1
|
Gabrusenok PV, Ramazanov RR, Kasyanenko NA, Lantushenko AO, Sokolov PA. pH-dependent binding of ATP aptamer to the target and competition strands: Fluorescent melting curve fitting study. Biochim Biophys Acta Gen Subj 2024; 1868:130689. [PMID: 39134247 DOI: 10.1016/j.bbagen.2024.130689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/18/2024]
Abstract
The pH varies in different tissues and organelles and also changes during some diseases. In this regard, the application of molecular switches that use a competition-based aptamer switch design in biological systems requires studying the thermodynamics of such systems at different pH values. In this work, we studied the binding of the classical ATP aptamer to ATP and competition strands under different pH and ionic conditions using fluorescent melting curve analysis. We have developed an original approach to processing source data from a PCR thermal cycler. It is based on constructing a thermodynamic model of the melting profile and the subsequent fit of experimental curves within this model. We have shown that this approach enables us to narrow the temperature region under study to the width of the melting region without a significant loss in the quality of the result. This impressively expands the application area of this approach compared to frequently used techniques that require mandatory measurement of the signal outside the melting region. The results obtained by the method showed that the thermodynamic parameters of the ATP aptamer and its duplexes with competition strands change depending on pH. Therefore, molecular switches that use a competition strand to the ATP aptamer may have a pH-dependent sensitivity that has not been previously considered. This should be taken into account for future rational design of similar systems.
Collapse
Affiliation(s)
- P V Gabrusenok
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - R R Ramazanov
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - N A Kasyanenko
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - A O Lantushenko
- Sevastopol State University, 33 Universitetskaya Street, Sevastopol, 299053, Russia
| | - P A Sokolov
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia.
| |
Collapse
|
2
|
Zeng Y, Wang X, Zhu N, Yu Y, Wang X, Kang K, Wu Y, Yi Q. Magnetic lanthanide sensor with self-ratiometric time-resolved luminescence for accurate detection of epithelial cancerous exosomes. J Mater Chem B 2024; 12:7203-7214. [PMID: 38952178 DOI: 10.1039/d4tb00497c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Fluorescence-based LB (liquid biopsy) offers a rapid means of detecting cancer non-invasively. However, the widespread issue of sample loss during purification steps will diminish the accuracy of detection results. Therefore, in this study, we introduce a magnetic lanthanide sensor (MLS) designed for sensitive detection of the characteristic protein, epithelial cell adhesion molecule (EpCAM), on epithelial tumor exosomes. By leveraging the inherent multi-peak emission and time-resolved properties of the sole-component lanthanide element, combined with the self-ratiometric strategy, MLS can overcome limitations imposed by manual operation and/or sample complexity, thereby providing more stable and reliable output results. Specifically, terbium-doped NaYF4 nanoparticles (NaYF4:Tb) and deformable aptamers terminated with BHQ1 were sequentially introduced onto superparamagnetic silica-decorated Fe3O4 nanoparticles. Prior to target binding, emission from NaYF4:Tb at 543 nm was partially quenched due to the fluorescence resonance energy transfer (FRET) from NaYF4:Tb to BHQ1. Upon target binding, changes in the secondary structure of aptamers led to the fluorescence intensity increasing since the deconfinement of distance-dependent FRET effect. The characteristic emission of NaYF4:Tb at 543 nm was then utilized as the detection signal (I1), while the less changed emission at 583 nm served as the reference signal (I2), further reporting the self-ratiometric values of I1 and I2 (I1/I2) to illustrate the epithelial cancerous features of exosomes while ignoring possible sample loss. Consequently, over a wide range of exosome concentrations (2.28 × 102-2.28 × 108 particles per mL), the I1/I2 ratio exhibited a linear increase with exosome concentration [Y(I1/I2) = 0.166 lg (Nexosomes) + 3.0269, R2 = 0.9915], achieving a theoretical detection limit as low as 24 particles per mL. Additionally, MLS effectively distinguished epithelial cancer samples from healthy samples, showcasing significant potential for clinical diagnosis.
Collapse
Affiliation(s)
- Yating Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Xuekang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Nanhang Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Yue Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Xingyou Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
3
|
Wu Y, Wang GA, Yang Q, Li F. Native Characterization of Noncanonical Nucleic Acid Thermodynamics via Programmable Dynamic DNA Chemistry. J Am Chem Soc 2024; 146:18041-18049. [PMID: 38899479 DOI: 10.1021/jacs.4c04721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Folding thermodynamics, quantitatively described using parameters such as ΔGfold°, ΔHfold°, and ΔSfold°, is essential for characterizing the stability and functionality of noncanonical nucleic acid structures but remains difficult to measure at the molecular level. Leveraging the programmability of dynamic deoxyribonucleic acid (DNA) chemistry, we introduce a DNA-based molecular tool capable of performing a free energy shift assay (FESA) that directly characterizes the thermodynamics of noncanonical DNA structures in their native environments. FESA operates by the rational design of a reference DNA probe that is energetically equivalent to a target noncanonical nucleic acid structure in a series of toehold-exchange reactions, yet is structurally incapable of folding. As a result, a free energy shift (ΔΔGrxn°) is observed when plotting the reaction yield against the free energy of each toehold-exchange. We mathematically demonstrated that ΔGfold°, ΔHfold°, and ΔSfold° of the analyte can be calculated based on ΔΔGrxn°. After validating FESA using six DNA hairpins by comparing the measured ΔGfold°, ΔHfold°, and ΔSfold° values against predictions made by NUPACK software, we adapted FESA to characterize noncanonical nucleic acid structures, encompassing DNA triplexes, G-quadruplexes, and aptamers. This adaptation enabled the successful characterization of the folding thermodynamics for these complex structures under various experimental conditions. The successful development of FESA marks a paradigm shift and a technical advancement in characterizing the thermodynamics of noncanonical DNA structures through molecular tools. It also opens new avenues for probing fundamental chemical and biophysical questions through the lens of molecular engineering and dynamic DNA chemistry.
Collapse
Affiliation(s)
- Yuqin Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Guan Alex Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qianfan Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
4
|
Wei L, Zhu D, Cheng Q, Gao Z, Wang H, Qiu J. Aptamer-Based fluorescent DNA biosensor in antibiotics detection. Food Res Int 2024; 179:114005. [PMID: 38342532 DOI: 10.1016/j.foodres.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
The inappropriate employment of antibiotics across diverse industries has engendered profound apprehensions concerning their cumulative presence within human bodies and food commodities. Consequently, many nations have instituted stringent measures limiting the admissible quantities of antibiotics in food items. Nonetheless, conventional techniques employed for antibiotic detection prove protracted and laborious, prompting a dire necessity for facile, expeditious, and uncomplicated detection methodologies. In this regard, aptamer-based fluorescent DNA biosensors (AFBs) have emerged as a sanguine panacea to surmount the limitations of traditional detection modalities. These ingenious biosensors harness the binding prowess of aptamers, singular strands of DNA/RNA, to selectively adhere to specific target antibiotics. Notably, the AFBs demonstrate unparalleled selectivity, affinity, and sensitivity in detecting antibiotics. This comprehensive review meticulously expounds upon the strides achieved in AFBs for antibiotic detection, particularly emphasizing the labeling modality and the innovative free-label approach. It also elucidates the design principles behind a diverse array of AFBs. Additionally, a succinct survey of signal amplification strategies deployed within these biosensors is provided. The central objective of this review is to apprise researchers from diverse disciplines of the contemporary trends in AFBs for antibiotic detection. By doing so, it aspires to instigate a concerted endeavor toward the development of heightened sensitivity and pioneering AFBs, thereby contributing to the perpetual advancement of antibiotic detection methodologies.
