1
|
Schmidt M, Irsig R, Duca D, Peltz C, Passig J, Zimmermann R. Laser-Pulse-Length Effects in Ultrafast Laser Desorption. Anal Chem 2023; 95:18776-18782. [PMID: 38086534 PMCID: PMC10753527 DOI: 10.1021/acs.analchem.3c03558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/27/2023]
Abstract
Shortening the laser pulse length opens up new opportunities for laser desorption (LD) of molecules, with benefits for mass spectrometry (MS) sampling and ionization. The capability to ablate any material without the need for an absorbing matrix and the decrease of thermal damage and molecular fragmentation has promoted various applications with very different parameters and postionization techniques. However, the key issues of the optimum laser pulse length and intensity to achieve efficient and gentle desorption of molecules for postionization in MS are not resolved, although these parameters determine the costs and complexity of the required laser system. Here, we address this research gap with a systematic study on the effect of the pulse length on the LD of molecules. Keeping all other optical and ionization parameters constant, we directly compared the pulses in the femtosecond, picosecond, and nanosecond range with respect to LD-induced fragmentation and desorption efficiency. To represent real-world applications, we investigated the LD of over-the-counter medicaments naproxen and ibuprofen directly from tablets as well as the LD of retene and ship emission aerosols from a quartz filter. With our study design, we excluded interfering effects on fragmentation and LD efficiency from, for example, collisional cooling or postionization by performing the experiments in vacuum with resonance-enhanced multiphoton ionization as the postionization technique. Regarding LD-induced fragmentation, we already found benefits for the picosecond pulses. However, the efficiency of LD was found to continuously increase with decreasing pulse length, pointing to the application potential of ultrashort pulses in trace analytics. Because many interfering effects beyond the LD pulse length could be excluded in the experiment, our results may be directly transferable to the LD applied in other techniques.
Collapse
Affiliation(s)
- Marco Schmidt
- Joint
Mass Spectrometry Centre, Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- Comprehensive
Molecular Analytics (CMA) Cooperation Group, Helmholtz Centre Munich, 81379 Munich, Germany
- Department
Life, Light & Matter, University of
Rostock, 18059 Rostock, Germany
| | - Robert Irsig
- Department
Life, Light & Matter, University of
Rostock, 18059 Rostock, Germany
- Photonion
GmbH, 19061 Schwerin, Germany
| | - Dumitru Duca
- Joint
Mass Spectrometry Centre, Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- Comprehensive
Molecular Analytics (CMA) Cooperation Group, Helmholtz Centre Munich, 81379 Munich, Germany
- Department
Life, Light & Matter, University of
Rostock, 18059 Rostock, Germany
| | - Christian Peltz
- Institute
for Physics, University of Rostock, 18059 Rostock, Germany
| | - Johannes Passig
- Joint
Mass Spectrometry Centre, Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- Comprehensive
Molecular Analytics (CMA) Cooperation Group, Helmholtz Centre Munich, 81379 Munich, Germany
- Department
Life, Light & Matter, University of
Rostock, 18059 Rostock, Germany
| | - Ralf Zimmermann
- Joint
Mass Spectrometry Centre, Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- Comprehensive
Molecular Analytics (CMA) Cooperation Group, Helmholtz Centre Munich, 81379 Munich, Germany
- Department
Life, Light & Matter, University of
Rostock, 18059 Rostock, Germany
| |
Collapse
|
2
|
Nie W, Lu Q, Hu T, Xie M, Hu Y. Visualizing the distribution of curcumin in the root of Curcuma longa via VUV-postionization mass spectrometric imaging. Analyst 2022; 148:175-181. [PMID: 36472862 DOI: 10.1039/d2an01516a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Curcumin is a dietary spice and coloring agent widely used in food and herbal medicine. Herein, we visualized the distribution of curcumin in fresh Curcuma longa (turmeric) root sections using the state-of-the-art vacuum-ultraviolet (VUV, 118 nm) single photon-postionization mass spectrometric imaging method. Compared with other mass spectrometric imaging methods, the proposed method does not require any sample pre-treatment. The proposed approach could be more conducive to in situ detection of small molecules. The mass spectroscopic imaging (MSI) images of curcumin sections with a lateral resolution of 100 μm indicated that the concentrations of curcumin decreased from the phloem to the xylem of the root. We also show MS imaging of curcumin in the turmeric root at different maturity periods, revealing the transformation of this endogenous species. The result of quantitative analysis indicates that the total curcumin content of the mature turmeric root is estimated to be 3.43%, which is consistent with the previous report that the content of curcumin in the turmeric root is estimated between 3% and 5%. The report indicated that the proposed method of VUV single photon postionization MSI can be used to explore the metabolic process of plants, which is critical for herbal farming, harvest, and its ingredient extraction.
