1
|
Woiwode U, Sievers-Engler A, Lämmerhofer M. Cross-linked polysiloxane-coated stable bond O-9-(2,6-diisopropylphenylcarbamoyl)quinine and quinidine chiral stationary phases as well as application in enantioselective cryo-HPLC. Electrophoresis 2024; 45:989-999. [PMID: 37916661 DOI: 10.1002/elps.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
In this work, brush-type chiral stationary phases (CSPs) with O-9-(2,6-diisopropylphenylcarbamoyl)-modified quinidine (DIPPCQD-brush/-SH) and O-9-(2,6-diisopropylphenylcarbamoyl)-modified quinine (DIPPCQN-brush/-SH) were prepared as benchmarks for comparison with new corresponding polymeric CSPs with more stable bonding chemistry. These polymeric CSPs were prepared by coating a thin poly(3-mercaptopropyl)-methylsiloxane film together with the chiral selector onto vinyl-modified silica. In a second step, immobilization of the quinine/quinidine derivatives as well as cross-linking of the polysiloxane film to the vinyl-silica is achieved by a double thiol-ene click reaction. The polymeric CSPs exhibited similar enantioselectivity as the corresponding brush phases, but showed lower chromatographic efficiencies. Chiral acidic substances were separated into enantiomers (e.g., N-protected amino acids, herbicides like dichlorprop) in accordance with an enantioselective anion-exchange process. Oxidation of residual thiol groups of the polymer DIPPCQN-CSP introduced sulfonic acid co-ligands on the silica surface, which resulted in greatly reduced retention times. Acting as immobilized counterions, they allowed to reduce the concentration of counterions in the mobile phase, which is favorable for liquid chromatography (LC)-electrospray ionization-mass spectrometry application. Ibuprofen showed a single peak under ambient column temperature. However, application of cryogenic cooling of the column enabled to achieve baseline separation at -20°C column temperature. It can be explained by an enthalpically dominated separation, which leads to an increase in separation factors when the temperature is reduced. While it is quite uncommon to work at subzero degree column temperature, this work illustrates the potential to exploit such temperature regime for optimization of LC enantiomer separations.
Collapse
Affiliation(s)
- Ulrich Woiwode
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Adrian Sievers-Engler
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Villacrés C, Mizero B, Spicer V, Viner R, Saba J, Patel B, Snovida S, Jensen P, Huhmer A, Krokhin OV. Toward an Ultimate Solution for Peptide Retention Time Prediction: The Effect of Column Temperature on Separation Selectivity. J Proteome Res 2024; 23:1488-1494. [PMID: 38530092 DOI: 10.1021/acs.jproteome.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
We studied the effect of the column temperature on the selectivity of reversed-phase peptide separation in bottom-up proteomics. The number of peptide identifications from 2 h liquid chromatography with tandem mass spectrometry (LC-MS/MS) acquisitions reaches a plateau at 45-55 °C, driven simultaneously by improved separation efficiency, a gradual decrease in peptide retention, and possible on-column degradation of peptides at elevated temperatures. Performing 2D LC-MS/MS acquisitions at 25, 35, 45, and 55 °C resulted in the identification of ∼100,000 and ∼120,000 unique peptides for nonmodified and tandem mass tags (TMT)-labeled samples, respectively. These peptide collections were used to investigate the temperature-driven retention features. The latter is governed by the specific temperature response of individual residues, peptide hydrophobicity and length, and amphipathic helicity. On average, peptide retention decreased by 0.56 and 0.5% acetonitrile for each 10 °C increase for label-free and TMT-labeled peptides, respectively. This generally linear response of retention shifts allowed the extrapolation of predictive models beyond the studied temperature range. Thus, (trap) column cooling from room temperature to 0 °C will allow the retention of an additional 3% of detectable tryptic peptides. Meanwhile, the application of 90 °C would result in the loss of ∼20% of tryptic peptides that were amenable to MS/MS-based identification.
