1
|
Sharmeen S, Suh K, Kyei I, Jones J, Olupathage H, Campbell A, Hage DS. Immunoaffinity Chromatography for Protein Purification and Analysis. Curr Protoc 2023; 3:e867. [PMID: 37610261 DOI: 10.1002/cpz1.867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Immunoaffinity chromatography (IAC) is a type of liquid chromatography that uses immobilized antibodies or related binding agents as selective stationary phases for sample separation or analysis. The strong binding and high selectivity of antibodies have made IAC a popular tool for the purification and analysis of many chemicals and biochemicals, including proteins. The basic principles of IAC are described as related to the use of this method for protein purification and analysis. The main factors to consider in this technique are also presented under a discussion of the general strategy to follow during the development of a new IAC method. Protocols, as illustrated using human serum albumin (HSA) as a model protein, are provided for the use of IAC in several formats. This includes both the use of IAC with traditional low-performance supports such as agarose for off-line immunoextraction and supports used in high-performance IAC for on-line immunoextraction. The use of IAC for protein analysis as a flow-based or chromatographic immunoassay is also discussed and described using HSA and a competitive binding assay format as an example. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Off-line immunoextraction by traditional immunoaffinity chromatography Basic Protocol 2: On-line immunoextraction by high-performance immunoaffinity chromatography Basic Protocol 3: Competitive binding chromatographic immunoassay.
Collapse
Affiliation(s)
- Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jacob Jones
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | | | - Avery Campbell
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
2
|
Characterization of drug binding with alpha 1-acid glycoprotein in clinical samples using ultrafast affinity extraction. J Chromatogr A 2021; 1649:462240. [PMID: 34034105 DOI: 10.1016/j.chroma.2021.462240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022]
Abstract
Many drugs bind to serum transport proteins, which can affect both drug distribution and activity in the body. α1-Acid glycoprotein (AGP) is a key transport protein for basic and neutral drugs. Both elevated levels and altered glycosylation patterns of AGP have been seen in clinical conditions such as systemic lupus erythematosus (SLE). This study developed, optimized, and used the method of ultrafast affinity extraction (UAE) to examine whether these changes in AGP are associated with changes in the binding by some drugs to this transport protein. This approach used affinity microcolumns to capture and measure, in serum, the free fractions of several drugs known to bind AGP. These measurements were made with pooled normal control serum and serum samples from individuals with SLE. Immunoaffinity chromatography was used to obtain the content of AGP and HSA in these samples, and CE was used to examine the glycoform pattern for AGP in each serum sample. The free drug fractions measured for normal control serum ranged from 3.5 to 29.1%, in agreement with the results of ultrafiltration, and provided binding constants of ~105-106 M-1 for the given drugs with AGP at 37⁰C. Analysis of a screening set of SLE serum samples by UAE gave decreased free fractions (relative change, 12-55%) vs normal serum when spiked with the same types and amounts of drugs. These changes were related in some cases to AGP content, with some SLE samples having AGP levels 1.3- to 2.1-fold above the upper end of the normal range. In other cases, the changes in free fractions appeared to be linked to alterations in the glycoforms and binding constants of AGP, with some affinities differing by 1.2- to 1.5-fold vs normal AGP. This approach can be employed with other solute-protein systems and to investigate binding by other drugs or transport proteins directly in clinical samples.
Collapse
|
3
|
Anguizola JA, Pfaunmiller EL, Milanuk ML, Hage DS. Peak decay analysis and biointeraction studies of immunoglobulin binding and dissociation on protein G affinity microcolumns. Methods 2018; 146:39-45. [PMID: 29608965 DOI: 10.1016/j.ymeth.2018.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 01/21/2023] Open
Abstract
Protein G can be a valuable binding agent for antibodies and immunoglobulins in methods such as immunosensors, chromatographic-based immunoassays, and immunoaffinity chromatography. This report used the method of peak decay analysis along with frontal analysis and zonal elution studies to characterize the binding, elution and regeneration properties of affinity microcolumns that contained immobilized protein G. Frontal analysis was employed with rabbit immunoglobulin G (IgG) to characterize the binding capacity of these affinity microcolumns. Zonal elution experiments looking at the retained peaks for small injections of labeled rabbit IgG were used to optimize the column regeneration conditions. Peak decay analysis was then used to look at the effects of flow rate and elution pH on the release of several types of IgG from the protein G microcolumns. This approach made it possible to obtain detailed information on the use and behavior of such columns, as could be used in future work to optimize the capture or analysis of IgG and antibodies by such devices. The same approach and tools that were used in this report could also be adapted for work with affinity columns that make use of other supports, binding agents or targets.
