of mass spectrometer time. Capillary zone electrophoresis (CZE)-MS/MS has been suggested as an alternative to LC-MS/MS for bottom-up proteomics. CZE-MS/MS and LC-MS/MS are complementary in protein/peptide ID from complex proteome digests because CZE and LC are orthogonal for peptide separation. In addition, the migration time of peptides from CZE-MS can be predicted accurately, which is invaluable for evaluating the confidence of peptide ID from the database search and even guiding the database search. However, the number of protein IDs from complex proteomes using CZE-MS/MS is still much lower than the state of the art using 2D-LC-MS/MS. In this work, for the first time, we established a strong cation exchange (SCX)-reversed phase LC (RPLC)-CZE-MS/MS platform for deep bottom-up proteomics. The platform identified around 8200 protein groups and 65,000 unique peptides from a mouse brain proteome digest in 70 h. The data represents the largest bottom-up proteomics dataset using CZE-MS/MS and provides a valuable resource for further improving the tool for prediction of peptide migration time in CZE. The peak capacity of the orthogonal SCX-RPLC-CZE platform was estimated to be around 7000. SCX-RPLC-CZE-MS/MS produced comparable numbers of protein and peptide IDs with 2D-LC-MS/MS (8200 vs. 8900 protein groups, 65,000 vs. 70,000 unique peptides) from the mouse brain proteome digest using comparable instrument time. This is the first time that CZE-MS/MS showed its capability to approach comparable performance to the state-of-the-art 2D-LC-MS/MS for deep proteomic sequencing. SCX-RPLC-CZE-MS/MS and 2D-LC-MS/MS showed good complementarity in protein and peptide IDs and combining those two methods improved the number of protein group and unique peptide IDs by nearly 10% and over 40%, respectively, compared with 2D-LC-MS/MS alone.
Collapse
Affiliation(s)
- Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA.
| |
Collapse
|
43
|
Yi L, Piehowski PD, Shi T, Smith RD, Qian WJ. Advances in microscale separations towards nanoproteomics applications. J Chromatogr A 2017; 1523:40-48. [PMID: 28765000 PMCID: PMC6042839 DOI: 10.1016/j.chroma.2017.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/22/2023]
Abstract
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. However, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1μg total proteins (e.g., cellular heterogeneity in tissue pathologies). Herein, we review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, and their contributions towards nanoproteomics applications.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Paul D Piehowski
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| |
Collapse
|
44
|
Faserl K, Sarg B, Sola L, Lindner HH. Enhancing Proteomic Throughput in Capillary Electrophoresis-Mass Spectrometry by Sequential Sample Injection. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700310] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/06/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Klaus Faserl
- Division of Clinical Biochemistry, Biocenter; Innsbruck Medical University; Innsbruck Austria
| | - Bettina Sarg
- Division of Clinical Biochemistry, Biocenter; Innsbruck Medical University; Innsbruck Austria
| | - Laura Sola
- Institute of Chemistry of Molecular Recognition; National Research Council of Italy; Milano Italy
| | - Herbert H. Lindner
- Division of Clinical Biochemistry, Biocenter; Innsbruck Medical University; Innsbruck Austria
| |
Collapse
|
45
|
Sarg B, Faserl K, Lindner HH. Identification of Novel Site-Specific Alterations in the Modification Level of Myelin Basic Protein Isolated from Mouse Brain at Different Ages Using Capillary Electrophoresis-Mass Spectrometry. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/07/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Bettina Sarg
- Division of Clinical Biochemistry, Biocenter; Medical University of Innsbruck; Innsbruck Austria
| | - Klaus Faserl
- Division of Clinical Biochemistry, Biocenter; Medical University of Innsbruck; Innsbruck Austria