Collapse
Affiliation(s)
- Carina Villacrés
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg R3E 3P4, Canada
| | - Benilde Mizero
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Victor Spicer
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg R3E 3P4, Canada
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Julian Saba
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | | | - Sergei Snovida
- Thermo Fisher Scientific, Rockford, Illinois 61101, United States
| | - Penny Jensen
- Thermo Fisher Scientific, Rockford, Illinois 61101, United States
| | - Andreas Huhmer
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Oleg V Krokhin
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg R3E 3P4, Canada
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg R3E 3P4, Canada
| |
Collapse
|
3
|
CoolTip: Low-Temperature Solid-Phase Extraction Microcolumn for Capturing Hydrophilic Peptides and Phosphopeptides. Mol Cell Proteomics 2021; 20:100170. [PMID: 34740827 PMCID: PMC8646264 DOI: 10.1016/j.mcpro.2021.100170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
Reversed-phase solid-phase extraction (SPE) techniques are commonly used for desalting samples before LC/MS/MS in shotgun proteomics. However, hydrophilic peptides are often lost during the desalting step under the standard SPE conditions. Here, we describe a simple protocol in which a stop-and-go extraction tip packed with a poly(styrene-divinylbenzene) copolymer disc is used at 4 °C during sample loading without any organic solvent. Using this method, which we designate as the CoolTip protocol, we identified 2.9-fold more tryptic peptides and 6.1-fold more tryptic phosphopeptides from HeLa lysates than the standard SPE protocol for hydrophilic peptides, with a mobile phase of less than 8% acetonitrile in LC/MS/MS. There was no decrease in the recovery of hydrophobic peptides. CoolTip also provided better quantitative reproducibility in LC/MS/MS analysis. We anticipate that this protocol will provide improved performance in many kinds of shotgun proteomics experiments. CoolTip, a StageTip with a poly(styrene-divinylbenzene) disc operated at 4 °C. Identification of more 6.1-fold hydrophilic phosphopeptides from HeLa lysates. No decrease in the recovery of hydrophobic peptides using the CoolTip protocol. Better reproducibility in quantitative LC/MS/MS analysis.
Collapse
|
4
|
Chen LC. High-Temperature Liquid Chromatography and the Hyphenation with Mass Spectrometry Using High-Pressure Electrospray Ionization. ACTA ACUST UNITED AC 2019; 8:S0079. [PMID: 32010544 PMCID: PMC6920344 DOI: 10.5702/massspectrometry.s0079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022]
Abstract
Increasing the operating temperature of the liquid chromatography (LC) column has the same effect as reducing the diameter of the packing particles on minimizing the contribution of C-term in the van Deemter equation, flattening the curve of plate height vs. linear velocity in the high-speed region, thus allowing a fast LC analysis without the loss of plate count. While the use of smaller particles requires a higher pumping pressure, operating the column at higher temperature reduces the pressure due to lower liquid viscosity. At present, the adoption of high-temperature LC lags behind the ultra-high-pressure LC. Nevertheless, the availability of thermally stable columns has steadily improved and new innovations in this area have continued to emerge. This paper gives a brief review and updates on the recent advances in high-temperature liquid chromatography (HTLC). Recent efforts of hyphenating the capillary HTLC with mass spectrometry via a super-atmospheric pressure electrospray ionization is also reported.
