1
|
Häupl B, Wilke AC, Urlaub H, Oellerich T. Phosphoproteomic Analysis of Signaling Pathways in Lymphomas. Methods Mol Biol 2025; 2865:283-294. [PMID: 39424730 DOI: 10.1007/978-1-0716-4188-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Cellular fate is regulated by intricate signal transduction mediated by posttranslational protein modifications like phosphorylation to transmit information. As other cancer types, lymphomas frequently show dysregulation of signaling pathways that contribute to malignant transformation and tumor progression. For example, in diffuse large B-cell lymphoma the B-cell antigen receptor was identified as an oncogenic driver mediating cellular growth and survival signals. Thus, the elucidation of these complex signaling networks is crucial to gain insight into the mechanisms underlying tumorigenesis and to identify target proteins for innovative therapeutic approaches.Here, we describe a mass spectrometry-based phosphoproteomic approach for the global analysis of intracellular signaling events and their dynamics. The workflow combines phosphopeptide enrichment and fractionation with liquid chromatography-coupled mass spectrometry for the amino acid site-specific identification and quantification of thousands of phosphorylation events. Such global signaling analyses have great potential for the elucidation of oncogenic pathomechanisms, diagnostic biomarkers, and drug targets.
Collapse
Affiliation(s)
- Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Anne Christine Wilke
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany.
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany.
| |
Collapse
|
2
|
Lancaster NM, Sinitcyn P, Forny P, Peters-Clarke TM, Fecher C, Smith AJ, Shishkova E, Arrey TN, Pashkova A, Robinson ML, Arp N, Fan J, Hansen J, Galmozzi A, Serrano LR, Rojas J, Gasch AP, Westphall MS, Stewart H, Hock C, Damoc E, Pagliarini DJ, Zabrouskov V, Coon JJ. Fast and deep phosphoproteome analysis with the Orbitrap Astral mass spectrometer. Nat Commun 2024; 15:7016. [PMID: 39147754 PMCID: PMC11327265 DOI: 10.1038/s41467-024-51274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
Owing to its roles in cellular signal transduction, protein phosphorylation plays critical roles in myriad cell processes. That said, detecting and quantifying protein phosphorylation has remained a challenge. We describe the use of a novel mass spectrometer (Orbitrap Astral) coupled with data-independent acquisition (DIA) to achieve rapid and deep analysis of human and mouse phosphoproteomes. With this method, we map approximately 30,000 unique human phosphorylation sites within a half-hour of data collection. The technology is benchmarked to other state-of-the-art MS platforms using both synthetic peptide standards and with EGF-stimulated HeLa cells. We apply this approach to generate a phosphoproteome multi-tissue atlas of the mouse. Altogether, we detect 81,120 unique phosphorylation sites within 12 hours of measurement. With this unique dataset, we examine the sequence, structural, and kinase specificity context of protein phosphorylation. Finally, we highlight the discovery potential of this resource with multiple examples of phosphorylation events relevant to mitochondrial and brain biology.
Collapse
Affiliation(s)
- Noah M Lancaster
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Patrick Forny
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline Fecher
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J Smith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | | | - Anna Pashkova
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - Margaret Lea Robinson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas Arp
- Morgridge Institute for Research, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Juli Hansen
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Andrea Galmozzi
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Lia R Serrano
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | | | | | - Eugen Damoc
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA.
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Lancaster NM, Sinitcyn P, Forny P, Peters-Clarke TM, Fecher C, Smith AJ, Shishkova E, Arrey TN, Pashkova A, Robinson ML, Arp N, Fan J, Hansen J, Galmozzi A, Serrano LR, Rojas J, Gasch AP, Westphall MS, Stewart H, Hock C, Damoc E, Pagliarini DJ, Zabrouskov V, Coon JJ. Fast and Deep Phosphoproteome Analysis with the Orbitrap Astral Mass Spectrometer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568149. [PMID: 38045259 PMCID: PMC10690147 DOI: 10.1101/2023.11.21.568149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Owing to its roles in cellular signal transduction, protein phosphorylation plays critical roles in myriad cell processes. That said, detecting and quantifying protein phosphorylation has remained a challenge. We describe the use of a novel mass spectrometer (Orbitrap Astral) coupled with data-independent acquisition (DIA) to achieve rapid and deep analysis of human and mouse phosphoproteomes. With this method we map approximately 30,000 unique human phosphorylation sites within a half-hour of data collection. The technology was benchmarked to other state-of-the-art MS platforms using both synthetic peptide standards and with EGF-stimulated HeLa cells. We applied this approach to generate a phosphoproteome multi-tissue atlas of the mouse. Altogether, we detected 81,120 unique phosphorylation sites within 12 hours of measurement. With this unique dataset, we examine the sequence, structural, and kinase specificity context of protein phosphorylation. Finally, we highlight the discovery potential of this resource with multiple examples of novel phosphorylation events relevant to mitochondrial and brain biology.
Collapse
|
4
|
Li J, Li N, Hou Y, Fan M, Zhang Y, Zhang Q, Dang F. Facile fabrication of Ti 4+-immobilized magnetic nanoparticles by phase-transitioned lysozyme nanofilms for enrichment of phosphopeptides. Anal Bioanal Chem 2024; 416:1657-1665. [PMID: 38319356 DOI: 10.1007/s00216-024-05170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
In this study, titanium (IV)-immobilized magnetic nanoparticles (Ti4+-PTL-MNPs) were firstly synthesized via a one-step aqueous self-assembly of lysozyme nanofilms for efficient phosphopeptide enrichment. Under physiological conditions, lysozymes readily self-organized into phase-transitioned lysozyme (PTL) nanofilms on Fe3O4@SiO2 and Fe3O4@C MNP surfaces with abundant functional groups, including -NH2, -COOH, -OH, and -SH, which can be used as multiple linkers to efficiently chelate Ti4+. The obtained Ti4+-PTL-MNPs possessed high sensitivity of 0.01 fmol μL-1 and remarkable selectivity even at a mass ratio of β-casein to BSA as low as 1:400 for phosphopeptide enrichment. Furthermore, the synthesized Ti4+-PTL-MNPs can also selectively identify low-abundance phosphopeptides from extremely complicated human serum samples and their rapid separation, good reproducibility, and excellent recovery were also proven. This one-step self-assembly of PTL nanofilms facilitated the facile and efficient surface functionalization of various nanoparticles for proteomes/peptidomes.