Collapse
Affiliation(s)
| | | | - Mitchell L Milanuk
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
4
|
Beeram SR, Zheng X, Suh K, Hage DS. Characterization of solution-phase drug-protein interactions by ultrafast affinity extraction. Methods 2018; 146:46-57. [PMID: 29510250 DOI: 10.1016/j.ymeth.2018.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 11/25/2022] Open
Abstract
A number of tools based on high-performance affinity separations have been developed for studying drug-protein interactions. An example of one recent approach is ultrafast affinity extraction. This method has been employed to examine the free (or non-bound) fractions of drugs and other solutes in simple or complex samples that contain soluble binding agents. These free fractions have also been used to determine the binding constants and rate constants for the interactions of drugs with these soluble agents. This report describes the general principles of ultrafast affinity extraction and the experimental conditions under which it can be used to characterize such interactions. This method will be illustrated by utilizing data that have been obtained when using this approach to measure the binding and dissociation of various drugs with the serum transport proteins human serum albumin and alpha1-acid glycoprotein. A number of practical factors will be discussed that should be considered in the design and optimization of this approach for use with single-column or multi-column systems. Techniques will also be described for analyzing the resulting data for the determination of free fractions, rate constants and binding constants. In addition, the extension of this method to complex samples, such as clinical specimens, will be considered.
Collapse
Affiliation(s)
- Sandya R Beeram
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Xiwei Zheng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
5
|
Zhang C, Rodriguez E, Bi C, Zheng X, Suresh D, Suh K, Li Z, Elsebaei F, Hage DS. High performance affinity chromatography and related separation methods for the analysis of biological and pharmaceutical agents. Analyst 2018; 143:374-391. [PMID: 29200216 PMCID: PMC5768458 DOI: 10.1039/c7an01469d] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The last few decades have witnessed the development of many high-performance separation methods that use biologically related binding agents. The combination of HPLC with these binding agents results in a technique known as high performance affinity chromatography (HPAC). This review will discuss the general principles of HPAC and related techniques, with an emphasis on their use for the analysis of biological compounds and pharmaceutical agents. Various types of binding agents for these methods will be considered, including antibodies, immunoglobulin-binding proteins, aptamers, enzymes, lectins, transport proteins, lipids, and carbohydrates. Formats that will be discussed for these methods range from the direct detection of an analyte to indirect detection based on chromatographic immunoassays, as well as schemes based on analyte extraction or depletion, post-column detection, and multi-column systems. The use of biological agents in HPLC for chiral separations will also be considered, along with the use of HPAC as a tool to screen or study biological interactions. Various examples will be presented to illustrate these approaches and their applications in fields such as biochemistry, clinical chemistry, and pharmaceutical research.
Collapse
Affiliation(s)
- Chenhua Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Martinović T, Josić D. Polymethacrylate-based monoliths as stationary phases for separation of biopolymers and immobilization of enzymes. Electrophoresis 2017; 38:2821-2826. [DOI: 10.1002/elps.201700255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/20/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022]
Affiliation(s)
| | - Djuro Josić
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
- Warren Alpert Medical School; Brown University; Providence RI USA
| |
Collapse
|
7
|
Beeram S, Bi C, Zheng X, Hage DS. Chromatographic studies of drug interactions with alpha 1-acid glycoprotein by ultrafast affinity extraction and peak profiling. J Chromatogr A 2017; 1497:92-101. [PMID: 28366566 DOI: 10.1016/j.chroma.2017.03.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 03/11/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022]
Abstract
Interactions with serum proteins such as alpha1-acid glycoprotein (AGP) can have a significant effect on the behavior and pharmacokinetics of drugs. Ultrafast affinity extraction and peak profiling were used with AGP microcolumns to examine these processes for several model drugs (i.e., chlorpromazine, disopyramide, imipramine, lidocaine, propranolol and verapamil). The association equilibrium constants measured for these drugs with soluble AGP by ultrafast affinity extraction were in the general range of 104-106M-1 at pH 7.4 and 37°C and gave good agreement with literature values. Some of these values were dependent on the relative drug and protein concentrations that were present when using a single-site binding model; these results suggested a more complex mixed-mode interaction was actually present, which was also then used to analyze the data. The apparent dissociation rate constants that were obtained by ultrafast affinity extraction when using a single-site model varied from 0.14 to 7.0s-1 and were dependent on the relative drug and protein concentrations. Lower apparent dissociation rate constants were obtained by this approach as the relative amount of drug versus protein was decreased, with the results approaching those measured by peak profiling at low drug concentrations. This information should be useful in better understanding how these and other drugs interact with AGP in the circulation. In addition, the chromatographic approaches that were optimized and used in this report to examine these systems can be adapted for the analysis of other solute-protein interactions of biomedical interest.