Collapse
Affiliation(s)
- Lee Chuin Chen
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| |
Collapse
|
5
|
Pepermans V, De Vos J, Eeltink S, Desmet G. Peak sharpening limits of solvent-assisted post-column refocusing to enhance detection limits in liquid chromatography. J Chromatogr A 2019; 1586:52-61. [DOI: 10.1016/j.chroma.2018.11.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
|
6
|
Rerick MT, Groskreutz SR, Weber SG. Multiplicative On-Column Solute Focusing Using Spatially Dependent Temperature Programming for Capillary HPLC. Anal Chem 2019; 91:2854-2860. [DOI: 10.1021/acs.analchem.8b04826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael T. Rerick
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen R. Groskreutz
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Evaluation of active solvent modulation to enhance two-dimensional liquid chromatography for target analysis in polymeric matrices. J Chromatogr A 2018; 1562:78-86. [DOI: 10.1016/j.chroma.2018.05.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 11/19/2022]
|
8
|
Fornells E, Barnett B, Bailey M, Hilder EF, Shellie RA, Breadmore MC. Evaporative membrane modulation for comprehensive two-dimensional liquid chromatography. Anal Chim Acta 2018; 1000:303-309. [DOI: 10.1016/j.aca.2017.11.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 02/01/2023]
|
9
|
Groskreutz SR, Horner AR, Weber SG. Development of a 1.0 mm inside diameter temperature-assisted focusing precolumn for use with 2.1 mm inside diameter columns. J Chromatogr A 2017; 1523:193-203. [DOI: 10.1016/j.chroma.2017.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 01/16/2023]
|
10
|
Jakobsen SS, Christensen JH, Verdier S, Mallet CR, Nielsen NJ. Increasing Flexibility in Two-Dimensional Liquid Chromatography by Pulsed Elution of the First Dimension: A Proof of Concept. Anal Chem 2017; 89:8723-8730. [DOI: 10.1021/acs.analchem.7b00758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simon S. Jakobsen
- Department
of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
- Haldor Topsoe A/S, Haldor Topsøes
Allé 1, DK-2800 Kongens Lyngby, Denmark
| | - Jan H. Christensen
- Department
of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Sylvain Verdier
- Haldor Topsoe A/S, Haldor Topsøes
Allé 1, DK-2800 Kongens Lyngby, Denmark
| | - Claude R. Mallet
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Nikoline J. Nielsen
- Department
of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
11
|
Blue LE, Franklin EG, Godinho JM, Grinias JP, Grinias KM, Lunn DB, Moore SM. Recent advances in capillary ultrahigh pressure liquid chromatography. J Chromatogr A 2017; 1523:17-39. [PMID: 28599863 DOI: 10.1016/j.chroma.2017.05.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 11/28/2022]
Abstract
In the twenty years since its initial demonstration, capillary ultrahigh pressure liquid chromatography (UHPLC) has proven to be one of most powerful separation techniques for the analysis of complex mixtures. This review focuses on the most recent advances made since 2010 towards increasing the performance of such separations. Improvements in capillary column preparation techniques that have led to columns with unprecedented performance are described. New stationary phases and phase supports that have been reported over the past decade are detailed, with a focus on their use in capillary formats. A discussion on the instrument developments that have been required to ensure that extra-column effects do not diminish the intrinsic efficiency of these columns during analysis is also included. Finally, the impact of these capillary UHPLC topics on the field of proteomics and ways in which capillary UHPLC may continue to be applied to the separation of complex samples are addressed.
Collapse
Affiliation(s)
- Laura E Blue
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Edward G Franklin
- HPLC Research & Development, Restek Corp., Bellefonte, PA 16823, USA
| | - Justin M Godinho
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
| | - Kaitlin M Grinias
- Department of Product Development & Supply, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Daniel B Lunn
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
12
|
Young C, Podtelejnikov AV, Nielsen ML. Improved Reversed Phase Chromatography of Hydrophilic Peptides from Spatial and Temporal Changes in Column Temperature. J Proteome Res 2017; 16:2307-2317. [DOI: 10.1021/acs.jproteome.6b01055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Clifford Young
- The
Novo Nordisk Foundation Center for Protein Research, Proteomics Program,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | | | - Michael L. Nielsen
- The
Novo Nordisk Foundation Center for Protein Research, Proteomics Program,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
13
|
Creese ME, Creese MJ, Foley JP, Cortes HJ, Hilder EF, Shellie RA, Breadmore MC. Longitudinal On-Column Thermal Modulation for Comprehensive Two-Dimensional Liquid Chromatography. Anal Chem 2016; 89:1123-1130. [DOI: 10.1021/acs.analchem.6b03279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mari E. Creese
- Australian
Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Mathew J. Creese
- Allison Laboratories Pty Ltd., Sandy Bay, Tasmania 7005, Australia
| | - Joe P. Foley
- Australian
Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
- Department
of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia 19104, United States
| | - Hernan J. Cortes
- HJ Cortes Consulting LLC, Midland, Michigan 48642, United States
| | - Emily F. Hilder
- Australian
Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
- Future
Industries Institute, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia
| | - Robert A. Shellie
- Australian
Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
- Trajan Scientific and Medical, 7 Argent Place, Ringwood, Victoria 3134, Australia
| | - Michael C. Breadmore
- Australian
Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| |
Collapse
|
14
|
Groskreutz SR, Weber SG. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment. J Chromatogr A 2016; 1474:95-108. [PMID: 27836226 PMCID: PMC5115952 DOI: 10.1016/j.chroma.2016.10.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022]
Abstract
In this work we characterize the development of a method to enhance temperature-assisted on-column solute focusing (TASF) called two-stage TASF. A new instrument was built to implement two-stage TASF consisting of a linear array of three independent, electronically controlled Peltier devices (thermoelectric coolers, TECs). Samples are loaded onto the chromatographic column with the first two TECs, TEC A and TEC B, cold. In the two-stage TASF approach TECs A and B are cooled during injection. TEC A is heated following sample loading. At some time following TEC A's temperature rise, TEC B's temperature is increased from the focusing temperature to a temperature matching that of TEC A. Injection bands are focused twice on-column, first on the initial TEC, e.g. single-stage TASF, then refocused on the second, cold TEC. Our goal is to understand the two-stage TASF approach in detail. We have developed a simple yet powerful digital simulation procedure to model the effect of changing temperature in the two focusing zones on retention, band shape and band spreading. The simulation can predict experimental chromatograms resulting from spatial and temporal temperature programs in combination with isocratic and solvent gradient elution. To assess the two-stage TASF method and the accuracy of the simulation well characterized solutes are needed. Thus, retention factors were measured at six temperatures (25-75°C) at each of twelve mobile phases compositions (0.05-0.60 acetonitrile/water) for homologs of n-alkyl hydroxylbenzoate esters and n-alkyl p-hydroxyphenones. Simulations accurately reflect experimental results in showing that the two-stage approach improves separation quality. For example, two-stage TASF increased sensitivity for a low retention solute by a factor of 2.2 relative to single-stage TASF and 8.8 relative to isothermal conditions using isocratic elution. Gradient elution results for two-stage TASF were more encouraging. Application of two-stage TASF increased peak height for the least retained solute in the test mixture by a factor of 3.2 relative to single-stage TASF and 22.3 compared to isothermal conditions for an injection four-times the column volume. TASF improved resolution and increased peak capacity; for a 12-min separation peak capacity increased from 75 under isothermal conditions to 146 using single-stage TASF, and 185 for two-stage TASF.
Collapse
Affiliation(s)
- Stephen R Groskreutz
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, United States
| | - Stephen G Weber
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, United States.
| |
Collapse
|
15
|
Wilson RE, Groskreutz SR, Weber SG. Improving the Sensitivity, Resolution, and Peak Capacity of Gradient Elution in Capillary Liquid Chromatography with Large-Volume Injections by Using Temperature-Assisted On-Column Solute Focusing. Anal Chem 2016; 88:5112-21. [PMID: 27033165 PMCID: PMC4940048 DOI: 10.1021/acs.analchem.5b04793] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Capillary HPLC (cLC) with gradient elution is the separation method of choice for the fields of proteomics and metabolomics. This is due to the complementary nature of cLC flow rates and electrospray or nanospray ionization mass spectrometry (ESI-MS). The small column diameters result in good mass sensitivity. Good concentration sensitivity is also possible by injection of relatively large volumes of solution and relying on solvent-based solute focusing. However, if the injection volume is too large or solutes are poorly retained during injection, volume overload occurs which leads to altered peak shapes, decreased sensitivity, and lower peak capacity. Solutes that elute early even with the use of a solvent gradient are especially vulnerable to this problem. In this paper, we describe a simple, automated instrumental method, temperature-assisted on-column solute focusing (TASF), that is capable of focusing large volume injections of small molecules and peptides under gradient conditions. By injecting a large sample volume while cooling a short segment of the column inlet at subambient temperatures, solutes are concentrated into narrow bands at the head of the column. Rapidly raising the temperature of this segment of the column leads to separations with less peak broadening in comparison to solvent focusing alone. For large volume injections of both mixtures of small molecules and a bovine serum albumin tryptic digest, TASF improved the peak shape and resolution in chromatograms. TASF showed the most dramatic improvements with shallow gradients, which is particularly useful for biological applications. Results demonstrate the ability of TASF with gradient elution to improve the sensitivity, resolution, and peak capacity of volume overloaded samples beyond gradient compression alone. Additionally, we have developed and validated a double extrapolation method for predicting retention factors at extremes of temperature and mobile phase composition. Using this method, the effects of TASF can be predicted, allowing determination of the usefulness of this technique for a particular application.