Collapse
Affiliation(s)
- Jianru Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Nan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Yawen Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Miao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Yuxiu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Qiqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Fuquan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China.
| |
Collapse
|
5
|
Clostridium novyi’s Alpha-Toxin Changes Proteome and Phosphoproteome of HEp-2 Cells. Int J Mol Sci 2022; 23:ijms23179939. [PMID: 36077344 PMCID: PMC9456407 DOI: 10.3390/ijms23179939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
C. novyi type A produces the alpha-toxin (TcnA) that belongs to the large clostridial glucosylating toxins (LCGTs) and is able to modify small GTPases by N-acetylglucosamination on conserved threonine residues. In contrast, other LCGTs including Clostridioides difficile toxin A and toxin B (TcdA; TcdB) modify small GTPases by mono-o-glucosylation. Both modifications inactivate the GTPases and cause strong effects on GTPase-dependent signal transduction pathways and the consequent reorganization of the actin cytoskeleton leading to cell rounding and finally cell death. However, the effect of TcnA on target cells is largely unexplored. Therefore, we performed a comprehensive screening approach of TcnA treated HEp-2 cells and analyzed their proteome and their phosphoproteome using LC-MS-based methods. With this data-dependent acquisition (DDA) approach, 5086 proteins and 9427 phosphosites could be identified and quantified. Of these, 35 proteins were found to be significantly altered after toxin treatment, and 1832 phosphosites were responsive to TcnA treatment. By analyzing the TcnA-induced proteomic effects of HEp-2 cells, 23 common signaling pathways were identified to be altered, including Actin Cytoskeleton Signaling, Epithelial Adherens Junction Signaling, and Signaling by Rho Family GTPases. All these pathways are also regulated after application of TcdA or TcdB of C. difficile. After TcnA treatment the regulation on phosphorylation level was much stronger compared to the proteome level, in terms of both strength of regulation and the number of regulated phosphosites. Interestingly, various signaling pathways such as Signaling by Rho Family GTPases or Integrin Signaling were activated on proteome level while being inhibited on phosphorylation level or vice versa as observed for the Role of BRCA1 in DNA Damage Response. ZIP kinase, as well as Calmodulin-dependent protein kinases IV & II, were observed as activated while Aurora-A kinase and CDK kinases tended to be inhibited in cells treated with TcnA based on their substrate regulation pattern.
Collapse
|
6
|
Thongboonkerd V, Chaiyarit S. Gel-Based and Gel-Free Phosphoproteomics to Measure and Characterize Mitochondrial Phosphoproteins. Curr Protoc 2022; 2:e390. [PMID: 35275445 DOI: 10.1002/cpz1.390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitochondrion is a key intracellular organelle regulating metabolic processes, oxidative stress, energy production, calcium homeostasis, and cell survival. Protein phosphorylation plays an important role in regulating mitochondrial functions and cellular signaling pathways. Dysregulation of protein phosphorylation status can cause protein malfunction and abnormal signal transduction, leading to organ dysfunction and disease. Investigating the mitochondrial phosphoproteins is therefore crucial to better understand the molecular and pathogenic mechanisms of many metabolic disorders. Conventional analyses of phosphoproteins, for instance, via western blotting, can be done only for proteins for which specific antibodies to their phosphorylated forms are available. Moreover, such an approach is not suitable for large-scale study of phosphoproteins. Currently, proteomics represents an important tool for large-scale analysis of proteins and their post-translational modifications, including phosphorylation. Here, we provide step-by-step protocols for the proteomics analysis of mitochondrial phosphoproteins (the phosphoproteome), using renal tubular cells as an example. These protocols include methods to effectively isolate mitochondria and to validate the efficacy of mitochondrial enrichment as well as its purity. We also provide detailed protocols for performing both gel-based and gel-free phosphoproteome analyses. The gel-based analysis involves two-dimensional gel electrophoresis and phosphoprotein-specific staining, followed by protein identification via mass spectrometry, whereas the gel-free approach is based on in-solution mass spectrometric identification of specific phosphorylation sites and residues. In all, these approaches allow large-scale analyses of mitochondrial phosphoproteins that can be applied to other cells and tissues of interest. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Mitochondrial isolation/purification from renal tubular cells Support Protocol: Validation of enrichment efficacy and purity of mitochondrial isolation Basic Protocol 2: Gel-based phosphoproteome analysis Basic Protocol 3: Gel-free phosphoproteome analysis.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Evaluating the Performance of 193 nm Ultraviolet Photodissociation for Tandem Mass Tag Labeled Peptides. ANALYTICA 2021. [DOI: 10.3390/analytica2040014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the successful application of tandem mass tags (TMT) for peptide quantitation, missing reporter ions in higher energy collisional dissociation (HCD) spectra remains a challenge for consistent quantitation, especially for peptides with labile post-translational modifications. Ultraviolet photodissociation (UVPD) is an alternative ion activation method shown to provide superior coverage for sequencing of peptides and intact proteins. Here, we optimized and evaluated 193 nm UVPD for the characterization of TMT-labeled model peptides, HeLa proteome, and N-glycopeptides from model proteins. UVPD yielded the same TMT reporter ions as HCD, at m/z 126–131. Additionally, UVPD produced a wide range of fragments that yielded more complete characterization of glycopeptides and less frequent missing TMT reporter ion channels, whereas HCD yielded a strong tradeoff between characterization and quantitation of TMT-labeled glycopeptides. However, the lower fragmentation efficiency of UVPD yielded fewer peptide identifications than HCD. Overall, 193 nm UVPD is a valuable tool that provides an alternative to HCD for the quantitation of large and highly modified peptides with labile PTMs. Continued development of instrumentation specific to UVPD will yield greater fragmentation efficiency and fulfil the potential of UVPD to be an all-in-one spectrum ion activation method for broad use in the field of proteomics.
Collapse
|
8
|
Ti 4+-immobilized hierarchically porous zirconium-organic frameworks for highly efficient enrichment of phosphopeptides. Mikrochim Acta 2021; 188:150. [PMID: 33813605 DOI: 10.1007/s00604-021-04760-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
Ti4+-immobilized hierarchically porous zirconium-organic frameworks (denoted as THZr-MOFs) was prepared for phosphopeptide enrichment. The THZr-MOFs showed high specific surface area of 185.28 m2 g-1, wide pore-size distribution of 3 ~ 20 nm, good chemical stability and excellent hydrophilicity. Introduction of hierarchical pores in MOFs not only facilitated the accessibility of phosphopeptides to the internal metal affinity sites and reduce their mass transfer resistance, but also increased the exposure sites of metal affinity interaction and binding energies of Zr and Ti elements. Benefited from these advantages, the THZr-MOFs showed high adsorption capacity (79.8 μg mg-1) towards standard phosphopeptide. A low detection limit (0.05 fmol μL-1) and high enrichment selectivity (β-casein/BSA with a molar ratio of 1:5000) were also obtained by MALDI-TOF MS. The THZr-MOFs were applied to analyze complex samples including nonfat milk, human serum, and HeLa cell lysate. In total, 1432 phosphopeptides derived from 762 phosphoproteins were identified from human HeLa cell lysate. Schematic representation of the application of Ti4+-immobilized hierarchically porous zirconium-organic frameworks (denoted as THZr-MOFs) in high-efficiency and selective enrichment of low-abundance phosphopeptides from the tryptic digest of human HeLa cell lysate.
Collapse
|
9
|
Abstract
Phosphorylation events modify bacterial and archaeal proteomes, imparting cells with rapid and reversible responses to specific environmental stimuli or niches. Phosphorylated proteins are generally modified at one or more serine, threonine, or tyrosine residues. Within the last ten years, increasing numbers of global phosphoproteomic surveys of prokaryote species have revealed an abundance of tyrosine-phosphorylated proteins. In some cases, novel phosphorylation-dependent regulatory paradigms for cell division, gene transcription, and protein translation have been identified, suggesting that a wide scope of prokaryotic physiology remains to be characterized. Recent observations of bacterial proteins with putative phosphotyrosine binding pockets or Src homology 2 (SH2)-like domains suggest the presence of phosphotyrosine-dependent protein interaction networks. Here in this minireview, we focus on protein tyrosine phosphorylation, a posttranslational modification once thought to be rare in prokaryotes but which has emerged as an important regulatory facet in microbial biology.