Collapse
Affiliation(s)
- Sandya Beeram
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Xiwei Zheng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
8
|
Stępnik KE, Malinowska I. Determination of binding properties of ampicillin in drug-human serum albumin standard solution using N-vinylpyrrolidone copolymer combined with the micellar systems. Talanta 2016; 162:241-248. [PMID: 27837825 DOI: 10.1016/j.talanta.2016.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 01/09/2023]
Abstract
It is well-known that only the unbound (free) drug fraction can achieve a pharmacological effect. Therefore the determination of free drug concentration is a very important issue in the field of pharmacology. In this study poly-1-vinyl-2-pyrrolidone (VP) crosslinked with divinylbenzene (DVB) compared with the micellar liquid chromatography (MLC) with and without pre-made drug adsorption was used for quantitative analysis of free ampicillin concentration in the standard solution of drug-human serum albumin owing to its ability to block protein adsorption. The commonly recognized adsorption method based on drug adsorption on VP-DVB has been compared to the entirely new application of MLC with direct sample injection (DSI) not requiring pre-made adsorption. Micellar aggregates are able to solubilize various compounds therefore micellar environment can be used for direct determination of free drug concentration. The obtained results show that the free drug concentration values obtained in the micellar systems based on cetyltrimethylammonium bromide (CTAB) (93.98μgL-1, 78.3%) as well as on polyoxyethylene (23) lauryl ether (Brij35) (91.15μgL-1, 75.9%) are similar to those obtained after the drug adsorption on VP-DVB using both RP-HPLC (95.85μgmL-1, 79.9%) and spectrophotometry (96.47μgmL-1, 80.4%). However, only %PPB (% plasma protein binding) value calculated on the basis of Brij35 retention factor is similar to the literature data. The obtained results are within the analytical range of % of free drug concentration. Therefore N-vinylpyrrolidone copolymer as well as micellar system based on the non-ionic surfactant can be successfully applied for determination of free drug concentration. Moreover, the new application of MLC with DSI can be recognized as a promising, fast and simple method for quantitative determination of free drug concentration.
Collapse
Affiliation(s)
- Katarzyna E Stępnik
- Faculty of Chemistry, Chair of Physical Chemistry, Department of Planar Chromatography, Maria Curie - Skłodowska University, M. Curie - Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Irena Malinowska
- Faculty of Chemistry, Chair of Physical Chemistry, Department of Planar Chromatography, Maria Curie - Skłodowska University, M. Curie - Skłodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
9
|
Jansod S, Afshar MG, Crespo GA, Bakker E. Phenytoin speciation with potentiometric and chronopotentiometric ion-selective membrane electrodes. Biosens Bioelectron 2016; 79:114-20. [DOI: 10.1016/j.bios.2015.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
10
|
Crivianu-Gaita V, Thompson M. Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron 2016; 85:32-45. [PMID: 27155114 DOI: 10.1016/j.bios.2016.04.091] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/11/2016] [Accepted: 04/26/2016] [Indexed: 01/14/2023]
Abstract
The choice of biosensing elements is crucial for the development of the optimal biosensor. Three of the most versatile biosensing elements are antibody single-chain Fv fragments (scFv), antibody fragment-antigen binding (Fab') units, and aptamers. This article provides an overview of these three biorecognition elements with respects to their synthesis/engineering, various immobilization techniques, and examples of their use in biosensors. Furthermore, the final section of the review compares and contrasts their characteristics (time/cost of development, ease and variability of immobilization, affinity, stability) illustrating their advantages and disadvantages. Overall, scFv fragments are found to display the highest customizability (i.e. addition of functional groups, immobilizing peptides, etc.) due to recombinant synthesis techniques. If time and cost are an issue in the development of the biosensor, Fab' fragments should be chosen as they are relatively cheap and can be developed quickly from whole antibodies (several days). However, if there are sufficient funds and time is not a factor, aptamers should be utilized as they display the greatest affinity towards their target analytes and are extremely stable (excellent biosensor regenerability).