Collapse
Affiliation(s)
- Wuyi Nie
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qiao Lu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Tao Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Min Xie
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
3
|
Wickramasinghe RC, Pasterski MJ, Kenig F, Ievlev AV, Lorenz M, Gross JM, Hanley L. Femtosecond Laser Desorption Postionization MS vs ToF-SIMS Imaging for Uncovering Biomarkers Buried in Geological Samples. Anal Chem 2021; 93:15949-15957. [PMID: 34793141 DOI: 10.1021/acs.analchem.1c03275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of lipid molecular fossils by traditional biomarker analysis requires bulk sample crushing, followed by solvent extraction, and then the analysis of the extract by gas chromatography-mass spectrometry (GC-MS). This traditional analysis mixes all organic compounds in the sample regardless of their origins, with a loss of information on the spatial distribution of organic molecules within the sample. These shortcomings can be overcome using the chemical mapping of intact samples. Spectroscopic techniques such as UV fluorescence or Raman spectroscopy, laser ablation inductively coupled plasma mass spectrometry, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are among those elemental and molecular mapping techniques. This study employed femtosecond (fs) laser ablation combined with single-photon ionization, a method called fs-laser desorption postionization mass spectrometry (fs-LDPI-MS). A pulsed ∼75 fs, 800 nm laser was used to ablate the geological sample, which was then photoionized after a few microseconds by a pulsed 7.9 eV vacuum ultraviolet laser. An organic carbon-rich geological sample was used for this study to map hydrocarbon biomarkers in sediments that were previously studied by GC-MS. The petrography of this sample was examined by optical and fluorescence microscopy. It is demonstrated here that fs-LDPI-MS combined with petrography for multimodal imaging can expose buried compounds within the sample via in situ layer removal. When used in conjunction with traditional organic geochemical analysis, this method has the potential to determine the spatial distribution of organic biomarkers in geological material. Finally, fs-LDPI-MS imaging data are compared with ToF-SIMS imaging that is commonly used for such studies.
Collapse
Affiliation(s)
| | - Michael J Pasterski
- University of Illinois Chicago, Earth & Environmental Sciences (MC 186), Chicago, Illinois 60607, United States
| | - Fabien Kenig
- University of Illinois Chicago, Earth & Environmental Sciences (MC 186), Chicago, Illinois 60607, United States
| | - Anton V Ievlev
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Matthias Lorenz
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jason M Gross
- University of Illinois Chicago, Chemistry (MC 111), Chicago, Illinois 60607, United States
| | - Luke Hanley
- University of Illinois Chicago, Chemistry (MC 111), Chicago, Illinois 60607, United States
| |
Collapse
|
4
|
Ding X, Liu K, Shi Z. LASER DESORPTION/ABLATION POSTIONIZATION MASS SPECTROMETRY: RECENT PROGRESS IN BIOANALYTICAL APPLICATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:566-605. [PMID: 32770707 DOI: 10.1002/mas.21649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Lasers have long been used in the field of mass spectrometric analysis for characterization of condensed matter. However, emission of neutrals upon laser irradiation surpasses the number of ions. Typically, only one in about one million analytes ejected by laser desorption/ablation is ionized, which has fueled the quest for postionization methods enabling ionization of desorbed neutrals to enhance mass spectrometric detection schemes. The development of postionization techniques can be an endeavor that integrates multiple disciplines involving photon energy transfer, electrochemistry, gas discharge, etc. The combination of lasers of different parameters and diverse ion sources has made laser desorption/ablation postionization (LD/API) a growing and lively research community, including two-step laser mass spectrometry, laser ablation atmospheric pressure photoionization mass spectrometry, and those coupled to ambient mass spectrometry. These hyphenated techniques have shown potentials in bioanalytical applications, with major inroads to be made in simultaneous location and quantification of pharmaceuticals, toxins, and metabolites in complex biomatrixes. This review is intended to provide a timely comprehensive view of the broadening bioanalytical applications of disparate LD/API techniques. We also have attempted to discuss these applications according to the classifications based on the postionization methods and to encapsulate the latest achievements in the field of LD/API by highlighting some of the very best reports in the 21st century. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Xuelu Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Kun Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Zhenyan Shi