Collapse
|
10
|
Gao C, Bai J, He Y, Zheng Q, Ma W, Lei Z, Zhang M, Wu J, Fu F, Lin Z. Postsynthetic Functionalization of Zr 4+-Immobilized Core-Shell Structured Magnetic Covalent Organic Frameworks for Selective Enrichment of Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13735-13741. [PMID: 30892013 DOI: 10.1021/acsami.9b03330] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chemical modification of covalent organic frameworks (COFs) is indispensable for integrating functionalities of greater complexity and accessing advanced COF materials suitable for more potential applications. Reported here is a novel strategy for fabricating controllable core-shell structured Zr4+-immobilized magnetic COFs (MCNC@COF@Zr4+) composed of a high-magnetic-response magnetic colloid nanocrystal cluster (MCNC) core, Zr4+ ion-functionalized two-dimensional COFs as the shell by sequential postsynthetic functionalization and, for the first time, the application of the MCNC@COF@Zr4+ composites for efficient and selective enrichment of phosphopeptides. The as-prepared MCNC@COF@Zr4+ composites possess regular porosity with large surface areas, high Zr4+ loading amount, strong magnetic responsiveness, and good thermal/chemical stability, which can serve as an ideal adsorbent for selective enrichment of phosphopeptides and simultaneous size exclusion of biomacromolecules, such as proteins. The high detection sensitivity (10 fmol) together with the excellent recovery of phosphopeptides is also obtained. These outstanding features suggest that the MCNC@COF@Zr4+ composites are of great benefit for pretreatment prior to mass spectrometry analysis of phosphopeptides. In addition, the performance of the developed approach in selective enrichment of phosphopeptides from the tryptic digests of defatted milk and directly specific capture of endogenous phosphopeptides from human serum gives powerful proof for its high selectivity and effectiveness in identifying the low-abundance phosphopeptides from complicated biological samples. This study not only provides a strategy for versatile functionalization of magnetic COFs but also opens a new avenue in their use in phosphoproteome analysis.
Collapse
Affiliation(s)
- Chaohong Gao
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jing Bai
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Yanting He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Qiong Zheng
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Wende Ma
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Zhixian Lei
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Mingyue Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jie Wu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Fengfu Fu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
11
|
Häupl B, Urlaub H, Oellerich T. Phosphoproteomic Analysis of Signaling Pathways in Lymphomas. Methods Mol Biol 2019; 1956:371-381. [PMID: 30779046 DOI: 10.1007/978-1-4939-9151-8_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell fate decisions are controlled by complex signal transduction processes that transmit information via posttranslational protein modifications such as phosphorylation. In lymphoma, as in other cancer types, these signaling networks are often dysregulated and thus contribute to malignant transformation and tumor maintenance. For example, B-cell antigen receptor signals are rewired in certain lymphoma types, such as diffuse large B-cell lymphomas, to promote cell growth and survival of the malignant cell clones. Hence, global elucidation of such intricate signaling networks is important for an improved understanding of the biology of these tumors and the identification of target proteins for therapeutic purposes.We describe here a mass spectrometry-based phosphoproteomic approach for characterization of intracellular signaling events and their dynamics. This integrated phosphoproteomic technology combines phosphopeptide enrichment and fractionation with liquid-chromatography-coupled mass spectrometry for the site-specific mapping and quantification of thousands of phosphorylation events in a given cell type. Such global signaling analyses provide valuable insights into oncogenic signaling networks and can inform drug development efforts.
Collapse
Affiliation(s)
- Björn Häupl
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt, Germany.,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt, Germany. .,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
12
|
Hoedt E, Zhang G, Neubert TA. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:531-539. [PMID: 31347069 DOI: 10.1007/978-3-030-15950-4_31] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful approach for high-throughput quantitative proteomics. SILAC allows highly accurate protein quantitation through metabolic encoding of whole cell proteomes using stable isotope labeled amino acids. Since its introduction in 2002, SILAC has become increasingly popular. In this chapter we review the methodology and application of SILAC, with an emphasis on three research areas: dynamics of posttranslational modifications, protein-protein interactions, and protein turnover.
Collapse
Affiliation(s)
- Esthelle Hoedt
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Molecular subtyping of cancer and nomination of kinase candidates for inhibition with phosphoproteomics: Reanalysis of CPTAC ovarian cancer. EBioMedicine 2018; 40:305-317. [PMID: 30594550 PMCID: PMC6412074 DOI: 10.1016/j.ebiom.2018.12.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/27/2022] Open
Abstract
Background Molecular subtyping of cancer aimed to predict patient overall survival (OS) and nominate drug targets for patient treatments is central to precision oncology. Owing to the rapid development of phosphoproteomics, we can now measure thousands of phosphoproteins in human cancer tissues. However, limited studies report how to analyse the complex phosphoproteomic data for cancer subtyping and to nominate druggable kinase candidates. Findings In this work, we reanalysed the phosphoproteomic data of high-grade serous ovarian cancer (HGSOC) from the Clinical Proteomic Tumour Analysis Consortium (CPTAC). Our analysis classified HGSOC into 5 major subtypes that were associated with different OS and appeared to be more accurate than that achieved with protein profiling. We provided a workflow to identify 29 kinases whose increased activities in tumours are associated with poor survival. The altered kinase signalling landscape of HGSOC included the PI3K/AKT/mTOR, cell cycle and MAP kinase signalling pathways. We also developed a “patient-specific” hierarchy of clinically actionable kinases and selected kinase inhibitors by considering kinase activation and kinase inhibitor selectivity. Interpretation Our study offered a global phosphoproteomics data analysis workflow to aid in cancer molecular subtyping, determining phosphorylation-based cancer hallmarks and facilitating nomination of kinase inhibition in cancer.
Collapse
|
14
|
Vu LD, Gevaert K, De Smet I. Protein Language: Post-Translational Modifications Talking to Each Other. TRENDS IN PLANT SCIENCE 2018; 23:1068-1080. [PMID: 30279071 DOI: 10.1016/j.tplants.2018.09.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 05/21/2023]
Abstract
Post-translational modifications (PTMs) are at the heart of many cellular signaling events. Apart from a single regulatory PTM, there are also PTMs that function in orchestrated manners. Such PTM crosstalk usually serves as a fine-tuning mechanism to adjust cellular responses to the slightest changes in the environment. While PTM crosstalk has been studied in depth in various species; in plants, this field is just emerging. In this review, we discuss recent studies on crosstalk between three of the most common protein PTMs in plant cells, being phosphorylation, ubiquitination, and sumoylation, and we highlight the diverse underlying mechanisms as well as signaling outputs of such crosstalk.