Collapse
Affiliation(s)
- Luke Wei
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Dingze Zhu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qiuyue Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zihan Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Honglei Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jieqiong Qiu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
5
|
Shi L, Jin Y, Liu J. Intramolecular aptamer switches. Analyst 2024; 149:745-750. [PMID: 38193253 DOI: 10.1039/d3an02022c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Aptamer switches as effective biosensing tools have become a focal point of research in engineered aptasensors. Intramolecular aptamer switches are more versatile, affordable, and simpler than classical "open-close" and strand displacement-based aptamer switches. Recently, many new aptamers with an overall hairpin structure have been reported. In this study, intramolecular aptamer switches were developed by adding new base pairs to the end of aptamers. The additional nucleotides can pair with the internal domains of the aptamer, causing a change in its conformation from the original secondary structure without a target. When a target binds to an aptamer, a marked change in the structure of the aptamer is expected. As models for testing this intramolecular aptamer switch idea, aptamers of oxytetracycline (OTC), 17β-estradiol (E2), and adenosine were employed. When the additional base pairs are too long, binding the target to the aptamer becomes more challenging. This research offers valuable insights into the development of intramolecular aptamer switches and their potential applications in biosensor design.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
6
|
Zeng X, Xu Q, Lai R, Tong X, Chen J, Wang D, Zhou X, Shao Y. Polarity-Specific and Pyrimidine-over-Purine Adaptive Triplex DNA Recognition by a Near-Infrared Fluorogenic Molecular Rotor. Anal Chem 2023; 95:15367-15374. [PMID: 37784221 DOI: 10.1021/acs.analchem.3c03147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Triplex DNA structures have displayed a wide range of applications including nanosensing, molecule switching, and drug delivering. Therefore, it is of great importance to effectively recognize triplex DNA structures by a simple and highly selective manner. Herein, we found that a near-infrared fluorogenic probe of NIAD-4 with a molecular rotor (MR) merit can selectively recognize triplex DNA structures over G-quadruplex, i-motif, and duplex structures (Tri-over-QID selectivity), which is competent over the widely used MR probe of thioflavin T (ThT). Furthermore, NIAD-4 exhibits as well a high selectivity toward the 'pyrimidine-type' triplex structures (Y:R-Y type) with respect to the 'purine-type' triplex structures (R:R-Y type) (a Y-over-R selectivity). Interestingly, NIAD-4 recognizes the Y:R-Y triplex structures by a polarity-dependent manner. The 3' end triplet is the preferential binding field of NIAD-4 with respect to the 5' end one (a 3'-over-5' selectivity) as the 3' end triplet is more stable than the 5' end one in the Hoogsteen hydrogen bond. It is expected that the adaptive stacking interaction between NIAD-4 and the 3' end triplet favors the Tri-over-QID, Y-over-R, and 3'-over-5' selectivities since this MR probe has three rotating shafts matching well with the triplet in topology. Such a high selectivity of NIAD-4 opens a new route in designing sensors with DNA structures switching between triplex, i-motif, and G-quadruplex structures.
Collapse
Affiliation(s)
- Xingli Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R. China
| | - Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R. China
| | - Rong Lai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R. China
| | - Xiufang Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R. China
| | - Jiahui Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R. China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R. China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R. China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R. China
| |
Collapse
|
7
|
Huang Y, Cheng Z, Xu LP, Zhang X, Liu G. Lateral flow DNA biosensor for visual detection of nucleic acid with triple-helix DNA functionalized carbon nanotube. Anal Chim Acta 2023; 1276:341604. [PMID: 37573103 DOI: 10.1016/j.aca.2023.341604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
We describe a novel lateral flow DNA biosensor (LFDB) based on carbon nanotube (CNT) and triple helix DNA (THD). The carboxylated CNT was first conjugated with amine-modified auxiliary single-stranded DNA probe (P1) by dehydration reaction and used as signal probe. A main DNA probe (P0) was introduced to react with the P1 and formed the THD on the CNT surface. Because of the large spatial effect, P1 was in an inactive state and cannot hybridize with the capture DNA probe (P2) fixed on the LFDB test area. When the target DNA was present, P0 in the triple helix DNA hybridized with the target DNA due to the stronger base action, and the decomposition of the triple helix structure exposed P1. Therefore, P1 on CNT surface was activated to hybridize with P2. The CNT along with P1 was thus captured at the test area and accumulated to show a black line, which can be observed by naked eye for qualitative analysis and recorded with a portable grayscale reader for quantitative analysis. Single-stranded DNA was used as a target to prove the feasibility of the model. Under the best experimental conditions, the THD-CNT based LFDB was able to detect the lowest DNA concentration of 15 pM, which is 2.67 times better than that of the traditional duplex CNT-based LFDB. It should be noted that the LFDB based on THD functionalized CNT can differentiate between one-base-mismatched DNA and the complementary target DNA, can detected target DNA in 10% human serum, and can be employed as a versatile platform to detect various target (proteins, small molecular) by changing the sequence of P0. This biosensor platform has enormous potential in the point-of-care detection of a rich diversity of analytes for clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Yan Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zhihao Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Guodong Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong, 276005, China.
| |
Collapse
|
8
|
Gao J, Xu P, Qiao L, Tao Y, Xiao Y, Qin H, Zhu Y, Zhang Y. Triplex DNA Helix Sensor Based on Reduced Graphene Oxide and Electrodeposited Gold Nanoparticles for Sensitive Lead(II) Detection. TOXICS 2023; 11:795. [PMID: 37755805 PMCID: PMC10536607 DOI: 10.3390/toxics11090795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
A triplex DNA electrochemical sensor based on reduced graphene oxide (rGO) and electrodeposited gold nanoparticles (EAu) was simply fabricated for Pb2+ detection. The glass carbon electrode (GCE) sequentially electrodeposited with rGO and EAu was further modified with a triplex DNA helix that consisted of a guanine (G)-rich circle and a stem of triplex helix based on T-A•T base triplets. With the existence of Pb2+, the DNA configuration which was formed via the Watson-Crick and Hoogsteen base pairings was split and transformed into a G-quadruplex. An adequate electrochemical response signal was provided by the signal indicator methylene blue (MB). The proposed sensor demonstrated a linear relationship between the differential pulse voltammetry (DPV) peak currents and the logarithm of Pb2+ concentrations from 0.01 to 100.00 μM with a detection limit of 0.36 nM. The proposed sensor was also tested with tap water, river and medical wastewater samples with qualified recovery and accuracy and represented a promising method for Pb2+ detection.
Collapse
Affiliation(s)
- Jing Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Lu Qiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yani Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Hong Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Bekkouche I, Shishonin AY, Vetcher AA. Recent Development in Biomedical Applications of Oligonucleotides with Triplex-Forming Ability. Polymers (Basel) 2023; 15:858. [PMID: 36850142 PMCID: PMC9964087 DOI: 10.3390/polym15040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive chemical, or as a messenger that enables switching between transcription and replication through the triplex-forming zone. These data are also considered since various illnesses have been linked to the expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some consideration is given to the impact of several low-molecular-weight compounds, including pH on triplex production in vivo. The review is focused on the development of biomedical oligonucleotides with triplexes.