| | - Herbert H. Lindner
- Division of Clinical Biochemistry, Biocenter; Medical University of Innsbruck; Innsbruck Austria
| |
Collapse
|
46
|
Moreno-González D, Haselberg R, Gámiz-Gracia L, García-Campaña AM, de Jong GJ, Somsen GW. Fully compatible and ultra-sensitive micellar electrokinetic chromatography-tandem mass spectrometry using sheathless porous-tip interfacing. J Chromatogr A 2017; 1524:283-289. [PMID: 28992989 DOI: 10.1016/j.chroma.2017.09.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 11/26/2022]
Abstract
The on-line coupling of micellar electrokinetic chromatography and mass spectrometry (MEKC-MS) is often hampered by incompatibility problems leading to reduced separation performance and unfavorable limits of detection (LODs). Here we propose a new selective and highly sensitive MEKC-MS/MS method employing a sheathless porous-tip interface in combination with a micellar phase comprised of semi-volatile surfactant molecules. Carbamate pesticides (CRBs) were selected as representative model compounds being neutral toxic pollutants potentially present at trace levels in environmental water samples. A background electrolyte of 75mM perfluorooctanoic acid adjusted to pH 9.0 with ammonium hydroxide allowed efficient separation of 15 CRBs and appeared fully compatible with electrospray ionization (ESI)-MS. Interfacing parameters, such as the distance between the capillary tip and mass-spectrometer inlet, ESI voltage, and dry gas temperature and flow were optimized in order to attain good spray stability and high analyte signal-to-noise ratios. For CRBs the LODs ranged from 0.2 to 3.9ngL-1 (13nL injected, i.e., 2% of capillary volume), representing an improvement for certain CRBs of more than 300-fold when compared with conventional sheath-liquid interfacing. Good linearity (R2>0.99) and satisfactory reproducibility were obtained for all CRBs with interday RSD values for peak area and migration time of 4.0-11.3% and below 1.5%, respectively. Analysis of spiked mineral water showed that the new MEKC-MS/MS method allows selective and quantitative determination of CRB concentrations below the maximum residue limit of 100ngL-1 without the need for sample preconcentration.
Collapse
Affiliation(s)
- David Moreno-González
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva, E-18071 Granada, Spain
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, AIMMS research group BioMolecular Analysis, Faculty of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva, E-18071 Granada, Spain
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva, E-18071 Granada, Spain
| | - Gerhardus J de Jong
- Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, AIMMS research group BioMolecular Analysis, Faculty of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
47
|
Boley DA, Zhang Z, Dovichi NJ. Multisegment injections improve peptide identification rates in capillary zone electrophoresis-based bottom-up proteomics. J Chromatogr A 2017; 1523:123-126. [PMID: 28732593 DOI: 10.1016/j.chroma.2017.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 02/03/2023]
Abstract
While capillary zone electrophoresis (CZE) provides dramatically improved numbers of peptide identifications compared with reversed-phase chromatography for bottom-up proteomics of mass limited samples, CZE inevitably produces lower numbers of peptide identifications than RPLC for larger samples. One reason for this poorer performance is the dead time between injection of samples and subsequent appearance of the fastest moving component. This dead time is typically 25% of the separation window in CZE, but is only 5% of the separation window in gradient elution RPLC. This dead time can be eliminated in CZE by use of a multisegment injection mode where a series of samples is analyzed by injecting each sample while the preceding sample is still being separated. In this paper, we demonstrate that capillary zone electrophoresis employing sequential injections can produce a doubling in peptide identification rate with no degradation in separation efficiency.