Collapse
Affiliation(s)
- Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium; These authors contributed equally. https://twitter.com/KrisGevaert_VIB
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; These authors contributed equally.
| |
Collapse
|
15
|
Commodore JJ, Cassady CJ. Electron transfer dissociation mass spectrometry of acidic phosphorylated peptides cationized with trivalent praseodymium. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1178-1188. [PMID: 30221809 PMCID: PMC6291000 DOI: 10.1002/jms.4291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
The lanthanide ion praseodymium, Pr(III), was employed to study metallated ion formation and electron transfer dissociation (ETD) of 27 biological and model highly acidic phosphopeptides. All phosphopeptides investigated form metallated ions by electrospray ionization (ESI) that can be studied by ETD to yield abundant sequence information. The ions formed are [M + Pr - H]2+ , [M + Pr]3+ , and [M + Pr + H]4+ . All biological phosphopeptides with a chain length of seven or more residues generate [M + Pr]3+ . For biological phosphopeptides, [M + Pr]3+ undergoes more backbone cleavage by ETD than [M + Pr - H]2+ and, in some cases, full sequence coverage occurs. Acidic model phosphorylated hexa-peptides and octa-peptides, composed of alanine residues and one phosphorylated residue, form exclusively [M + Pr - H]2+ by ESI. Limited sequence information is obtained by ETD of [M + Pr - H]2+ with only metallated product ions being generated. For two biological phosphopeptides, [M + Pr + H]4+ is observed and may be due to the presence of at least one residue with a highly basic side chain that facilitates the addition of an extra proton. For the model phosphopeptides, more sequence coverage occurs when the phosphorylated residue is in the middle of the sequence than at either the N- or C-terminus. ETD of the metallated precursor ions formed by ESI generates exclusively metallated and nonmetallated c- and z-ions for the biological phosphopeptides, while metallated c-ions, z-ions, and a few y-ions form for the model phosphopeptides. Most of the product ions contain the phosphorylated residue indicating that the metal ion binds predominantly at the deprotonated phosphate group. The results of this study indicate that ETD is a promising tool for sequencing highly acidic phosphorylated peptides by metal adduction with Pr (III) and, by extension, all nonradioactive lanthanide metal ions.
Collapse
Affiliation(s)
| | - Carolyn J Cassady
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
16
|
Chen Q, Wang N, Zhu M, Lu J, Zhong H, Xue X, Guo S, Li M, Wei X, Tao Y, Yin H. TiO 2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: A proteomic and metabolomic insight. Redox Biol 2018; 15:266-276. [PMID: 29294438 PMCID: PMC5752088 DOI: 10.1016/j.redox.2017.12.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in food and cosmetics but the health impact of human exposure remains poorly defined. Emerging evidence suggests that TiO2 NPs may elicit immune responses by acting on macrophages. Our proteomic study showed that treatment of macrophages with TiO2 NPs led to significant re-organization of cell membrane and activation of inflammation. These observations were further corroborated with transmission electron microscopy (TEM) experiments, which demonstrated that TiO2 NPs were trapped inside of multi-vesicular bodies (MVB) through endocytotic pathways. TiO2 NP caused significant mitochondrial dysfunction by increasing levels of mitochondrial reactive oxygen species (ROS), decreasing ATP generation, and decreasing metabolic flux in tricarboxylic acid (TCA) cycle from 13C-labelled glutamine using GC-MS-based metabolic flux analysis. Further lipidomic analysis showed that TiO2 NPs significantly decreased levels of cardiolipins, an important class of mitochondrial phospholipids for maintaining proper function of electron transport chains. Furthermore, TiO2 NP exposure activates inflammatory responses by increasing mRNA levels of TNF-α, iNOS, and COX-2. Consistently, our targeted metabolomic analysis showed significantly increased production of COX-2 metabolites including PGD2, PGE2, and 15d-PGJ2. In addition, TiO2 NP also caused significant attenuation of phagocytotic function of macrophages. In summary, our studies utilizing multiple powerful omic techniques suggest that human exposure of TiO2 NPs may have profound impact on macrophage function through activating inflammatory responses and causing mitochondrial dysfunction without physical presence in mitochondria.
Collapse
Affiliation(s)
- Qun Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Ningning Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Mingjiang Zhu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jianhong Lu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Huiqin Zhong
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Xinli Xue
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Shuoyuan Guo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Min Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Xinben Wei
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Yongzhen Tao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
17
|
Capriotti AL, Cavaliere C, Ferraris F, Gianotti V, Laus M, Piovesana S, Sparnacci K, Zenezini Chiozzi R, Laganà A. New Ti-IMAC magnetic polymeric nanoparticles for phosphopeptide enrichment from complex real samples. Talanta 2018; 178:274-281. [DOI: 10.1016/j.talanta.2017.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 12/22/2022]
|
18
|
Che D, Cheng J, Ji Z, Zhang S, Li G, Sun Z, You J. Recent advances and applications of polydopamine-derived adsorbents for sample pretreatment. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Ren L, Li C, Shao W, Lin W, He F, Jiang Y. TiO2 with Tandem Fractionation (TAFT): An Approach for Rapid, Deep, Reproducible, and High-Throughput Phosphoproteome Analysis. J Proteome Res 2017; 17:710-721. [DOI: 10.1021/acs.jproteome.7b00520] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Liangliang Ren
- State
Key Laboratory of Proteomics, National Center for Protein Sciences
(Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Beijing Proteome Research Center, Beijing 102206, China
| | - Chaoying Li
- State
Key Laboratory of Proteomics, National Center for Protein Sciences
(Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Beijing Proteome Research Center, Beijing 102206, China
| | - Wenli Shao
- State
Key Laboratory of Proteomics, National Center for Protein Sciences
(Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Beijing Proteome Research Center, Beijing 102206, China
- Graduate
School, Anhui Medical University, Hefei 230032, China
| | - Weiran Lin
- State
Key Laboratory of Proteomics, National Center for Protein Sciences
(Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Beijing Proteome Research Center, Beijing 102206, China
| | - Fuchu He
- State
Key Laboratory of Proteomics, National Center for Protein Sciences
(Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Beijing Proteome Research Center, Beijing 102206, China
| | - Ying Jiang
- State
Key Laboratory of Proteomics, National Center for Protein Sciences
(Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Beijing Proteome Research Center, Beijing 102206, China
| |
Collapse
|
20
|
Abstract
Cellular signaling, predominantly mediated by phosphorylation through protein kinases, is found to be deregulated in most cancers. Accordingly, protein kinases have been subject to intense investigations in cancer research, to understand their role in oncogenesis and to discover new therapeutic targets. Despite great advances, an understanding of kinase dysfunction in cancer is far from complete.A powerful tool to investigate phosphorylation is mass-spectrometry (MS)-based phosphoproteomics, which enables the identification of thousands of phosphorylated peptides in a single experiment. Since every phosphorylation event results from the activity of a protein kinase, high-coverage phosphoproteomics data should indirectly contain comprehensive information about the activity of protein kinases.In this chapter, we discuss the use of computational methods to predict kinase activity scores from MS-based phosphoproteomics data. We start with a short explanation of the fundamental features of the phosphoproteomics data acquisition process from the perspective of the computational analysis. Next, we briefly review the existing databases with experimentally verified kinase-substrate relationships and present a set of bioinformatic tools to discover novel kinase targets. We then introduce different methods to infer kinase activities from phosphoproteomics data and these kinase-substrate relationships. We illustrate their application with a detailed protocol of one of the methods, KSEA (Kinase Substrate Enrichment Analysis). This method is implemented in Python within the framework of the open-source Kinase Activity Toolbox (kinact), which is freely available at http://github.com/saezlab/kinact/ .
Collapse
Affiliation(s)
- Jakob Wirbel
- Joint Research Center for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, MTZ Pauwelsstrasse 19, D-52074, Aachen, Germany
- Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, 69120, Heidelberg, Germany
| | - Pedro Cutillas
- Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Julio Saez-Rodriguez
- Joint Research Center for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, MTZ Pauwelsstrasse 19, D-52074, Aachen, Germany.