Collapse
Affiliation(s)
- Incherah Bekkouche
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Alexander Y. Shishonin
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| | - Alexandre A. Vetcher
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| |
Collapse
|
10
|
Khoshbin Z, Moeenfard M, Abnous K, Taghdisi SM. Nano-gold mediated aptasensor for colorimetric monitoring of acrylamide: Smartphone readout strategy for on-site food control. Food Chem 2023; 399:133983. [DOI: 10.1016/j.foodchem.2022.133983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
11
|
Chen T, Liu P, Wang H, Su Y, Li S, Ma S, Xu X, Wen J, Zou Z. Dumbbell-type triplex molecular switch-based logic molecular assays of SARS-CoV-2. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 371:132579. [PMID: 36059586 PMCID: PMC9420052 DOI: 10.1016/j.snb.2022.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of great importance to control the COVID-19 pandemic. The gold standard assays for COVID-19 diagnostics are mainly based on separately detecting open reading frame 1ab (ORF1ab) and nucleoprotein (N) genes by RT-PCR. However, the current approaches often obtain false positive-misdiagnose caused by cross-contamination or undesired amplification. To address this issue, herein, we proposed a dumbbell-type triplex molecular switch (DTMS)-based, logic-gated strategy for high-fidelity SARS-CoV-2 RNA detection. The DTMS consists of a triple-helical stem region and two-loop regions for recognizing the ORF1ab and N genes of SARS-CoV-2. Only when the ORF1ab and N gene are concurrent, DTMS experiences a structural rearrangement, thus, bringing the two pyrenes into spacer proximity and leading to a new signal readout. This strategy allows detecting SARS-CoV-2 RNA with a detection limit of 1.3 nM, independent of nucleic acid amplification, holding great potential as an indicator probe for screening of COVID-19 and other population-wide epidemics.
Collapse
Affiliation(s)
- Ting Chen
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Pengfei Liu
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Huanxiang Wang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yue Su
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Sheng Li
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Shimeng Ma
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xuan Xu
- People's Hospital of Hunan Province, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410002, China
| | - Jie Wen
- People's Hospital of Hunan Province, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410002, China
| | - Zhen Zou
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
12
|
Zhu M, Yang W, Zhi H, Huangfu C, Zhang X, Feng L. A sensitive biosensor for ochratoxin A detection based on triple-helix aptaswitch and bioorthogonal capture enabled signal amplification. Anal Chim Acta 2022; 1228:340334. [DOI: 10.1016/j.aca.2022.340334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 11/01/2022]
|
13
|
Wang S, He B, Ren W, Suo Z, Xu Y, Wei M, Jin H. Triple-Helix Molecular Switch Triggered Cleavage Effect of DNAzyme for Ultrasensitive Electrochemical Detection of Chloramphenicol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24681-24689. [PMID: 35579490 DOI: 10.1021/acsami.2c03234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The abuse of chloramphenicol (CAP) in animal-derived products leads to serious food safety problems, so the sensitive and accurate determination of CAP residues has great noteworthiness for public health. Herein, we present a novel electrochemical aptasensor that incorporates a poly(diallyldimethylammonium chloride) functionalized graphene/Ag@Au nanosheets (PDDA-Gr/Ag@Au NSs) composite modified electrode and a DNAzyme signal amplification effect triggered by a triple-helix molecular switch (THMS) for detecting CAP. The PDDA-Gr/Ag@Au NSs composite has the advantages of high surface area, great conductivity, and dispersibility and has successfully improved the electrochemical performance of the electrode. Specific interaction with CAP will cause the signal transduction probe (STP) to be released from the THMS. After that, the DNAzyme will be activated with the help of Pb2+ and remove the immobilized signal probe on the electrode surface. The signal change was recorded by square wave voltammetry (SWV) and led to an accurate quantification of CAP. With all these features, the proposed sensing strategy yielded a satisfactory analytical performance with linearity between 1 pM and 1 μM and a limit of detection of 18.6 fM. Furthermore, the aptasensor shows excellent specificity for CAP in the presence of other antibiotics and resists interference with other common metal ions. Importantly, the performance is not diminished when the constructed aptasensor is applied to measuring CAP in milk powder. This THMS-based method is easy to design, and alteration to different targets can be achieved by simply replacing the aptamer sequence in the THMS. Therefore, this method shows significant prospects as a flexible platform for accurate monitoring of antibiotic residues in foodstuffs.
Collapse
Affiliation(s)
- Senyao Wang
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| |
Collapse
|
14
|
Highly sensitive and efficient fluorescent sensing for Hg2+ detection based on triple-helix molecular switch and exonuclease III-assisted amplification. Anal Chim Acta 2022; 1205:339751. [DOI: 10.1016/j.aca.2022.339751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
|
15
|
Lin PY, Chi R, Wu YL, Ho JAA. Applications of triplex DNA nanostructures in sensor development. Anal Bioanal Chem 2022; 414:5217-5237. [PMID: 35469098 DOI: 10.1007/s00216-022-04058-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Triplex DNA nanostructures are one of the most emerging and fascinating self-assembled nanostructures due to their unique nanoparticle-like organization and inherit characteristics. They have attracted numerous interests recently because of their versatile and powerful utility in diverse areas of science and technology, such as clinical or disease diagnosis and stimuli-based drug delivery. This review addresses particularly the utilization of DNA triplexes in the development of biosensors for detecting nucleic acid; strategies in sensing pH, protein activity, ions, or molecules. Finally, an outlook for potential applications of triplex DNA nanoswitches is provided.
Collapse
Affiliation(s)
- Pei-Ying Lin
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Rong Chi
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Ling Wu
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Ja-An Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan. .,Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan. .,Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan. .,Center for Biotechnology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
16
|
Yerrapragada R M, Mampallil D. Interferon-γ detection in point of care diagnostics: Short review. Talanta 2022; 245:123428. [PMID: 35427946 DOI: 10.1016/j.talanta.2022.123428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 12/21/2022]
Abstract
Interferon (IFN)-γ is a cytokine secreted by immune cells. The elevated levels of IFN-γ are an early indicator of multiple diseases such as tuberculosis and autoimmune diseases. This short review focuses on different sensing methods based on optical, electrochemical, and mechanical principles. We explain how specific biorecognition molecules such as antibodies and aptamers are employed in the sensing methods. We also compare different surface functionalization methods and their details. Although the review gives an overview of only IFN-γ sensing, the same strategies can be applied to sensing other analytes with appropriate modifications.
Collapse
Affiliation(s)
- Manjoosha Yerrapragada R
- Indian Institute of Science Education and Research Tirupati, Mangalam P O, Tirupati, 517507, India.
| | - Dileep Mampallil
- Indian Institute of Science Education and Research Tirupati, Mangalam P O, Tirupati, 517507, India.
| |
Collapse
|
17
|
Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Caroleo F, Magna G, Naitana ML, Di Zazzo L, Martini R, Pizzoli F, Muduganti M, Lvova L, Mandoj F, Nardis S, Stefanelli M, Di Natale C, Paolesse R. Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:2649. [PMID: 35408267 PMCID: PMC9002670 DOI: 10.3390/s22072649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 05/17/2023]
Abstract
Optical chemical sensors are widely applied in many fields of modern analytical practice, due to their simplicity in preparation and signal acquisition, low costs, and fast response time. Moreover, the construction of most modern optical sensors requires neither wire connections with the detector nor sophisticated and energy-consuming hardware, enabling wireless sensor development for a fast, in-field and online analysis. In this review, the last five years of progress (from 2017 to 2021) in the field of optical chemical sensors development for persistent organic pollutants (POPs) is provided. The operating mechanisms, the transduction principles and the types of sensing materials employed in single selective optical sensors and in multisensory systems are reviewed. The selected examples of optical sensors applications are reported to demonstrate the benefits and drawbacks of optical chemical sensor use for POPs assessment.