Collapse
Affiliation(s)
- Danielle A Boley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
48
|
Faserl K, Sarg B, Maurer V, Lindner HH. Exploiting charge differences for the analysis of challenging post-translational modifications by capillary electrophoresis-mass spectrometry. J Chromatogr A 2017; 1498:215-223. [DOI: 10.1016/j.chroma.2017.01.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 12/27/2022]
|
49
|
Choi SB, Zamarbide M, Manzini MC, Nemes P. Tapered-Tip Capillary Electrophoresis Nano-Electrospray Ionization Mass Spectrometry for Ultrasensitive Proteomics: the Mouse Cortex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:597-607. [PMID: 27853976 DOI: 10.1007/s13361-016-1532-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Ultrasensitive characterization of the proteome raises the potential to understand how differential gene expression orchestrates cell heterogeneity in the brain. Here, we report a microanalytical capillary electrophoresis nano-flow electrospray ionization (CE-nanoESI) interface for mass spectrometry to enable the measurement of limited amounts of proteins in the mouse cortex. Our design integrates a custom-built CE system to a tapered-tip metal emitter in a co-axial sheath-flow configuration. This interface can be constructed in <15 min using readily available components, facilitating broad adaptation. Tapered-tip CE-nanoESI generates stable electrospray by reproducibly anchoring the Taylor cone, minimizes sample dilution in the ion source, and ensures efficient ion generation by sustaining the cone-jet spraying regime. Parallel reaction monitoring provided a 260-zmol lower limit of detection for angiotensin II (156,000 copies). CE was able to resolve a complex mixture of peptides in ~330,000 theoretical plates and identify ~15 amol (~1 pg) of BSA or cytochrome c. Over 30 min of separation, 1 ng protein digest from the mouse cortex yielded 217 nonredundant proteins encompassing a ~3-log-order concentration range using a quadrupole time-of-flight mass spectrometer. Identified proteins included many products from genes that are traditionally used to mark oligodendrocytes, astrocytes, and microglia. Finally, key proteins involved in neurodegenerative disorders were detected (e.g., parkinsonism and spastic paraplegia). CE-nanoESI-HRMS delivers sufficient sensitivity to detect proteins in limited amounts of tissues and cell populations to help understand how gene expression differences maintain cell heterogeneity in the brain. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sam B Choi
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Marta Zamarbide
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20037, USA
| | - M Chiara Manzini
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20037, USA
| | - Peter Nemes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
50
|
Tähkä SM, Bonabi A, Jokinen VP, Sikanen TM. Aqueous and non-aqueous microchip electrophoresis with on-chip electrospray ionization mass spectrometry on replica-molded thiol-ene microfluidic devices. J Chromatogr A 2017; 1496:150-156. [PMID: 28347516 DOI: 10.1016/j.chroma.2017.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 12/25/2022]
Abstract
This work describes aqueous and non-aqueous capillary electrophoresis on thiol-ene-based microfluidic separation devices that feature fully integrated and sharp electrospray ionization (ESI) emitters. The chip fabrication is based on simple and low-cost replica-molding of thiol-ene polymers under standard laboratory conditions. The mechanical rigidity and the stability of the materials against organic solvents, acids and bases could be tuned by adjusting the respective stoichiometric ratio of the thiol and allyl ("ene") monomers, which allowed us to carry out electrophoresis separation in both aqueous and non-aqueous (methanol- and ethanol-based) background electrolytes. The stability of the ESI signal was generally ≤10% RSD for all emitters. The respective migration time repeatabilities in aqueous and non-aqueous background electrolytes were below 3 and 14% RSD (n=4-6, with internal standard). The analytical performance of the developed thiol-ene microdevices was shown in mass spectrometry (MS) based analysis of peptides, proteins, and small molecules. The theoretical plate numbers were the highest (1.2-2.4×104m-1) in ethanol-based background electrolytes. The ionization efficiency also increased under non-aqueous conditions compared to aqueous background electrolytes. The results show that replica-molding of thiol-enes is a feasible approach for producing ESI microdevices that perform in a stable manner in both aqueous and non-aqueous electrophoresis.
Collapse
Affiliation(s)
- Sari M Tähkä
- Faculty of Pharmacy, Drug Research Programme, Viikinkaari 5E, FI-00014, University of Helsinki, Helsinki, Finland.
| | - Ashkan Bonabi
- Faculty of Pharmacy, Drug Research Programme, Viikinkaari 5E, FI-00014, University of Helsinki, Helsinki, Finland.
| | - Ville P Jokinen
- Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, Tietotie 3, FI-00076 Aalto, Espoo, Finland.
| | - Tiina M Sikanen
- Faculty of Pharmacy, Drug Research Programme, Viikinkaari 5E, FI-00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|