Collapse
Affiliation(s)
| | - Michael Thompson
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
11
|
Bi C, Zheng X, Hage DS. Analysis of free drug fractions in serum by ultrafast affinity extraction and two-dimensional affinity chromatography using α1-acid glycoprotein microcolumns. J Chromatogr A 2016; 1432:49-57. [PMID: 26797422 DOI: 10.1016/j.chroma.2015.12.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/17/2022]
Abstract
In the circulatory system, many drugs are reversibly bound to serum proteins such as human serum albumin (HSA) and alpha1-acid glycoprotein (AGP), resulting in both free and protein-bound fractions for these drugs. This report examined the use of microcolumns containing immobilized AGP for the measurement of free drug fractions by ultrafast affinity extraction and a two-dimensional affinity system. Several drugs known to bind AGP were used as models to develop and evaluate this approach. Factors considered during the creation of this method included the retention of the drugs on the microcolumns, the injection flow rate, the microcolumn size, and the times at which a second AGP column was placed on-line with the microcolumn. The final system had residence times of only 110-830ms during sample passage through the AGP microcolumns and allowed free drug fractions to be determined within 10-20min when using only 3-10μL of sample per injection. This method was used to measure the free fractions of the model drugs at typical therapeutic levels in serum, giving good agreement with the results obtained by ultrafiltration. This approach was also used to estimate the binding constants for each drug with AGP in serum, even for drugs that had significant interactions with both AGP and HSA in such samples. These results indicated that AGP microcolumns could be used with ultrafast affinity extraction to measure free drug fractions in a label-free manner and to study the binding of drugs with AGP in complex samples such as serum.
Collapse
Affiliation(s)
- Cong Bi
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Xiwei Zheng
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
12
|
Pfaunmiller EL, Anguizola JA, Milanuk ML, Carter N, Hage DS. Use of protein G microcolumns in chromatographic immunoassays: A comparison of competitive binding formats. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:91-100. [PMID: 26777776 DOI: 10.1016/j.jchromb.2015.12.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022]
Abstract
Affinity microcolumns containing protein G were used as general platforms for creating chromatographic-based competitive binding immunoassays. Human serum albumin (HSA) was used as a model target for this work and HSA tagged with a near infrared fluorescent dye was utilized as the label. The protein G microcolumns were evaluated for use in several assay formats, including both solution-based and column-based competitive binding immunoassays and simultaneous or sequential injection formats. All of these methods were characterized by using the same amounts of labeled HSA and anti-HSA antibodies per sample, as chosen for the analysis of a protein target in the low-to-mid ng/mL range. The results were used to compare these formats in terms of their response, precision, limit of detection, and analysis time. All these methods gave detection limits in the range of 8-19ng/mL and precisions ranging from ±5% to ±10% when using an injection flow rate of 0.10mL/min. The column-based sequential injection immunoassay provided the best limit of detection and the greatest change in response at low target concentrations, while the solution-based simultaneous injection method had the broadest linear and dynamic ranges. These results provided valuable guidelines that can be employed to develop and extend the use of protein G microcolumns and these competitive binding formats to other protein biomarkers or biological agents of clinical or pharmaceutical interest.