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK.
| |
Collapse
|
21
|
Insights regarding fungal phosphoproteomic analysis. Fungal Genet Biol 2017; 104:38-44. [DOI: 10.1016/j.fgb.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
|
22
|
Chen Y, Nielsen J. Flux control through protein phosphorylation in yeast. FEMS Yeast Res 2017; 16:fow096. [PMID: 27797916 DOI: 10.1093/femsyr/fow096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 01/26/2023] Open
Abstract
Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast Saccharomyces cerevisiae, a widely used cell factory and model organism, is reported to show frequent phosphorylation events in metabolism. Studying protein phosphorylation in S. cerevisiae allows for gaining new insight into the function of regulatory networks, which may enable improved metabolic engineering as well as identify mechanisms underlying human metabolic diseases. Here we collect functional phosphorylation events of 41 enzymes involved in yeast metabolism and demonstrate functional mechanisms and the application of this information in metabolic engineering. From a systems biology perspective, we describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies and computational approaches are imperative to expand the current knowledge of protein phosphorylation in S. cerevisiae.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark
| |
Collapse
|
23
|
Wang Q, He XM, Chen X, Zhu GT, Wang RQ, Feng YQ. Pyridoxal 5'-phosphate mediated preparation of immobilized metal affinity material for highly selective and sensitive enrichment of phosphopeptides. J Chromatogr A 2017; 1499:30-37. [PMID: 28390667 DOI: 10.1016/j.chroma.2017.03.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 01/02/2023]
Abstract
Phosphorylation is a crucial post-translational modification, which plays pivotal roles in various biological processes. Analysis of phosphopeptides by mass spectrometry (MS) is intractable on account of their low stoichiometry and the ion suppression from non-phosphopeptides. Thus, enrichment of phosphopeptides before MS analysis is indispensable. In this work, we employed pyridoxal 5'-phosphate (PLP), as an immobilized metal affinity chromatography (IMAC) ligand for the enrichment of phosphopeptides. PLP was grafted onto several substrates such as silica (SiO2), oxidized carbon nanotube (OCNT) and silica coated magnetic nanoparticles (Fe3O4@SiO2). Then the metal ions Fe3+, Ga3+ and Ti4+ were incorporated for the selective enrichment of phosphopeptides. It is indicated that Fe3O4@SiO2-PLP-Ti4+ has a superior selectivity towards phosphopeptides under as much as 1000-fold interferences of non-phosphopeptides. Further, Fe3O4@SiO2-PLP-Ti4+ exhibited high efficiency in selective enrichments of phosphopeptides from complex biological samples, including human serum and tryptic digested non-fat milk. Finally, Fe3O4@SiO2-PLP-Ti4+ was successfully employed in the sample pretreatment for profiling phosphopeptides in a tryptic digest of rat brain proteins. Our experimental results evidenced a great potential of this new chelator-based material in phosphoproteomics study.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Mei He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xi Chen
- Wuhan Institute of Biotechnology, Wuhan 430072, PR China
| | - Gang-Tian Zhu
- Key Laboratory of Tectonics and Petroleum Resources (Ministry of Education), China University of Geosciences, Wuhan 430075, PR China
| | - Ren-Qi Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
24
|
Abstract
Protein phosphorylation is a key signaling mechanism during the plant biotic and abiotic stress response. Signaling cascades communicate between the cell surface, where the stress is perceived, and the nucleus, where a response can be enacted. Many of these signals involve the specific, transient phosphorylation of proteins by kinases, a signal which is usually amplified through cascades. The advent of high-throughput phosphoproteomics, pioneered mainly in yeast and mammalian cells, has made it possible to discover novel phosphorylation events rapidly and efficiently in a data-dependent manner and this has greatly enlarged our understanding of the plant's response to stress. This chapter describes a simple gel-free protocol for high-throughput phosphoproteomics, which is amenable to most labs engaged in plant stress research.
Collapse
Affiliation(s)
- Christof Rampitsch
- Agriculture and Agrifood Canada, Morden Research and Development Centre, Morden, MB, Canada, R6M 1Y5.
| |
Collapse
|
25
|
Everley RA, Huttlin EL, Erickson AR, Beausoleil SA, Gygi SP. Neutral Loss Is a Very Common Occurrence in Phosphotyrosine-Containing Peptides Labeled with Isobaric Tags. J Proteome Res 2016; 16:1069-1076. [PMID: 27978624 DOI: 10.1021/acs.jproteome.6b00487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While developing a multiplexed phosphotyrosine peptide quantification assay, an unexpected observation was made: significant neutral loss from phosphotyrosine (pY) containing peptides. Using a 2000-member peptide library, we sought to systematically investigate this observation by comparing unlabeled peptides with the two highest-plex isobaric tags (iTRAQ8 and TMT10) across CID, HCD, and ETD fragmentation using high resolution high mass accuracy Orbitrap instrumentation. We found pY peptide neutral loss behavior was consistent with reduced proton mobility, and does not occur during ETD. The site of protonation at the peptide N-terminus changes from a primary to a tertiary amine as a result of TMT labeling which would increase the gas phase basicity and reduce proton mobility at this site. This change in fragmentation behavior has implications during instrument method development and interpretation of MS/MS spectra, and therefore ensuing follow-up studies. We show how sites not localized to tyrosine by search and site localization algorithms can be confidently reassigned to tyrosine using neutral loss and phosphotyrosine immonium ions. We believe these findings will be of general interest to those studying pY signal transduction using isobaric tags.
Collapse
Affiliation(s)
- Robert A Everley
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States.,Laboratory of Systems Pharmacology, Harvard Medical School , Boston, Massachusetts 02115 United States
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Alison R Erickson
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Sean A Beausoleil
- Cell Signaling Technology, Inc. , Danvers, Massachusetts 01923, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
26
|
Chan CYX, Gritsenko MA, Smith RD, Qian WJ. The current state of the art of quantitative phosphoproteomics and its applications to diabetes research. Expert Rev Proteomics 2016; 13:421-33. [PMID: 26960075 DOI: 10.1586/14789450.2016.1164604] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation is a fundamental regulatory mechanism in many cellular processes and aberrant perturbation of phosphorylation has been implicated in various human diseases. Kinases and their cognate inhibitors have been considered as hotspots for drug development. Therefore, the emerging tools, which enable a system-wide quantitative profiling of phosphoproteome, would offer a powerful impetus in unveiling novel signaling pathways, drug targets and/or biomarkers for diseases of interest. This review highlights recent advances in phosphoproteomics, the current state of the art of the technologies and the challenges and future perspectives of this research area. Finally, some exemplary applications of phosphoproteomics in diabetes research are underscored.