Collapse
Affiliation(s)
- Fabrizio Caroleo
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Gabriele Magna
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Mario Luigi Naitana
- Department of Science, Roma Tre University, Via della Vasca Navale 84, 00146 Rome, Italy;
| | - Lorena Di Zazzo
- Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.D.Z.); (C.D.N.)
| | - Roberto Martini
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Francesco Pizzoli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Mounika Muduganti
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Larisa Lvova
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Federica Mandoj
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Sara Nardis
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.D.Z.); (C.D.N.)
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (G.M.); (R.M.); (F.P.); (M.M.); (F.M.); (S.N.); (M.S.); (R.P.)
| |
Collapse
|
19
|
Wang L, Peng X, Fu H. An electrochemical aptasensor for the sensitive detection of Pb2+ based on a chitosan/reduced graphene oxide/titanium dioxide. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Wu L, Dias A, Diéguez L. Surface enhanced Raman spectroscopy for tumor nucleic acid: Towards cancer diagnosis and precision medicine. Biosens Bioelectron 2022; 204:114075. [DOI: 10.1016/j.bios.2022.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
|
21
|
Chu X, Zhu D, Liu M, Kong L, Ai S. Moderate stability of a scissor double fluorescent triple helix molecular switch for the ultrasensitive biosensing of crop transgene. NEW J CHEM 2022. [DOI: 10.1039/d2nj00647b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic of the ultrasensitive biosensing of special genes. (I: traditional molecular beacon detection method; II: scissor DFTHMS; III: three cases of BHQ-1-TFO).
Collapse
Affiliation(s)
- Xiuling Chu
- Shandong Taian Ecological Environment Monitoring Center, Taian 271000, P. R. China
| | - Desong Zhu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P. R. China
| | - Min Liu
- Shandong Qingdao Ecological Environment Monitoring Center, Qingdao 266000, P. R. China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, P. R. China
| | - Shiyun Ai
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P. R. China
| |
Collapse
|
22
|
Xu W, He W, Du Z, Zhu L, Huang K, Lu Y, Luo Y. Functional Nucleic Acid Nanomaterials: Development, Properties, and Applications. Angew Chem Int Ed Engl 2021; 60:6890-6918. [PMID: 31729826 PMCID: PMC9205421 DOI: 10.1002/anie.201909927] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Indexed: 01/01/2023]
Abstract
Functional nucleic acid (FNA) nanotechnology is an interdisciplinary field between nucleic acid biochemistry and nanotechnology that focuses on the study of interactions between FNAs and nanomaterials and explores the particular advantages and applications of FNA nanomaterials. With the goal of building the next-generation biomaterials that combine the advantages of FNAs and nanomaterials, the interactions between FNAs and nanomaterials as well as FNA self-assembly technologies have established themselves as hot research areas, where the target recognition, response, and self-assembly ability, combined with the plasmon properties, stability, stimuli-response, and delivery potential of various nanomaterials can give rise to a variety of novel fascinating applications. As research on the structural and functional group features of FNAs and nanomaterials rapidly develops, many laboratories have reported numerous methods to construct FNA nanomaterials. In this Review, we first introduce some widely used FNAs and nanomaterials along with their classification, structure, and application features. Then we discuss the most successful methods employing FNAs and nanomaterials as elements for creating advanced FNA nanomaterials. Finally, we review the extensive applications of FNA nanomaterials in bioimaging, biosensing, biomedicine, and other important fields, with their own advantages and drawbacks, and provide our perspective about the issues and developing trends in FNA nanotechnology.
Collapse
Affiliation(s)
- Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Wanchong He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Zaihui Du
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana, Illinois 61801 (USA)
| | - Yunbo Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China)
| |
Collapse
|
23
|
Wang X, Li L, Gu X, Yu B, Jiang M. Switchable electrochemical aptasensor for amyloid-β oligomers detection based on triple helix switch coupling with AuNPs@CuMOF labeled signaling displaced-probe. Mikrochim Acta 2021; 188:49. [PMID: 33495901 DOI: 10.1007/s00604-021-04704-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/09/2021] [Indexed: 11/28/2022]
Abstract
The aggregation of amyloid-β oligomers (AβOs) with extremely strong neurotoxicity has been proved to be the main pathogenesis of Alzheimer's disease (AD). For sensitive quantification of AβOs, a switchable electrochemical aptasensor is proposed. Metal organic framework carrying Au nanoparticles (AuNPs@CuMOF) has been used to label signaling displaced-probe (SD), which formed triple helix switch (THS) by hybridizing with label-free anti-AβOs aptamer (Apt) on the electrodeposited palladium electrode (EPd). Thus, a relatively strong response of differential pulse voltammetry (DPV) was produced (switch on). With the specific binding between AβOs and Apt, the DPV response obviously decreased, owing to destroyed structure of THS and the separation of AuNPs@CuMOF/SD from the EPd (switch off). The mode of "switch on-off" can dramatically enhance the AβOs-dependent DPV intensity change. As a result, the switchable EA exhibited excellent selectivity and sensitivity with the linear range from 0.5 fM to 500 fM and the detection limit of 0.25 fM. When evaluating the AβOs of artificial cerebrospinal fluid (aCSF) samples, the switchable EA exhibited desirable feasibility, and the results are basically consistent with the enzyme linked immunosorbent assay (ELISA). The work could provide a potential tool of the AD diagnosis and a bright future in clinical applications.
Collapse
Affiliation(s)
- Xiaoying Wang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Linyu Li
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xuan Gu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bingjia Yu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Meng Jiang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| |
Collapse
|
24
|
Verdian A, Rouhbakhsh Z, Fooladi E. An ultrasensitive platform for PCB77 detection: New strategy for liquid crystal-based aptasensor fabrication. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123531. [PMID: 32721640 DOI: 10.1016/j.jhazmat.2020.123531] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 05/29/2023]
Abstract
Polychlorinated biphenyls (PCBs) are considered persistent bio-accumulative toxicants which threats global food safety and environmental health. Traditional analytical techniques for detection of PCBs are time-consuming and they do not satisfy urgent need for rapid and accurate monitoring of these persistent pollutants. Biosensor technology may be promising in this respect. Here we demonstrate a novel liquid crystal (LC)-based aptasensing platform as a promising label-free and rapid biosensor for PCB77 detection. This novel molecular strategy utilize triple-helix molecular conformational switch which is mediated formation of duplex on sensing platform in presence of target. Duplex forming leads to optical change from dark to bright in a liquid crystal based aptasensor. The limit of quantification of the LC-aptasensor to PCB77 is 1.5 × 10-5 μg/L with comparable selectivity. Besides, we also demonstrated that this system is able to detect PCB77 in tap water, environmental water and milk. This strategy has potential for label-free and portable detection of different targets without any aptamer sequence length restrictions.