Collapse
Affiliation(s)
- Rachael E. Wilson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen R. Groskreutz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
16
|
Comparative studies of peak intensities and chromatographic separation of proteolytic digests, PTMs, and intact proteins obtained by nanoLC-ESI MS analysis at room and elevated temperatures. Anal Bioanal Chem 2016; 408:3953-68. [DOI: 10.1007/s00216-016-9386-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 12/26/2022]
|
17
|
Low-Temperature Mobile Phase for Peptide Trapping at Elevated Separation Temperature Prior to Nano RP-HPLC-MS/MS. SEPARATIONS 2016. [DOI: 10.3390/chromatography3010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
van de Ven H, Gargano A, van der Wal S, Schoenmakers P. Switching solvent and enhancing analyte concentrations in small effluent fractions using in-column focusing. J Chromatogr A 2016; 1427:90-5. [DOI: 10.1016/j.chroma.2015.11.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023]
|
19
|
Abstract
In proteomics, nano-LC is arguably the most common tool for separating peptides/proteins prior to MS. The main advantage of nano-LC is enhanced sensitivity, as compounds enter the MS in more concentrated bands. This is particularly relevant for determining low abundant compounds in limited samples. Nano-LC columns can produce peak capacities of 1000 or more, and very narrow columns can be used to perform proteomics of 1000 cells or less. Also, nano-LC can be coupled with online add-ons such as selective trap columns or enzymatic reactors, for faster and more automated analysis. Nano-LC is today an established tool for research laboratories; but can nano-LC-based systems soon be ready for more routine settings, such as in clinics?
Collapse
|
20
|
Temperature-based on-column solute focusing in capillary liquid chromatography reduces peak broadening from pre-column dispersion and volume overload when used alone or with solvent-based focusing. J Chromatogr A 2015; 1405:133-9. [PMID: 26091787 DOI: 10.1016/j.chroma.2015.05.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/21/2015] [Accepted: 05/30/2015] [Indexed: 01/25/2023]
Abstract
On-column focusing is essential for satisfactory performance using capillary scale columns. On-column focusing results from generating transient conditions at the head of the column that lead to high solute retention. Solvent-based on-column focusing is a well-known approach to achieve this. Temperature-assisted on-column focusing (TASF) can also be effective. TASF improves focusing by cooling a short segment of the column inlet to a temperature that is lower than the column temperature during the injection and then rapidly heating the focusing segment to the match the column temperature. A troublesome feature of an earlier implementation of TASF was the need to leave the capillary column unpacked in that portion of the column inside the fitting connecting it to the injection valve. We have overcome that problem in this work by packing the head of the column with solid silica spheres. In addition, technical improvements to the TASF instrumentation include: selection of a more powerful thermo-electric cooler to create faster temperature changes and electronic control for easy incorporation into conventional capillary instruments. Used in conjunction with solvent-based focusing and with isocratic elution, volumes of paraben samples (esters of p-hydroxybenzoic acid) up to 4.5-times the column liquid volume can be injected without significant bandspreading due to volume overload. Interestingly, the shapes of the peaks from the lowest volume injections that we can make, 30nL, are improved when using TASF. TASF is very effective at reducing the detrimental effects of pre-column dispersion using isocratic elution. Finally, we show that TASF can be used to focus the neuropeptide galanin in a sample solvent with elution strength stronger than the mobile phase. Here, the stronger solvent is necessitated by the need to prevent peptide adsorption prior to and during analysis.