Collapse
Affiliation(s)
- Chi Yuet X'avia Chan
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Marina A Gritsenko
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Richard D Smith
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Wei-Jun Qian
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|
27
|
Černigoj U, Gašperšič J, Fichtenbaum A, Lendero Krajnc N, Vidič J, Mitulović G, Štrancar A. Titanium dioxide nanoparticle coating of polymethacrylate-based chromatographic monoliths for phosphopetides enrichment. Anal Chim Acta 2016; 942:146-154. [DOI: 10.1016/j.aca.2016.08.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 01/25/2023]
|
28
|
Highly efficient enrichment of phosphopeptides by a magnetic lanthanide metal-organic framework. Talanta 2016; 159:1-6. [DOI: 10.1016/j.talanta.2016.05.075] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 11/18/2022]
|
29
|
Maes E, Tirez K, Baggerman G, Valkenborg D, Schoofs L, Encinar JR, Mertens I. The use of elemental mass spectrometry in phosphoproteomic applications. MASS SPECTROMETRY REVIEWS 2016; 35:350-360. [PMID: 25139451 DOI: 10.1002/mas.21440] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
Reversible phosphorylation is one of the most important post-translational modifications in mammalian cells. Because this molecular switch is an important mechanism that diversifies and regulates proteins in cellular processes, knowledge about the extent and quantity of phosphorylation is very important to understand the complex cellular interplay. Although phosphoproteomics strategies are applied worldwide, they mainly include only molecular mass spectrometry (like MALDI or ESI)-based experiments. Although identification and relative quantification of phosphopeptides is straightforward with these techniques, absolute quantification is more complex and usually requires for specific isotopically phosphopeptide standards. However, the use of elemental mass spectrometry, and in particular inductively coupled plasma mass spectrometry (ICP-MS), in phosphoproteomics-based experiments, allow one to absolutely quantify phosphopeptides. Here, these phosphoproteomic applications with ICP-MS as elemental detector are reviewed. Pioneering work and recent developments in the field are both described. Additionally, the advantage of the parallel use of molecular and elemental mass spectrometry is stressed.
Collapse
Affiliation(s)
- Evelyne Maes
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- KU Leuven, Research Group of Functional Genomics and Proteomics, Leuven, Belgium
| | - Kristof Tirez
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Geert Baggerman
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Dirk Valkenborg
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- CFP-CeProMa, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Liliane Schoofs
- KU Leuven, Research Group of Functional Genomics and Proteomics, Leuven, Belgium
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Inge Mertens
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
30
|
Magnetic graphitic carbon nitride anion exchanger for specific enrichment of phosphopeptides. J Chromatogr A 2016; 1437:137-144. [DOI: 10.1016/j.chroma.2016.01.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/26/2016] [Accepted: 01/30/2016] [Indexed: 11/19/2022]
|
31
|
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Kwon OK, Kim SJ, Lee YM, Lee YH, Bae YS, Kim JY, Peng X, Cheng Z, Zhao Y, Lee S. Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio). Proteomics 2015; 16:136-49. [DOI: 10.1002/pmic.201500017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/04/2015] [Accepted: 10/01/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Oh Kwang Kwon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Sun Ju Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - You-Mie Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Young-Hoon Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Young-Seuk Bae
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Jin Young Kim
- Mass Spectrometry Research Center; Korea Basic Science Institute; Ochang Chungbuk Republic of Korea
| | - Xiaojun Peng
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd; Hangzhou P. R. China
| | - Zhongyi Cheng
- Advanced Institute of Translational Medicine; Tongji University; Shanghai P. R. China
| | - Yingming Zhao
- Ben May Department for Cancer Research; University of Chicago; Chicago IL USA
| | - Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| |
Collapse
|
33
|
LIN L, LUO SS, WANG LJ, YANG J, SHEN HN, TIAN RJ. Progress and Application of LC-MS Technologies for Characterizing Protein Post Translational Modifications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60866-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Yue X, Schunter A, Hummon AB. Comparing multistep immobilized metal affinity chromatography and multistep TiO2 methods for phosphopeptide enrichment. Anal Chem 2015; 87:8837-44. [PMID: 26237447 PMCID: PMC4766865 DOI: 10.1021/acs.analchem.5b01833] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphopeptide enrichment from complicated peptide mixtures is an essential step for mass spectrometry-based phosphoproteomic studies to reduce sample complexity and ionization suppression effects. Typical methods for enriching phosphopeptides include immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO2) beads, which have selective affinity and can interact with phosphopeptides. In this study, the IMAC enrichment method was compared with the TiO2 enrichment method, using a multistep enrichment strategy from whole cell lysate, to evaluate their abilities to enrich for different types of phosphopeptides. The peptide-to-beads ratios were optimized for both IMAC and TiO2 beads. Both IMAC and TiO2 enrichments were performed for three rounds to enable the maximum extraction of phosphopeptides from the whole cell lysates. The phosphopeptides that are unique to IMAC enrichment, unique to TiO2 enrichment, and identified with both IMAC and TiO2 enrichment were analyzed for their characteristics. Both IMAC and TiO2 enriched similar amounts of phosphopeptides with comparable enrichment efficiency. However, phosphopeptides that are unique to IMAC enrichment showed a higher percentage of multiphosphopeptides as well as a higher percentage of longer, basic, and hydrophilic phosphopeptides. Also, the IMAC and TiO2 procedures clearly enriched phosphopeptides with different motifs. Finally, further enriching with two rounds of TiO2 from the supernatant after IMAC enrichment or further enriching with two rounds of IMAC from the supernatant TiO2 enrichment does not fully recover the phosphopeptides that are not identified with the corresponding multistep enrichment.
Collapse
Affiliation(s)
- Xiaoshan Yue
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Alissa Schunter
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
35
|
Maes E, Mertens I, Valkenborg D, Pauwels P, Rolfo C, Baggerman G. Proteomics in cancer research: Are we ready for clinical practice? Crit Rev Oncol Hematol 2015; 96:437-48. [PMID: 26277237 DOI: 10.1016/j.critrevonc.2015.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/20/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022] Open
Abstract
Although genomics has delivered major advances in cancer prognostics, treatment and diagnostics, it still only provides a static image of the situation. To study more dynamic molecular entities, proteomics has been introduced into the cancer research field more than a decade ago. Currently, however, the impact of clinical proteomics on patient management and clinical decision-making is low and the implementations of scientific results in the clinic appear to be scarce. The search for cancer-related biomarkers with proteomics however, has major potential to improve risk assessment, early detection, diagnosis, prognosis, treatment selection and monitoring. In this review, we provide an overview of the transition of oncoproteomics towards translational oncology. We describe which lessons are learned from currently approved protein biomarkers and previous proteomic studies, what the pitfalls and challenges are in clinical proteomics applications, and how proteomic research can be successfully translated into medical practice.
Collapse
Affiliation(s)
- Evelyne Maes
- Flemish Institute for Technological Research (VITO), Mol, Belgium; CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Inge Mertens
- Flemish Institute for Technological Research (VITO), Mol, Belgium; CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Dirk Valkenborg
- Flemish Institute for Technological Research (VITO), Mol, Belgium; CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Patrick Pauwels
- Molecular Pathology Unit, Pathology Department, Antwerp University Hospital, Edegem, Belgium
| | - Christian Rolfo
- Phase I - Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital & Center for Oncological Research (CORE), Antwerp University, Edegem, Belgium.
| | - Geert Baggerman
- Flemish Institute for Technological Research (VITO), Mol, Belgium; CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
36
|
Zhang M, Li H, He Y, Sun H, Xia L, Wang L, Sun B, Ma L, Zhang G, Li J, Li Y, Xie L. Construction and Deciphering of Human Phosphorylation-Mediated Signaling Transduction Networks. J Proteome Res 2015; 14:2745-57. [PMID: 26006110 DOI: 10.1021/acs.jproteome.5b00249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein phosphorylation is the most abundant reversible covalent modification. Human protein kinases participate in almost all biological pathways, and approximately half of the kinases are associated with disease. PhoSigNet was designed to store and display human phosphorylation-mediated signal transduction networks, with additional information related to cancer. It contains 11 976 experimentally validated directed edges and 216 871 phosphorylation sites. Moreover, 3491 differentially expressed proteins in human cancer from dbDEPC, 18 907 human cancer variation sites from CanProVar, and 388 hyperphosphorylation sites from PhosphoSitePlus were collected as annotation information. Compared with other phosphorylation-related databases, PhoSigNet not only takes the kinase-substrate regulatory relationship pairs into account, but also extends regulatory relationships up- and downstream (e.g., from ligand to receptor, from G protein to kinase, and from transcription factor to targets). Furthermore, PhoSigNet allows the user to investigate the impact of phosphorylation modifications on cancer. By using one set of in-house time series phosphoproteomics data, the reconstruction of a conditional and dynamic phosphorylation-mediated signaling network was exemplified. We expect PhoSigNet to be a useful database and analysis platform benefiting both proteomics and cancer studies.