Collapse
Affiliation(s)
- Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Zeinab Rouhbakhsh
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ebrahim Fooladi
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
25
|
He H, Xie C, Yao L, Ning G, Wang Y. A Sensitive Fluorescent Assay for Tetracycline Detection Based on Triple-helix Aptamer Probe and Cyclodextrin Supramolecular Inclusion. J Fluoresc 2021; 31:63-71. [PMID: 33070269 DOI: 10.1007/s10895-020-02631-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Herein, an effective pyrene excimer signaled fluorescent biosensor for the determination of tetracycline based on triple-helix aptamer probe (TAP) and supramolecular inclusion of cyclodextrin was reported. The TAP was devised containing an aptamer loop, two DNA segment stems and a triplex-forming oligonucleotide (signal probe) labeled with pyrenes at 5' and 3' ends. The presence of target could result in its binding towards aptamer with a mighty affinity, leading to a conformation change of the TAP and whereupon the release of the signal probe. This liberty of signal probe enabled the formation of pyrene excimer, generating fluorescence signals. Further, signal amplification was fulfilled through the addition of γ-cyclodextrin which could interact with pyrene dimer, thus leading to an enhanced "on-state" of the sensing ensemble. In contrast, when the target was absent, the sensing ensemble remained "off-state" because of the long distance between two pyrene molecules. When the conditions were properly optimized, the increasing signal kept a linear dependence on target concentrations ranging from 5.0 nM to 100 nM, and the detection limit reached as low as 1.6 nM. In this way, a newly-constructed, simple, and economically affordable protocol enjoys desirable efficiency, sensitivity, specificity in biosensing. Also, its universality as another attractive behalf in assaying diverse targets was envisioned with only the need of matched aptamer replacement.
Collapse
Affiliation(s)
- Hui He
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chuchu Xie
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Liu Yao
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
26
|
Huang Y, Cheng Z, Han R, Gao X, Qian L, Wen Y, Zhang X, Liu G. Target-induced molecular-switch on triple-helix DNA-functionalized carbon nanotubes for simultaneous visual detection of nucleic acids and proteins. Chem Commun (Camb) 2020; 56:13657-13660. [PMID: 33064111 DOI: 10.1039/d0cc05986b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an easy and efficient approach based on a target-induced molecular-switch on triple-helix DNA (THD)-functionalized carbon nanotubes (CNTs) for the simultaneous visual detection of nucleic acids and proteins with a lateral flow nucleic acid biosensor. The assay had the capability to detect a minimum of 25 pM target DNA and 0.25 nM thrombin simultaneously within 20 min.
Collapse
Affiliation(s)
- Yan Huang
- Research Center for Biomedical and Health Science, Anhui Science and Technology University, Fengyang 233100, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Xu W, He W, Du Z, Zhu L, Huang K, Lu Y, Luo Y. Funktionelle Nukleinsäure‐Nanomaterialien: Entwicklung, Eigenschaften und Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Wanchong He
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Zaihui Du
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Yi Lu
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Yunbo Luo
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health, and College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| |
Collapse
|
28
|
Zou R, Ma Y, Li C, Zhang F, Chen C, Cai C. A label-free resonance light scattering biosensor for nucleic acids using triple-helix molecular switch and G-quadruplex nanowires. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Guo B, Song P, Zhou K, Liu L, Wu HC. Simultaneous Sensing of Multiple Cancer Biomarkers by a Single DNA Nanoprobe in a Nanopore. Anal Chem 2020; 92:9405-9411. [PMID: 32539349 DOI: 10.1021/acs.analchem.0c01909] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Both vascular endothelial growth factor (VEGF) and matrix metallopeptidase-9 (MMP-9) are key biomarkers in tumor angiogenesis. Determination of the overexpression of the two biomarkers would provide valuable information on the progression of tumor growth and metastasis, but their simultaneous quantification by a single probe is unprecedented. Here, we develop a triplex DNA-based nanoprobe for simultaneously quantifying VEGF and MMP-9 using an α-hemolysin nanopore. A DNA aptamer is used as the triplex molecular beacon (tMB) loop to bind VEGF, and a stem-forming oligonucleotide modified with a short peptide is used to recognize MMP-9. The sequential presence of VEGF and MMP-9 could also be identified by different patterns of current events. Besides, the characteristic current events generated by the DNA probe possess pH-dependent patterns that can be used to reflect the environmental pH. Success in the construction of such DNA nanoprobes will greatly facilitate the investigation of the mechanisms of different tumor angiogenesis processes and provide a useful approach for cancer diagnosis.
Collapse
Affiliation(s)
- Bingyuan Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Peng Song
- Department of Geriatric Oncology, General Hospital of the Chinese People's Liberation Army, Beijing 100853, P. R. China
| | - Ke Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
30
|
Xu M, Fu P, Xing S, Zhao Y, Zhao C. A PNA-DNA 2 Triple-Helix Molecular Switch-Based Colorimetric Sensor for Sensitive and Specific Detection of microRNAs from Cancer Cells. Chembiochem 2020; 21:2667-2675. [PMID: 32304168 DOI: 10.1002/cbic.202000155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Indexed: 01/07/2023]
Abstract
Peptide nucleic acids (PNAs), the synthetic DNA mimics that can bind to oligonucleotides to form duplexes, triplexes, and quadruplexes, could be advantageous as probes for nucleic acid sequences owing to their unique physicochemical and biochemical properties. We have found that a homopurine PNA strand could bind to two homopyrimidine DNA strands to form a PNA-DNA2 triplex. Moreover, the cyanine dye DiSC2 (5) could bind with high affinity to this triplex and cause a noticeable color change. On the basis of this phenomenon, we have designed a label-free colorimetric sensing platform for miRNAs from cancer cells by using a PNA-DNA2 triple-helix molecular switch (THMS) and DiSC2 (5). This sensing platform can detect miRNA-21 specifically with a detection limit of 0.18 nM, which is comparable to that of the THMS-mediated fluorescence sensing platform. Moreover, this colorimetric platform does not involve any chemical modification or enzymatic signal amplification, which boosts its applicability and availability at the point of care in resource-limited settings. The universality of this approach can be simply achieved by altering the sequences of the probe DNA for specific targets.
Collapse
Affiliation(s)
- Mengjia Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shu Xing
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yang Zhao
- College of Science and Technology, Ningbo University, Ningbo, 315212, P. R. China
| | - Chao Zhao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
31
|
Wang G, Li J, He Y, Liu J, Yu M, Wang G. Establishment of a universal and sensitive plasmonic biosensor platform based on the hybridization chain reaction (HCR) amplification induced by a triple-helix molecular switch. Analyst 2020; 145:3864-3870. [PMID: 32270806 DOI: 10.1039/d0an00249f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we established a universal and sensitive plasmonic sensing strategy for biomolecule assays by coupling the hybridization chain reaction (HCR) strategy and a triple-helix molecular switch. Upon the recognition of the target, a single-stranded DNA as a universal trigger (UT) was released from the triple-helix molecular switch (THMS). Thus, the HCR process can be triggered between two hairpins M1 and M2, resulting in the aggregation of gold nanoparticles (AuNPs) via the hybridization between the tail sequence on M1 (or M2) and a DNA-AuNP probe with a dramatic change in the absorbance at 521 nm. More specifically, the strategy, which was conducted by the introduction of target-specific recognition of THMS and universalized by virtue of altering the aptamer or DNA sequence without changing the triple-helix structure, enables simple design for multiple target detection. By taking advantage of THMS, this strategy could enable stable and sensitive detection of a variety of targets including nucleic acids, small molecules and proteins, which may possess great potential for practical applications.