Collapse
|
21
|
Vonk RJ, Gargano AFG, Davydova E, Dekker HL, Eeltink S, de Koning LJ, Schoenmakers PJ. Comprehensive Two-Dimensional Liquid Chromatography with Stationary-Phase-Assisted Modulation Coupled to High-Resolution Mass Spectrometry Applied to Proteome Analysis of Saccharomyces cerevisiae. Anal Chem 2015; 87:5387-94. [DOI: 10.1021/acs.analchem.5b00708] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | | | | | - Sebastiaan Eeltink
- Vrije Universiteit Brussel, Department of Chemical
Engineering, Pleinlaan
2, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
22
|
Stoll DR, O’Neill K, Harmes DC. Effects of pH mismatch between the two dimensions of reversed-phase × reversed-phase two-dimensional separations on second dimension separation quality for ionogenic compounds—I. Carboxylic acids. J Chromatogr A 2015; 1383:25-34. [DOI: 10.1016/j.chroma.2014.12.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/02/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
|
23
|
De Vos J, Eeltink S, Desmet G. Peak refocusing using subsequent retentive trapping and strong eluent remobilization in liquid chromatography: A theoretical optimization study. J Chromatogr A 2015; 1381:74-86. [DOI: 10.1016/j.chroma.2014.12.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022]
|
24
|
De Vos J, Desmet G, Eeltink S. A generic approach to post-column refocusing in liquid chromatography. J Chromatogr A 2014; 1360:164-71. [DOI: 10.1016/j.chroma.2014.07.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/09/2014] [Accepted: 07/23/2014] [Indexed: 12/01/2022]
|
25
|
Groskreutz SR, Weber SG. Temperature-assisted on-column solute focusing: a general method to reduce pre-column dispersion in capillary high performance liquid chromatography. J Chromatogr A 2014; 1354:65-74. [PMID: 24973805 PMCID: PMC4100596 DOI: 10.1016/j.chroma.2014.05.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 12/18/2022]
Abstract
Solvent-based on-column focusing is a powerful and well known approach for reducing the impact of pre-column dispersion in liquid chromatography. Here we describe an orthogonal temperature-based approach to focusing called temperature-assisted on-column solute focusing (TASF). TASF is founded on the same principles as the more commonly used solvent-based method wherein transient conditions are created that lead to high solute retention at the column inlet. Combining the low thermal mass of capillary columns and the temperature dependence of solute retention TASF is used effectively to compress injection bands at the head of the column through the transient reduction in column temperature to 5°C for a defined 7mm segment of a 6cm long 150μm I.D. column. Following the 30s focusing time, the column temperature is increased rapidly to the separation temperature of 60°C releasing the focused band of analytes. We developed a model to simulate TASF separations based on solute retention enthalpies, focusing temperature, focusing time, and column parameters. This model guides the systematic study of the influence of sample injection volume on column performance. All samples have solvent compositions matching the mobile phase. Over the 45-1050nL injection volume range evaluated, TASF reduces the peak width for all solutes with k' greater than or equal to 2.5, relative to controls. Peak widths resulting from injection volumes up to 1.3 times the column fluid volume with TASF are less than 5% larger than peak widths from a 45nL injection without TASF (0.07 times the column liquid volume). The TASF approach reduced concentration detection limits by a factor of 12.5 relative to a small volume injection for low concentration samples. TASF is orthogonal to the solvent focusing method. Thus, it can be used where on-column focusing is required, but where implementation of solvent-based focusing is difficult.
Collapse
Affiliation(s)
- Stephen R Groskreutz
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | - Stephen G Weber
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States.
| |
Collapse
|
26
|
Stoll DR, Talus ES, Harmes DC, Zhang K. Evaluation of detection sensitivity in comprehensive two-dimensional liquid chromatography separations of an active pharmaceutical ingredient and its degradants. Anal Bioanal Chem 2014; 407:265-77. [DOI: 10.1007/s00216-014-8036-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 12/01/2022]
|
27
|
Affiliation(s)
- Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels,
Belgium
| | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels,
Belgium
| |
Collapse
|