Collapse
Affiliation(s)
| | | | - Mitchell L Milanuk
- Chemistry Department, University of Nebraska, Lincoln, NE, United States
| | - NaTasha Carter
- Chemistry Department, University of Nebraska, Lincoln, NE, United States
| | - David S Hage
- Chemistry Department, University of Nebraska, Lincoln, NE, United States.
| |
Collapse
|
13
|
Matsuda R, Rodriguez E, Suresh D, Hage DS. Chromatographic immunoassays: strategies and recent developments in the analysis of drugs and biological agents. Bioanalysis 2015; 7:2947-66. [PMID: 26571109 PMCID: PMC4820777 DOI: 10.4155/bio.15.206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A chromatographic immunoassay is a technique in which an antibody or antibody-related agent is used as part of a chromatographic system for the isolation or measurement of a specific target. Various binding agents, detection methods, supports and assay formats have been developed for this group of methods, and applications have been reported that range from drugs, hormones and herbicides to peptides, proteins and bacteria. This review discusses the general principles and applications of chromatographic immunoassays, with an emphasis being given to methods and formats that have been developed for the analysis of drugs and biological agents. The relative advantages or limitations of each format are discussed. Recent developments and research in this field, as well as possible future directions, are also considered.
Collapse
Affiliation(s)
- Ryan Matsuda
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
| | - Elliott Rodriguez
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
| | - Doddavenkatanna Suresh
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
- Home Department: Department of Chemistry, Tumkur University, Tumkur, Karnataka 572103, India
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
| |
Collapse
|
14
|
Li Z, Beeram SR, Bi C, Suresh D, Zheng X, Hage DS. High-Performance Affinity Chromatography: Applications in Drug-Protein Binding Studies and Personalized Medicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 102:1-39. [PMID: 26827600 DOI: 10.1016/bs.apcsb.2015.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The binding of drugs with proteins and other agents in serum is of interest in personalized medicine because this process can affect the dosage and action of drugs. The extent of this binding may also vary with a given disease state. These interactions may involve serum proteins, such as human serum albumin or α1-acid glycoprotein, or other agents, such as lipoproteins. High-performance affinity chromatography (HPAC) is a tool that has received increasing interest as a means for studying these interactions. This review discusses the general principles of HPAC and the various approaches that have been used in this technique to examine drug-protein binding and in work related to personalized medicine. These approaches include frontal analysis and zonal elution, as well as peak decay analysis, ultrafast affinity extraction, and chromatographic immunoassays. The operation of each method is described and examples of applications for these techniques are provided. The type of information that can be obtained by these methods is also discussed, as related to the analysis of drug-protein binding and the study of clinical or pharmaceutical samples.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sandya R Beeram
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - D Suresh
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Xiwei Zheng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
15
|
Analysis of free drug fractions in human serum by ultrafast affinity extraction and two-dimensional affinity chromatography. Anal Bioanal Chem 2015; 408:131-40. [PMID: 26462924 DOI: 10.1007/s00216-015-9082-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/19/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022]
Abstract
Ultrafast affinity extraction and a two-dimensional high performance affinity chromatographic system were used to measure the free fractions for various drugs in serum and at typical therapeutic concentrations. Pooled samples of normal serum or serum from diabetic patients were utilized in this work. Several drug models (i.e., quinidine, diazepam, gliclazide, tolbutamide, and acetohexamide) were examined that represented a relatively wide range of therapeutic concentrations and affinities for human serum albumin (HSA). The two-dimensional system consisted of an HSA microcolumn for the extraction of a free drug fraction, followed by a larger HSA analytical column for the further separation and measurement of this fraction. Factors that were optimized in this method included the flow rates, column sizes, and column switching times that were employed. The final extraction times used for isolating the free drug fractions were 333-665 ms or less. The dissociation rate constants for several of the drugs with soluble HSA were measured during system optimization, giving results that agreed with reference values. In the final system, free drug fractions in the range of 0.7-9.5% were measured and gave good agreement with values that were determined by ultrafiltration. Association equilibrium constants or global affinities were also estimated by this approach for the drugs with soluble HSA. The results for the two-dimensional system were obtained in 5-10 min or less and required only 1-5 μL of serum per injection. The same approach could be adapted for work with other drugs and proteins in clinical samples or for biomedical research.