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
5
|
Wang T, Cheng X, Xu H, Meng Y, Yin Z, Li X, Hang W. Perspective on Advances in Laser-Based High-Resolution Mass Spectrometry Imaging. Anal Chem 2019; 92:543-553. [DOI: 10.1021/acs.analchem.9b04067] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tongtong Wang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoling Cheng
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hexin Xu
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Meng
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhibin Yin
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoping Li
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Hang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Hanley L, Wickramasinghe R, Yung YP. Laser Desorption Combined with Laser Postionization for Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:225-245. [PMID: 30786215 DOI: 10.1146/annurev-anchem-061318-115447] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lasers with pulse lengths from nanoseconds to femtoseconds and wavelengths from the mid-infrared to extreme ultraviolet (UV) have been used for desorption or ablation in mass spectrometry. Such laser sampling can often benefit from the addition of a second laser for postionization of neutrals. The advantages offered by laser postionization include the ability to forego matrix application, high lateral resolution, decoupling of ionization from desorption, improved analysis of electrically insulating samples, and potential for high sensitivity and depth profiling while minimizing differential detection. A description of postionization by vacuum UV radiation is followed by a consideration of multiphoton, short pulse, and other postionization strategies. The impacts of laser pulse length and wavelength are considered for laser desorption or laser ablation at low pressures. Atomic and molecular analysis via direct laser desorption/ionization using near-infrared ultrashort pulses is described. Finally, the postionization of clusters, the role of gaseous collisions, sampling at ambient pressure, atmospheric pressure photoionization, and the addition of UV postionization to MALDI are considered.
Collapse
Affiliation(s)
- Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | | | | |
Collapse
|
7
|
Chen J, Hu Y, Lu Q, Wang P, Zhan H. Molecular imaging of small molecule drugs in animal tissues using laser desorption postionization mass spectrometry. Analyst 2018; 142:1119-1124. [PMID: 28294229 DOI: 10.1039/c6an02721k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Localization and quantification of the target drug in tissues is a key indicator of efficacy in drug discovery. In contrast to established methods that require matrices and complex sample pretreatment steps, matrix-free and low cost in situ analysis of small molecule drugs by mass spectrometry (MS) remains challenging. Here, we present a novel approach, laser desorption postionization (LDPI), which is coupled to a linear time-of-flight (TOF) MS and used to image the distribution of acriflavine (ACF) directly from a histological section of mouse kidney without any matrix or sample pretreatment. The identification of the mass peaks assigned to ACF was further confirmed by DESI-MS/MS. Moreover, the matrix effect from the tissue section was explored, showing minimal desorption and ionization suppression in the LDPI-MS process. LDPI-MS imaging (LDPI-MSI) was performed on 30 μm kidney sections from mice 15 min postdose that were dosed with 30 mg kg-1 of ACF by monitoring the fragment ion at m/z 209. The LDPI-MS image revealed a global view of the distribution of ACF in the kidney compartments (pelvis, medulla, and cortex). Estimated concentrations of ACF residue in mouse kidney were obtained by LDPI-MSI and LC-MS/MS and a 12.1% difference in measured tissue concentration was found. These results suggest that the use of LDPI-MS in small molecule drug localization and quantification directly from biological tissue at the same time is favorable.
Collapse
Affiliation(s)
- Jiaxin Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China.