Collapse
Affiliation(s)
- Menghuan Zhang
- †Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,‡Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Hong Li
- ‡Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China.,§Key Laboratory of Systems Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying He
- ‡Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China.,§Key Laboratory of Systems Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Han Sun
- ‡Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China.,§Key Laboratory of Systems Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Xia
- ⊥Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Lishun Wang
- ⊥Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Bo Sun
- †Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,‡Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Liangxiao Ma
- ‡Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Guoqing Zhang
- ‡Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Jing Li
- †Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixue Li
- †Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,‡Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China.,§Key Laboratory of Systems Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu Xie
- ‡Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| |
Collapse
|
37
|
Wei H, Aristilde L. Structural characterization of multiple pyoverdines secreted by two Pseudomonas strains using liquid chromatography-high resolution tandem mass spectrometry with varying dissociation energies. Anal Bioanal Chem 2015; 407:4629-38. [DOI: 10.1007/s00216-015-8659-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/01/2023]
|
38
|
Abstract
Antibody-free approaches for quantitative LC–MS/MS-based protein bioanalysis are reviewed and critically evaluated, and compared with the more widely used immunoaffinity-based approaches. Antibody-free workflows will be divided into four groups and discussed in the following order: direct analysis of signature peptides after proteolytic digestion; enrichment of target proteins and signature peptides by fractionated protein precipitation; enrichment of target proteins and signature peptides by reversed-phase and ion-exchange solid-phase extraction; and enrichment of target proteins and signature peptides by (antibody-free) affinity-solid-phase extraction.
Collapse
|
39
|
Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications. J Mol Cell Cardiol 2015; 82:36-47. [PMID: 25748040 DOI: 10.1016/j.yjmcc.2015.02.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/28/2015] [Accepted: 02/17/2015] [Indexed: 02/07/2023]
Abstract
The cardiac voltage-gated Na(+) channel, Na(V)1.5, is responsible for the upstroke of the action potential in cardiomyocytes and for efficient propagation of the electrical impulse in the myocardium. Even subtle alterations of Na(V)1.5 function, as caused by mutations in its gene SCN5A, may lead to many different arrhythmic phenotypes in carrier patients. In addition, acquired malfunctions of Na(V)1.5 that are secondary to cardiac disorders such as heart failure and cardiomyopathies, may also play significant roles in arrhythmogenesis. While it is clear that the regulation of Na(V)1.5 protein expression and function tightly depends on genetic mechanisms, recent studies have demonstrated that Na(V)1.5 is the target of various post-translational modifications that are pivotal not only in physiological conditions, but also in disease. In this review, we examine the recent literature demonstrating glycosylation, phosphorylation by Protein Kinases A and C, Ca(2+)/Calmodulin-dependent protein Kinase II, Phosphatidylinositol 3-Kinase, Serum- and Glucocorticoid-inducible Kinases, Fyn and Adenosine Monophosphate-activated Protein Kinase, methylation, acetylation, redox modifications, and ubiquitylation of Na(V)1.5. Modern and sensitive mass spectrometry approaches, applied directly to channel proteins that were purified from native cardiac tissues, have enabled the determination of the precise location of post-translational modification sites, thus providing essential information for understanding the mechanistic details of these regulations. The current challenge is first, to understand the roles of these modifications on the expression and the function of Na(V)1.5, and second, to further identify other chemical modifications. It is postulated that the diversity of phenotypes observed with Na(V)1.5-dependent disorders may partially arise from the complex post-translational modifications of channel protein components.
Collapse
|
40
|
Wang Y, Cheng H, Pan Z, Ren J, Liu Z, Xue Y. Reconfiguring phosphorylation signaling by genetic polymorphisms affects cancer susceptibility. J Mol Cell Biol 2015; 7:187-202. [DOI: 10.1093/jmcb/mjv013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022] Open
|
41
|
Fischer JDSDG, Dos Santos MDM, Marchini FK, Barbosa VC, Carvalho PC, Zanchin NIT. A scoring model for phosphopeptide site localization and its impact on the question of whether to use MSA. J Proteomics 2015; 129:42-50. [PMID: 25623781 DOI: 10.1016/j.jprot.2015.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/03/2015] [Accepted: 01/16/2015] [Indexed: 01/04/2023]
Abstract
The production of structurally significant product ions during the dissociation of phosphopeptides is a key to the successful determination of phosphorylation sites. These diagnostic ions can be generated using the widely adopted MS/MS approach, MS3 (Data Dependent Neutral Loss - DDNL), or by multistage activation (MSA). The main purpose of this work is to introduce a false-localization rate (FLR) probabilistic model to enable unbiased phosphoproteomics studies. Briefly, our algorithm infers a probabilistic function from the distribution of the identified phosphopeptides' XCorr Delta scores (XD-Scores) in the current experiment. Our module infers p-values by relying on Gaussian mixture models and a logistic function. We demonstrate the usefulness of our probabilistic model by revisiting the "to MSA, or not to MSA" dilemma. For this, we use human leukemia-derived cells (K562) as a study model and enriched for phosphopeptides using the hydroxyapatite (HAP) chromatography. The aliquots were analyzed with and without MSA on an Orbitrap-XL. Our XD-Scoring analysis revealed that the MS/MS approach provides more identifications because of its faster scan rate, but that for the same given scan rate higher-confidence spectra can be achieved with MSA. Our software is integrated into the PatternLab for proteomics freely available for academic community at http://www.patternlabforproteomics.org. Biological significance Assigning statistical confidence to phosphorylation sites is necessary for proper phosphoproteomic assessment. Here we present a rigorous statistical model, based on Gaussian mixture models and a logistic function, which overcomes shortcomings of previous tools. The algorithm described herein is made readily available to the scientific community by integrating it into the widely adopted PatternLab for proteomics. This article is part of a Special Issue entitled: Computational Proteomics.
Collapse
Affiliation(s)
| | - Marlon D M Dos Santos
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz, Paraná, Brazil
| | - Fabricio K Marchini
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Paraná, Brazil
| | - Valmir C Barbosa
- Systems Engineering and Computer Science Program, COPPE, Federal University of Rio de Janeiro, Brazil
| | - Paulo C Carvalho
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz, Paraná, Brazil.
| | - Nilson I T Zanchin
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz, Paraná, Brazil.
| |
Collapse
|
42
|
Silva-Sanchez C, Li H, Chen S. Recent advances and challenges in plant phosphoproteomics. Proteomics 2015; 15:1127-41. [PMID: 25429768 DOI: 10.1002/pmic.201400410] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/29/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Plants are sessile organisms that need to respond to environmental changes quickly and efficiently. They can accomplish this by triggering specialized signaling pathways often mediated by protein phosphorylation and dephosphorylation. Phosphorylation is a fast response that can switch on or off a myriad of biological pathways and processes. Proteomics and MS are the main tools employed in the study of protein phosphorylation. Advances in the technologies allow simultaneous identification and quantification of thousands of phosphopeptides and proteins that are essential to understanding the sophisticated biological systems and regulations. In this review, we summarize the advances in phosphopeptide enrichment and quantitation, MS for phosphorylation site mapping and new data acquisition methods, databases and informatics, interpretation of biological insights and crosstalk with other PTMs, as well as future directions and challenges in the field of phosphoproteomics.