Collapse
|
16
|
Crivianu-Gaita V, Thompson M. Immobilization of Fab’ fragments onto substrate surfaces: A survey of methods and applications. Biosens Bioelectron 2015; 70:167-80. [DOI: 10.1016/j.bios.2015.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
|
17
|
A method for rapid screening of interactions of pharmacologically active compounds with albumin. Anal Chim Acta 2015; 855:51-9. [DOI: 10.1016/j.aca.2014.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/05/2014] [Accepted: 12/07/2014] [Indexed: 11/18/2022]
|
18
|
Zheng X, Matsuda R, Hage DS. Analysis of free drug fractions by ultrafast affinity extraction: interactions of sulfonylurea drugs with normal or glycated human serum albumin. J Chromatogr A 2014; 1371:82-9. [PMID: 25456590 PMCID: PMC4254497 DOI: 10.1016/j.chroma.2014.10.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/04/2014] [Accepted: 10/24/2014] [Indexed: 02/08/2023]
Abstract
Ultrafast affinity extraction and a multi-dimensional affinity system were developed for measuring free drug fractions at therapeutic levels. This approach was used to compare the free fractions and global affinity constants of several sulfonylurea drugs in the presence of normal human serum albumin (HSA) or glycated forms of this protein, as are produced during diabetes. Affinity microcolumns containing immobilized HSA were first used to extract the free drug fractions in injected drug/protein mixtures. As the retained drug eluted from the HSA microcolumn, it was passed through a second HSA column for further separation and measurement. Items that were considered during the optimization of this approach included the column sizes and flow rates that were used, and the time at which the second column was placed on-line with the HSA microcolumn. This method required only 1.0 μL of a sample per injection and was able to measure free drug fractions as small as 0.09-2.58% with an absolute precision of ±0.02-0.5%. The results that were obtained indicated that glycation can affect the free fractions of sulfonylurea drugs at typical therapeutic levels and that the size of this effect varies with the level of HSA glycation. Global affinity constants that were estimated from these free drug fractions gave good agreement with those predicted from previous binding studies or determined through a reference method. The same approach could be utilized with other drugs and proteins or modified binding agents of clinical or pharmaceutical interest.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Ryan Matsuda
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
19
|
Zheng X, Li Z, Beeram S, Podariu M, Matsuda R, Pfaunmiller EL, White CJ, Carter N, Hage DS. Analysis of biomolecular interactions using affinity microcolumns: a review. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 968:49-63. [PMID: 24572459 PMCID: PMC4112177 DOI: 10.1016/j.jchromb.2014.01.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 12/15/2022]
Abstract
Affinity chromatography has become an important tool for characterizing biomolecular interactions. The use of affinity microcolumns, which contain immobilized binding agents and have volumes in the mid-to-low microliter range, has received particular attention in recent years. Potential advantages of affinity microcolumns include the many analysis and detection formats that can be used with these columns, as well as the need for only small amounts of supports and immobilized binding agents. This review examines how affinity microcolumns have been used to examine biomolecular interactions. Both capillary-based microcolumns and short microcolumns are considered. The use of affinity microcolumns with zonal elution and frontal analysis methods are discussed. The techniques of peak decay analysis, ultrafast affinity extraction, split-peak analysis, and band-broadening studies are also explored. The principles of these methods are examined and various applications are provided to illustrate the use of these methods with affinity microcolumns. It is shown how these techniques can be utilized to provide information on the binding strength and kinetics of an interaction, as well as on the number and types of binding sites. It is further demonstrated how information on competition or displacement effects can be obtained by these methods.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Zhao Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Sandya Beeram
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Maria Podariu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Ryan Matsuda
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Erika L Pfaunmiller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Christopher J White
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - NaTasha Carter
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
20
|
Development of microcolumn-based one-site immunometric assays for protein biomarkers. J Chromatogr A 2014; 1366:92-100. [PMID: 25263063 DOI: 10.1016/j.chroma.2014.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/03/2014] [Accepted: 09/10/2014] [Indexed: 11/21/2022]
Abstract
One-site immunometric assays that utilize affinity microcolumns were developed and evaluated for the analysis of protein biomarkers. This approach used labeled antibodies that were monitored through on-line fluorescence or near-infrared (NIR) fluorescence detection. Human serum albumin (HSA) was utilized as a model target protein for this approach. In these assays, a fixed amount of labeled anti-HSA antibodies was mixed with samples or standards containing HSA, followed by the injection of this mixture onto an HSA microcolumn to remove excess antibodies and detect the non-retained labeled antibodies that were bound to HSA from the sample. The affinity microcolumns were 2.1mm i.d. ×5mm and contained 8-9nmol of immobilized HSA. These microcolumns were used from 0.10 to 1.0mL/min and gave results within 35s to 2.8min of sample injection. Limits of detection down to 0.10-0.28ng/mL (1.5-4.2pM) or 25-30pg/mL (0.38-0.45pM) were achieved when using fluorescein or a NIR fluorescent dye as the label, with an assay precision of ±0.1-4.2%. Several parameters were examined during the optimization of these assays, and general guidelines and procedures were developed for the extension of this approach for use with other types of affinity microcolumns and protein biomarkers.