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China.
| | - Qiao Lu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China.
| | - Pengchao Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China.
| | - Huaqi Zhan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China.
| |
Collapse
|
8
|
Lu Q, Hu Y, Chen J, Li Y, Song W, Jin S, Liu F, Sheng L. Boron nitride nanotubes matrix for signal enhancement in infrared laser desorption postionization mass spectrometry. Talanta 2018; 187:106-112. [DOI: 10.1016/j.talanta.2018.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 01/12/2023]
|
9
|
Steven RT, Race AM, Bunch J. Probing the Relationship Between Detected Ion Intensity, Laser Fluence, and Beam Profile in Thin Film and Tissue in MALDI MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1419-1428. [PMID: 27206508 DOI: 10.1007/s13361-016-1414-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/14/2016] [Accepted: 04/23/2016] [Indexed: 06/05/2023]
Abstract
Matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) is increasingly widely used to provide information regarding molecular location within tissue samples. The nature of the photon distribution within the irradiated region, the laser beam profile, and fluence, will significantly affect the form and abundance of the detected ions. Previous studies into these phenomena have focused on circular-core optic fibers or Gaussian beam profiles irradiating dried droplet preparations, where peptides were employed as the analyte of interest. Within this work, we use both round and novel square core optic fibers of 100 and 50 μm diameter to deliver the laser photons to the sample. The laser beam profiles were recorded and analyzed to quantify aspects of the photon distributions and their relation to the spectral data obtained with each optic fiber. Beam profiles with a relatively small number of large beam profile features were found to give rise to the lowest threshold fluence. The detected ion intensity versus fluence relationship was investigated, for the first time, in both thin films of α-cyano-4-hydroxycinnamic acid (CHCA) with phosphatidylcholine (PC) 34:1 lipid standard and in CHCA coated murine tissue sections for both the square and round optic fibers in continuous raster imaging mode. The fluence threshold of ion detection was found to occur at between ~14 and ~64 J/m(2) higher in tissue compared with thin film for the same lipid, depending upon the optic fiber employed. The image quality is also observed to depend upon the fluence employed during image acquisition. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rory T Steven
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, TW11 0LW, UK
| | - Alan M Race
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, TW11 0LW, UK
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, TW11 0LW, UK.
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
10
|
Cui Y, Hanley L. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:065106. [PMID: 26133872 PMCID: PMC4482810 DOI: 10.1063/1.4922913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.
Collapse
Affiliation(s)
- Yang Cui
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
11
|
Akhmetov A, Bhardwaj C, Hanley L. Laser desorption postionization mass spectrometry imaging of biological targets. Methods Mol Biol 2015; 1203:185-94. [PMID: 25361678 DOI: 10.1007/978-1-4939-1357-2_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Laser desorption photoionization mass spectrometry (LDPI-MS) utilizes two separate light sources for desorption and photoionization of species from a solid surface. This technique has been applied to study a wide variety of molecular analytes in biological systems, but is not yet available in commercial instruments. For this reason, a generalized protocol is presented here for the use of LDPI-MS imaging to detect small molecules within intact biological samples. Examples are provided here for LDPI-MS imaging of an antibiotic within a tooth root canal and a metabolite within a coculture bacterial biofilm.
Collapse
Affiliation(s)
- Artem Akhmetov
- Department of Chemistry, University of Illinois at Chicago, MC 111, 845 W. Taylor St., 4500 SES, Chicago, IL, 60607-7061, USA
| | | | | |
Collapse
|
12
|
Cui Y, Veryovkin IV, Majeski MW, Cavazos DR, Hanley L. High Lateral Resolution vs Molecular Preservation in near-IR fs-Laser Desorption Postionization Mass Spectrometry. Anal Chem 2014; 87:367-71. [DOI: 10.1021/ac5041154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Cui
- Department
of Chemistry, University of Illinois at Chicago, MC 111, Chicago, Illinois 60607, United States
| | - Igor V. Veryovkin
- Department
of Chemistry, University of Illinois at Chicago, MC 111, Chicago, Illinois 60607, United States
| | - Michael W. Majeski
- Department
of Chemistry, University of Illinois at Chicago, MC 111, Chicago, Illinois 60607, United States
| | - Daniel R. Cavazos
- Department
of Chemistry, University of Illinois at Chicago, MC 111, Chicago, Illinois 60607, United States
| | - Luke Hanley
- Department