Collapse
Affiliation(s)
- Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
43
|
Roitinger E, Hofer M, Köcher T, Pichler P, Novatchkova M, Yang J, Schlögelhofer P, Mechtler K. Quantitative phosphoproteomics of the ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-mutated and rad3-related (ATR) dependent DNA damage response in Arabidopsis thaliana. Mol Cell Proteomics 2015; 14:556-71. [PMID: 25561503 PMCID: PMC4349977 DOI: 10.1074/mcp.m114.040352] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The reversible phosphorylation of proteins on serine, threonine, and tyrosine residues is an important biological regulatory mechanism. In the context of genome integrity, signaling cascades driven by phosphorylation are crucial for the coordination and regulation of DNA repair. The two serine/threonine protein kinases ataxia telangiectasia-mutated (ATM) and Ataxia telangiectasia-mutated and Rad3-related (ATR) are key factors in this process, each specific for different kinds of DNA lesions. They are conserved across eukaryotes, mediating the activation of cell-cycle checkpoints, chromatin modifications, and regulation of DNA repair proteins. We designed a novel mass spectrometry-based phosphoproteomics approach to study DNA damage repair in Arabidopsis thaliana. The protocol combines filter aided sample preparation, immobilized metal affinity chromatography, metal oxide affinity chromatography, and strong cation exchange chromatography for phosphopeptide generation, enrichment, and separation. Isobaric labeling employing iTRAQ (isobaric tags for relative and absolute quantitation) was used for profiling the phosphoproteome of atm atr double mutants and wild type plants under either regular growth conditions or challenged by irradiation. A total of 10,831 proteins were identified and 15,445 unique phosphopeptides were quantified, containing 134 up- and 38 down-regulated ATM/ATR dependent phosphopeptides. We identified known and novel ATM/ATR targets such as LIG4 and MRE11 (needed for resistance against ionizing radiation), PIE1 and SDG26 (implicated in chromatin remodeling), PCNA1, WAPL, and PDS5 (implicated in DNA replication), and ASK1 and HTA10 (involved in meiosis).
Collapse
Affiliation(s)
- Elisabeth Roitinger
- From the ‡Institute of Molecular Pathology (IMP), Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| | - Manuel Hofer
- §Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Thomas Köcher
- From the ‡Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Peter Pichler
- From the ‡Institute of Molecular Pathology (IMP), Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| | - Maria Novatchkova
- From the ‡Institute of Molecular Pathology (IMP), Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| | - Jianhua Yang
- ‖School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Peter Schlögelhofer
- §Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria;
| | - Karl Mechtler
- From the ‡Institute of Molecular Pathology (IMP), Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Vienna, Austria;
| |
Collapse
|
44
|
Glibert P, Meert P, Van Steendam K, Van Nieuwerburgh F, De Coninck D, Martens L, Dhaenens M, Deforce D. Phospho-iTRAQ: Assessing Isobaric Labels for the Large-Scale Study Of Phosphopeptide Stoichiometry. J Proteome Res 2015; 14:839-49. [DOI: 10.1021/pr500889v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | | | - Lennart Martens
- Department
of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
45
|
Eriksson AIK, Edwards K, Agmo Hernández V. Cooperative adsorption behavior of phosphopeptides on TiO2 leads to biased enrichment, detection and quantification. Analyst 2015; 140:303-12. [DOI: 10.1039/c4an01580k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel data show that anomalous adsorption behavior and common washing procedures can lead to biased results in TiO2-based phosphoproteomics.
Collapse
Affiliation(s)
| | - K. Edwards
- Department of Chemistry – BMC
- Uppsala University
- Uppsala
- Sweden
| | | |
Collapse
|
46
|
Abstract
The succession of protein activation and deactivation mediated by phosphorylation and dephosphorylation events constitutes a key mechanism of molecular information transfer in cellular systems. To deduce the details of those molecular information cascades and networks has been a central goal pursued by both experimental and computational approaches. Many computational network reconstruction methods employing an array of different statistical learning methods have been developed to infer phosphorylation networks based on different types of molecular data sets such as protein sequence, protein structure, or phosphoproteomics data. In this chapter, different computational network inference methods and resources for biological network reconstruction with a particular focus on phosphorylation networks are surveyed.
Collapse
|
47
|
Yang C, Zhong X, Li L. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics. Electrophoresis 2014; 35:3418-29. [PMID: 24687451 PMCID: PMC4849134 DOI: 10.1002/elps.201400017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/29/2022]
Abstract
Due to the significance of protein phosphorylation in various biological processes and signaling events, new analytical techniques for enhanced phosphoproteomics have been rapidly introduced in the recent years. The combinatorial use of the phospho-specific enrichment techniques and prefractionation methods prior to MS analysis enable comprehensive profiling of the phosphoproteome and facilitate deciphering the critical roles that phosphorylation plays in signaling pathways in various biological systems. This review places special emphasis on the recent five-year (2009-2013) advances for enrichment and separation techniques that have been utilized for phosphopeptides prior to MS analysis.
Collapse
Affiliation(s)
- Chenxi Yang
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Xuefei Zhong
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
48
|
Focus on Phosphoproteomics. Electrophoresis 2014; 35:3417. [DOI: 10.1002/elps.201470213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Rauniyar N, Yates JR. Isobaric labeling-based relative quantification in shotgun proteomics. J Proteome Res 2014; 13:5293-309. [PMID: 25337643 PMCID: PMC4261935 DOI: 10.1021/pr500880b] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Mass spectrometry plays a key role
in relative quantitative comparisons
of proteins in order to understand their functional role in biological
systems upon perturbation. In this review, we review studies that
examine different aspects of isobaric labeling-based relative quantification
for shotgun proteomic analysis. In particular, we focus on different
types of isobaric reagents and their reaction chemistry (e.g., amine-,
carbonyl-, and sulfhydryl-reactive). Various factors, such as ratio
compression, reporter ion dynamic range, and others, cause an underestimation
of changes in relative abundance of proteins across samples, undermining
the ability of the isobaric labeling approach to be truly quantitative.
These factors that affect quantification and the suggested combinations
of experimental design and optimal data acquisition methods to increase
the precision and accuracy of the measurements will be discussed.
Finally, the extended application of isobaric labeling-based approach
in hyperplexing strategy, targeted quantification, and phosphopeptide
analysis are also examined.
Collapse
Affiliation(s)
- Navin Rauniyar
- Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | |
Collapse
|
50
|
Wang ST, Huang W, Deng YF, Gao Q, Yuan BF, Feng YQ. “Old” metal oxide affinity chromatography as “novel” strategy for specific capture of cis-diol-containing compounds. J Chromatogr A 2014; 1361:100-7. [DOI: 10.1016/j.chroma.2014.07.091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022]
|