Collapse
|
21
|
Zheng X, Yoo MJ, Hage DS. Analysis of free fractions for chiral drugs using ultrafast extraction and multi-dimensional high-performance affinity chromatography. Analyst 2014; 138:6262-5. [PMID: 23979112 DOI: 10.1039/c3an01315d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-dimensional chromatographic approach was developed to measure the free fractions of drug enantiomers in samples that also contained a binding protein or serum. This method, which combined ultrafast affinity extraction with a chiral stationary phase, was demonstrated using the drug warfarin and the protein human serum albumin.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA.
| | | | | |
Collapse
|
22
|
Zheng X, Li Z, Podariu MI, Hage DS. Determination of rate constants and equilibrium constants for solution-phase drug-protein interactions by ultrafast affinity extraction. Anal Chem 2014; 86:6454-60. [PMID: 24911267 PMCID: PMC4082384 DOI: 10.1021/ac501031y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method was created on the basis of ultrafast affinity extraction to determine both the dissociation rate constants and equilibrium constants for drug-protein interactions in solution. Human serum albumin (HSA), an important binding agent for many drugs in blood, was used as both a model soluble protein and as an immobilized binding agent in affinity microcolumns for the analysis of free drug fractions. Several drugs were examined that are known to bind to HSA. Various conditions to optimize in the use of ultrafast affinity extraction for equilibrium and kinetic studies were considered, and several approaches for these measurements were examined. The dissociation rate constants obtained for soluble HSA with each drug gave good agreement with previous rate constants reported for the same drugs or other solutes with comparable affinities for HSA. The equilibrium constants that were determined also showed good agreement with the literature. The results demonstrated that ultrafast affinity extraction could be used as a rapid approach to provide information on both the kinetics and thermodynamics of a drug-protein interaction in solution. This approach could be extended to other systems and should be valuable for high-throughput drug screening or biointeraction studies.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska , 704 Hamilton Hall, Lincoln, Nebraska 68588, United States
| | | | | | | |
Collapse
|
23
|
The bioanalytical challenge of determining unbound concentration and protein binding for drugs. Bioanalysis 2013; 5:3033-50. [DOI: 10.4155/bio.13.274] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Knowledge regarding unbound concentrations is of vital importance when exploring the PK and PD of a drug. The accurate and reproducible determination of plasma protein binding and unbound concentrations for a compound/drug is a serious challenge for the bioanalytical laboratory. When the drug is in equilibrium with the binding protein(s), this equilibrium will shift when physiological conditions are not met. Furthermore, the true unbound fraction/concentration is unknown, and there are numerous publications in the scientific literature reporting and discussing data that have been produced without sufficient control of the parameters influencing the equilibrium. In this Review, different parameters affecting the equilibrium and analysis are discussed, together with suggestions on how to control these parameters in order to produce as trustworthy results for unbound concentrations/fractions as possible.
Collapse
|
24
|
Abstract
Creative and novel microimmunoassay approaches continue to proliferate across many platforms originating from several fields of study. These efforts are aimed at improving one or more metrics for clinical tests, including improved sensitivity, increased speed, reduced cost, smaller sample size, the ability to analyze multiple antigens in parallel and ease of use. Many approaches focus on the production of microarrays that accomplish standard assays in parallel, or mobile solid-support formats to overcome issues of high background noise and long incubation times. In this article, innovative developments beyond existing commercial tests in the microimmunoassay arena are reviewed, covering January 2008 to April 2012. These developing experimental platforms are discussed in terms of their ability to augment or replace current commercial approaches.
Collapse
|