Collapse
Affiliation(s)
- Ganglin Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | | | | | | | | | | |
Collapse
|
32
|
A facile label-free electrochemical aptasensor constructed with nanotetrahedron and aptamer-triplex for sensitive detection of small molecule: Saxitoxin. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113805] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Tu C, Dai Y, Zhang Y, Wang W, Wu L. A simple fluorescent strategy based on triple-helix molecular switch for sensitive detection of chloramphenicol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117415. [PMID: 31374352 DOI: 10.1016/j.saa.2019.117415] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/13/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
A simple fluorescent strategy based on the formation of triple-helix molecular switch (THMS) between a signal transduction probe (STP) and an aptamer (Apt) was constructed for the determination of chloramphenicol (CAP). A weak fluorescence intensity was observed for STP solution due to the proximity of fluorophore and quencher through intramolecular DNA hybridization, causing the fluorescence quenching. The fluorescence intensity of the system was significantly enhanced after the addition of Apt. It was attributed to the formation of THMS between the Apt and STP through the Watson-Crick and Hoogsteen base pairing, resulting in the restoration of fluorescence because of the long distance between the fluorophore and quencher of STP. The fluorescence intensity of the system decreased due to the release of STP caused by the specific binding between Apt and CAP. The quantitative analysis of CAP could be achieved based on the decreased fluorescence intensity. The parameters affecting the performance of THMS including the Apt arm length, pH of buffer solution, Mg2+ concentration and the formation time of THMS were investigated in detail. Under the optimal conditions (Apt arm length of 9 bases, pH of 6.5, 2.5 × 103 μmol L-1 Mg2+, THMS formation time of 30 min), the decreased fluorescence intensity and the concentration of chloramphenicol were linear in the range of 5.0 × 10-3-2.0 × 10-1 μmol L-1 with the correlation coefficient of 0.9963. The limit of detection was 1.2 nmol L-1. Subsequently, the developed method was applied to the analysis of chloramphenicol in honey sample, and the recovery was between 84.5% and 103.0% with relative standard deviation less than 4.6%.
Collapse
Affiliation(s)
- Chunyan Tu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuanyuan Dai
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ying Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Weiping Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liang Wu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
34
|
He J, Zhang Y, Chen Z, Li C, Yuan R, Xu W. Targeted DNA-driven catalytic assembly light-up ratiometric fluorescence of biemissive silver nanoclusters for amplified biosensing. Chem Commun (Camb) 2020; 56:10325-10328. [DOI: 10.1039/d0cc04055j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report a ratiometric fluorescence strategy using biemissive silver nanoclusters that are harbored in a functional hairpin beacon for rapid, specific and sensitive detection of specific HIV-related DNA as a model.
Collapse
Affiliation(s)
- Jiayang He
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yuxuan Zhang
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Zehui Chen
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Chong Li
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Wenju Xu
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
35
|
Yang L, Zheng J, Zou Z, Cai H, Qi P, Qing Z, Yan Q, Qiu L, Tan W, Yang R. Human serum albumin as an intrinsic signal amplification amplifier for ultrasensitive assays of the prostate-specific antigen in human plasma. Chem Commun (Camb) 2020; 56:1843-1846. [DOI: 10.1039/c9cc08501g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endogenous human serum albumin is used as an intrinsic signal amplification amplifier for ultrasensitive assays of disease biomarkers in blood tests.
Collapse
|
36
|
Li Y, Chen J, Dong Y, Liu H, Liu D. Construction of pH-Triggered DNA Hydrogels Based on Hybridization Chain Reactions. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-0034-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Hu M, Yang H, Li Z, Zhang L, Zhu P, Yan M, Yu J. Signal-switchable lab-on-paper photoelectrochemical aptasensing system integrated triple-helix molecular switch with charge separation and recombination regime of type-II CdTe@CdSe core-shell quantum dots. Biosens Bioelectron 2019; 147:111786. [PMID: 31654824 DOI: 10.1016/j.bios.2019.111786] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/02/2019] [Accepted: 10/12/2019] [Indexed: 01/09/2023]
Abstract
Herein, a new "on-off-on" signal switch system combined triple helix molecular switch with efficient charge separation and transfer between different sensitization units was designed for the ultrasensitive photoelectrochemical (PEC) determination of prostate-specific antigen (PSA). Concretely, the initial "signal-on" state was obtained via the cascaded sensitization structure consisting of type-II CdTe@CdSe core-shell quantum dots (QDs), CdS QDs, and ZnO nanotubes, which were assembled on Au nanoparticles modified paper fibers with the aid of signal transduction probe (STP). Thereinto, the type-II CdTe@CdSe QDs with hole-localizing core and electron-localizing shell could enable the ultrafast charge transfer and retard the charge recombination, magnifying the initial photocurrent response and preserving the high efficiency of signal-switchable PEC aptasensing system. Subsequently, the PSA aptamer (PSA-Apt) modified with gold nanoparticles (GNPs) was introduced by the hybridization of PSA-Apt with STP and the hairpin configuration of STP changed from closed to open state, forming a triple-helix structure. Hence, the CdTe@CdSe QDs labeled on the terminal of STP moved away from the electrode surface while the GNPs kept attached close to it. The proposed aptasensor turned to "signal-off" state because of the dual inhibition of vanished cosensitization effect and signal quenching effect of GNPs. Upon the target recognition, the triple-helix structure was perturbed with the formation of DNA-protein complex and the recovery of STP hairpin structure, resulting in the second "switch-on" state. Based on the target-induced photocurrent enhancement, the proposed PEC aptasensor was utilized for the determination of PSA with high sensitivity, persuasive selectivity, and excellent stability.
Collapse
Affiliation(s)
- Mengsu Hu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Zhenglin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, PR China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
38
|
|
39
|
Wang Y, Yao L, Ning G, Wu Y, Wu S, Mao S, Liu GQ. An electrochemical strategy for tetracycline detection coupled triple helix aptamer probe with catalyzed hairpin assembly signal amplification. Biosens Bioelectron 2019; 143:111613. [PMID: 31450095 DOI: 10.1016/j.bios.2019.111613] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/11/2022]
Abstract
Incorporating elements of triple-helix aptamer probes (TAP), catalyzed hairpin assembly (CHA) signal amplification and host-guest recognition, a novel "signal-on" sensing strategy for sensitive electrochemical quantification of tetracycline (TC) was reported unprecedentedly. TAP was formed involving an aptamer loop, two-segment stems and a triplex oligonucleotide serving as trigger probe. Then, the trigger probe would be released from TAP once the target presented due to the conformational variation of TAP induced by aptamer binding event, sparking off the upcoming CHA amplification reaction, in which two coexisting DNA hairpins (H1 and H2 both modified with the electroactive molecules) would hybridize into plentiful H1-H2 double helices. Afterwards, the Exonuclease III was added, demolishing double helices and simultaneously releasing plentiful electroactive molecules which were capable of diffusing onto the electrode surface under the assistance of β-cyclodextrin due to host-guest recognition, where appreciable signals were enriched and generated. As thus, considerably slight amounts of targets though, emitted trigger probes, yet efficiently engining spectacular CHA cycles of reactions through which amplified signals were yielded, and in turn progressively enabling the sensitive target detection done. Under optimal conditions, the growing signal stayed a linear relation along with the logarithm of the target concentrations ranging from 0.2 nM to 100 nM, the detection limit reaching as low as 0.13 nM. This approach was desirable regarding to sensitivity, detection limit and range, prospectively rendering a service for diverse targets detection by easily replacing the matched aptamer loop of TAP.
Collapse
Affiliation(s)
- Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Liu Yao
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, 410208, Changsha, China
| | - Yaohui Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Shun Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Shaoming Mao
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China.
| |
Collapse
|
40
|
Xiao Q, Feng J, Feng M, Li J, Liu Y, Wang D, Huang S. A ratiometric electrochemical aptasensor for ultrasensitive determination of adenosine triphosphate via a triple-helix molecular switch. Mikrochim Acta 2019; 186:478. [DOI: 10.1007/s00604-019-3630-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
|
41
|
Zhang Z, Liu J. Molecular Imprinting with Functional DNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805246. [PMID: 30761744 DOI: 10.1002/smll.201805246] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/01/2019] [Indexed: 06/09/2023]
Abstract
Molecular imprinting refers to templated polymerization with rationally designed monomers, and this is a general method to prepare stable and cost-effective ligands. This attractive concept however suffers from low affinity, low specificity, and limited signaling mechanisms for binding. Acrydite-modified DNA oligonucleotides can be readily copolymerized into acrylic polymers. With molecular recognition and catalytic functions, such functional DNAs are recently shown to enhance the performance of molecularly imprinted polymers (MIPs) in a few ways. First, DNA aptamers are used as macromonomers to enhance binding affinity and specificity of MIPs. Second, DNA can help produce optical signals to follow binding events. Third, imprinting can also improve the performance of catalytic DNA by enhancing its activity and specificity toward the template substrate. Finally, MIP is shown to help aptamer selection. Bulk imprinting, nanoparticle imprinting, and surface imprinting are all demonstrated with DNA. Since both DNA and synthetic polymers are cost effective and stable, their hybrid materials still possess such properties while enhancing the function of each component. This review covers recent developments on the abovementioned aspects of DNA-containing MIPs, a field just emerged in the last five years, and future research directions are discussed toward the end.
Collapse
Affiliation(s)
- Zijie Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
42
|
Zheng Y, Zhao Y, Di Y, He L, Liao S, Li D, Liu X. In vitro selection of DNA aptamers for the development of chemiluminescence aptasensor for neuron-specific enolase (NSE) detection. RSC Adv 2019; 9:15513-15520. [PMID: 35514829 PMCID: PMC9064317 DOI: 10.1039/c9ra00785g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/09/2019] [Indexed: 12/02/2022] Open
Abstract
Neuron-specific enolase (NSE) is one of the most commonly used serum tumor biomarker in clinical practice for small cell lung cancer screening, early diagnosis, evaluation of therapeutic efficacy and prognosis. In this study, we obtained DNA aptamers with great affinity and selectivity to NSE via subtractive SELEX approach. After 10 rounds, three candidate aptamers were successfully selected and identified. Their affinities were measured by surface plasmon resonance. Apt-5 aptamer with high binding affinity and good specificity were obtained, which had the dissociation constant (K D) values of 12.26 nM. In addition, electrophoretic mobility shift assay (EMSA) experiment also further indicated that the Apt-5 had a highly specific affinity to NSE without binding to HSA. The circular dichroism (CD) analysis revealed that the three aptamers formed stable B-form, stem-loop conformations. The selected aptamers were used to construct a chemiluminescence (CL) aptasensor biosensing platform to detect NSE from actual serum samples. Experimental results confirmed that the CL immunosensing platform had good sensitivity with detection limits of 1-100 ng mL-1. The results demonstrated that our obtained the Apt-5 aptsensor was highly specific in the detection of NSE in serum samples. The detection limit was 0.1 ng mL-1, which was lower than the 0.25 ng mL-1 limit of the ELISA used at the hospital. Moreover, the aptasensor can contribute to better detection of small cell lung cancer (SCLC).
Collapse
Affiliation(s)
- Yue Zheng
- The First Hospital of Qinhuangdao Affiliated to Hebei Medical University Qinhuangdao 066000 China +86-0335-590-8121
| | - Yunwang Zhao
- The First Hospital of Qinhuangdao Affiliated to Hebei Medical University Qinhuangdao 066000 China +86-0335-590-8121
| | - Ya Di
- The First Hospital of Qinhuangdao Affiliated to Hebei Medical University Qinhuangdao 066000 China +86-0335-590-8121
| | - Lei He
- College of Environment & Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Shiqi Liao
- College of Life Sciences, Lanzhou University Lanzhou 730000 China
| | - Dongdong Li
- College of Life Sciences, Lanzhou University Lanzhou 730000 China
| | - Xiaofei Liu
- Key Laboratory of Polymer Material of Gansu Province, Institute of Polymer, Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
43
|
Qing Z, Bai A, Xing S, Zou Z, He X, Wang K, Yang R. Progress in biosensor based on DNA-templated copper nanoparticles. Biosens Bioelectron 2019; 137:96-109. [PMID: 31085403 DOI: 10.1016/j.bios.2019.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 02/01/2023]
Abstract
During the last decades, by virtue of their unique physicochemical properties and potential application in microelectronics, biosensing and biomedicine, metal nanomaterials (MNs) have attracted great research interest and been highly developed. Deoxyribonucleic acid (DNA) is a particularly interesting ligand for templating bottom-up nanopreparation, by virtue of its excellent properties including nanosized geometry structure, programmable and artificial synthesis, DNA-metal ion interaction and powerful molecular recognition. DNA-templated copper nanoparticles (DNA-CuNPs) has been developed in recent years. Because of its advantages including simple and rapid preparation, high efficiency, MegaStokes shifting and low biological toxicity, DNA-CuNPs has been highly exploited for biochemical sensing from 2010, especially as a label-free detection manner, holding advantages in multiple analytical technologies including fluorescence, electrochemistry, surface plasmon resonance, inductively coupled plasma mass spectrometry and surface enhanced Raman spectroscopy. This review comprehensively tracks the preparation of DNA-CuNPs and its application in biosensing, and highlights the potential development and challenges regarding this field, aiming to promote the advance of this fertile research area.
Collapse
Affiliation(s)
- Zhihe Qing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.
| | - Ailing Bai
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Shuohui Xing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Zhen Zou
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
44
|
Zhao Y, Wang Y, Liu S, Wang C, Liang J, Li S, Qu X, Zhang R, Yu J, Huang J. Triple-helix molecular-switch-actuated exponential rolling circular amplification for ultrasensitive fluorescence detection of miRNAs. Analyst 2019; 144:5245-5253. [DOI: 10.1039/c9an00953a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have developed a rapid and high-efficiency fluorescent biosensing platform based on triple-helix molecular-switch (THMS)-actuated exponential rolling circular amplification (RCA) strategy for the ultrasensitive detection of miR-21.
Collapse
Affiliation(s)
- Yihan Zhao
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Yu Wang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Su Liu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P.R. China
| | - Chonglin Wang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Jiaxu Liang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Shasha Li
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Xiaonan Qu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P.R. China
| | - Rufeng Zhang
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P.R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P.R. China
| | - Jiadong Huang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
| |
Collapse
|
45
|
Qin Y, Li D, Yuan R, Xiang Y. Silver ion-stabilized DNA triplexes for completely enzyme-free and sensitive fluorescence detection of transcription factors via catalytic hairpin assembly amplification. J Mater Chem B 2019; 7:763-767. [DOI: 10.1039/c8tb03042a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new silver ion-stabilized DNA triplex enables enzyme-free and amplified sensitive fluorescence detection of transcription factors.
Collapse
Affiliation(s)
- Yao Qin
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Daxiu Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
46
|
Lu S, Wang S, Zhao J, Sun J, Yang X. Classical Triplex Molecular Beacons for MicroRNA-21 and Vascular Endothelial Growth Factor Detection. ACS Sens 2018; 3:2438-2445. [PMID: 30350592 DOI: 10.1021/acssensors.8b00996] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Triplex molecular beacons (tMBs) possess great potential in biological sensing because of the pH responsiveness and controllability of binding strength. Here, we systematically investigate and rationally design a classical tMB for convenient detection of microRNA-21, a well-known biomarker of cardio-cerebrovascular diseases. In the tMB, we employ the complementary sequence of miR-21 as the loop and the sequences of protonated cytosine-guanine-cytosine (C-G•C+) and thymine-adenine-thymine (T-A•T) as the triplex stem, in which both the Watson-Crick and Hoogsteen base-pairing control the binding strength in cooperation. It is demonstrated for the first time that the presence of miR-21 would only break the Hoogsteen base-pairing in the stem and hybridize with the tMB to form the rigid heterozygous hybrid duplex structure. These would hinder the fluorescence resonance energy transfer (FRET) between the fluorophore (FAM) and quencher (BHQ1) labeled at the ends of the oligonucleotide, and the fluorescence recovery degree of FAM can be used as the standard to quantitate the miR-21. More significantly, the excellent adjustability and sensitivity of our tMBs have been confirmed by constructing the corresponding duplex molecular beacon (dMB) for comparison. The fluorophore FAM in the tMB could be replaced by the fluorescent DNA/silver nanoclusters, which exhibits the universal applicability of energy donor and receptor selection for tMB. Furthermore, our proposed tMB could also be developed as an aptasensor for the detection of vascular endothelial growth factor (VEGF) by only introducing the complementary sequence of its aptamer into the tMB. This work is of great significance for the systematic study of tMBs for the detection of biomarkers such as nucleic acids and proteins.
Collapse
Affiliation(s)
- Shasha Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
47
|
Brady RA, Brooks NJ, Foderà V, Cicuta P, Di Michele L. Amphiphilic-DNA Platform for the Design of Crystalline Frameworks with Programmable Structure and Functionality. J Am Chem Soc 2018; 140:15384-15392. [PMID: 30351920 DOI: 10.1021/jacs.8b09143] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reliable preparation of functional, ordered, nanostructured frameworks would be a game changer for many emerging technologies, from energy storage to nanomedicine. Underpinned by the excellent molecular recognition of nucleic acids, along with their facile synthesis and breadth of available functionalizations, DNA nanotechnology is widely acknowledged as a prime route for the rational design of nanostructured materials. Yet, the preparation of crystalline DNA frameworks with programmable structure and functionality remains a challenge. Here we demonstrate the potential of simple amphiphilic DNA motifs, dubbed "C-stars", as a versatile platform for the design of programmable DNA crystals. In contrast to all-DNA materials, in which structure depends on the precise molecular details of individual building blocks, the self-assembly of C-stars is controlled uniquely by their topology and symmetry. Exploiting this robust self-assembly principle, we design a range of topologically identical, but structurally and chemically distinct C-stars that following a one-pot reaction self-assemble into highly porous, functional, crystalline frameworks. Simple design variations allow us to fine-tune the lattice parameter and thus control the partitioning of macromolecules within the frameworks, embed responsive motifs that can induce isothermal disassembly, and include chemical moieties to capture target proteins specifically and reversibly.
Collapse
Affiliation(s)
- Ryan A Brady
- Biological and Soft Systems, Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry , Imperial College London , London SW7 2AZ , United Kingdom
| | - Vito Foderà
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Pietro Cicuta
- Biological and Soft Systems, Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , United Kingdom
| | - Lorenzo Di Michele
- Biological and Soft Systems, Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , United Kingdom
| |
Collapse
|
48
|
A versatile label-free electrochemical biosensor for circulating tumor DNA based on dual enzyme assisted multiple amplification strategy. Biosens Bioelectron 2018; 122:224-230. [PMID: 30265973 DOI: 10.1016/j.bios.2018.09.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 01/12/2023]
Abstract
A versatile label-free electrochemical biosensor based on dual enzyme assisted multiple amplification strategy was developed for ultrasensitive detection of circulating tumor DNA (ctDNA). The biosensor consists of a triple-helix molecular switch (THMS) as molecular recognition and signal transduction probe, ribonuclease HII (RNase HII) and terminal deoxynucleotidyl transferase (TdT) as dual enzyme assisted multiple amplification accelerator. The presence of target ctDNA could open THMS and trigger RNase HII-assisted homogenous target recycling amplification to produce substantial signal transduction probe (STP). The released STP hybridized with the capture probe immobilized on a gold electrode, then TdT and assistant probe were further employed to fulfill TdT-mediated cascade extension and generate stable DNA dendritic nanostructures. The electroactive methyl blue (MB) was finally used as the signal reporter to realize the multiple electrochemical amplification ctDNA detection as the amount of MB is positively correlated with the target ctDNA. Combined with the efficient recognition capacity of the designed THMS and the excellent multiple amplification ability of RNase HII and TdT, the constructed sensing platform could detect KRAS G12DM with a wide detection range from 0.01 fM to 1 pM, and the limit of detection as low as 2.4 aM. Besides, the platform is capable of detecting ctDNA in biological fluid such as plasma. More importantly, by substituting the loop of THMS with different sequences, this strategy could be conveniently expanded into the detection of other ctDNA, showing promising potential applications in clinical cancer screening and prognosis.
Collapse
|
49
|
Zeng P, Hou P, Jing CJ, Huang CZ. Highly sensitive detection of hepatitis C virus DNA by using a one-donor-four-acceptors FRET probe. Talanta 2018; 185:118-122. [DOI: 10.1016/j.talanta.2018.03.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
|
50
|
A label-free triplex-to-G-qadruplex molecular switch for sensitive fluorescent detection of acetamiprid. Talanta 2018; 189:599-605. [PMID: 30086966 DOI: 10.1016/j.talanta.2018.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/10/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
The detection and monitoring of acetamiprid has drawn extensive attentions, due to their potential threat to human health. Herein, a simple, sensitive and label-free fluorescent assay based on triplex-to-G-qadruplex (TTGQ) molecular switch, was developed for the assay of acetamiprid in aqueous solution. In this detection, the proposed TTGQ molecule contained the acetamiprid aptamer sequence at its loop part and the triple-helix structure at its stem part. One single-stranded DNA grafted by two split G-rich DNA sequences at its two ends, participated in the assembly of the triplex part in TTGQ. In the presence of acetamiprid, TTGQ was dissociated, and the split G-rich DNA was released out to result in the fluorescent signal enhancement of a G-quadruplex's probe. By virtue of this TTGQ molecular switch, the proposed assay can sense acetamiprid at the concentration as low as 2.38 nM with excellent selectivity. Furthermore, the detection of acetamiprid in three kinds of foods extract demonstrated the high application potential of the detection platform in the field of food safety. Compared with the other reported strategies for acetamiprid assay, this triplex-to-G-qadruplex-based fluorescent molecular switch was just composed of two DNA probes without the labeling procedure, presenting a really simple and low-cost fluorescent detection for acetamiprid assay.
Collapse
|