of Chemistry, University of Illinois at Chicago, MC 111, Chicago, Illinois 60607, United States
| |
Collapse
|
13
|
Bhardwaj C, Cui Y, Hofstetter T, Liu SY, Bernstein HC, Carlson RP, Ahmed M, Hanley L. Differentiation of microbial species and strains in coculture biofilms by multivariate analysis of laser desorption postionization mass spectra. Analyst 2014; 138:6844-51. [PMID: 24067765 DOI: 10.1039/c3an01389h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
7.87 to 10.5 eV vacuum ultraviolet (VUV) photon energies were used in laser desorption postionization mass spectrometry (LDPI-MS) to analyze biofilms comprised of binary cultures of interacting microorganisms. The effect of photon energy was examined using both tunable synchrotron and laser sources of VUV radiation. Principal components analysis (PCA) was applied to the MS data to differentiate species in Escherichia coli-Saccharomyces cerevisiae coculture biofilms. PCA of LDPI-MS also differentiated individual E. coli strains in a biofilm comprised of two interacting gene deletion strains, even though these strains differed from the wild type K-12 strain by no more than four gene deletions each out of approximately 2000 genes. PCA treatment of 7.87 eV LDPI-MS data separated the E. coli strains into three distinct groups, two "pure" groups, and a mixed region. Furthermore, the "pure" regions of the E. coli cocultures showed greater variance by PCA at 7.87 eV photon energies compared to 10.5 eV radiation. This is consistent with the expectation that the 7.87 eV photoionization selects a subset of low ionization energy analytes while 10.5 eV is more inclusive, detecting a wider range of analytes. These two VUV photon energies therefore give different spreads via PCA and their respective use in LDPI-MS constitute an additional experimental parameter to differentiate strains and species.
Collapse
Affiliation(s)
- Chhavi Bhardwaj
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607-7061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bhardwaj C, Hanley L. Ion sources for mass spectrometric identification and imaging of molecular species. Nat Prod Rep 2014; 31:756-67. [PMID: 24473154 DOI: 10.1039/c3np70094a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2013 The ability to transfer molecular species to the gas phase and ionize them is central to the study of natural products and other molecular species by mass spectrometry (MS). MS-based strategies in natural products have focused on a few established ion sources, such as electron impact and electrospray ionization. However, a variety of other ion sources are either currently in use to evaluate natural products or show significant future promise. This review discusses these various ion sources in the context of other articles in this special issue, but is also applicable to other fields of analysis, including materials science. Ion sources are grouped based on the current understanding of their predominant ion formation mechanisms. This broad overview groups ion sources into the following categories: electron ionization and single photon ionization; chemical ionization-like and plasma-based; electrospray ionization; and, laser desorption-based. Laser desorption-based methods are emphasized with specific examples given for laser desorption postionization sources and their use in the analysis of intact microbial biofilms. Brief consideration is given to the choice of ion source for various sample types and analyses, including MS imaging.
Collapse
Affiliation(s)
- Chhavi Bhardwaj
- Department of Chemistry, University of Illinois at Chicago, mc 111, Chicago, IL 60607-7061.
| | | |
Collapse
|
15
|
Cui Y, Bhardwaj C, Milasinovic S, Carlson RP, Gordon RJ, Hanley L. Molecular imaging and depth profiling of biomaterials interfaces by femtosecond laser desorption postionization mass spectrometry. ACS APPLIED MATERIALS & INTERFACES 2013; 5:9269-9275. [PMID: 23947564 DOI: 10.1021/am4020633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mass spectrometry (MS) imaging is increasingly being applied to probe the interfaces of biomaterials with invasive microbial biofilms, human tissue, or other biological materials. Laser desorption vacuum ultraviolet postionization with ∼75 fs, 800 nm laser pulses (fs-LDPI-MS) was used to collect MS images of a yeast-Escherichia coli co-culture biofilm. The method was also used to depth profile a three-dimensionally structured, multispecies biofilm. Finally, fs-LDPI-MS analyses of yeast biofilms grown under different conditions were compared with LDPI-MS using ultraviolet, nanosecond pulse length laser desorption as well as with fs laser desorption ionization without postionization. Preliminary implications for the use of fs-LDPI-MS for the analysis of biomaterials interfaces are discussed and contrasted with established methods in MS imaging.
Collapse
Affiliation(s)
- Yang Cui
- Department of Chemistry, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | | | | | | | | | | |
Collapse
|
16
|
Bhardwaj C, Moore JF, Cui Y, Gasper GL, Bernstein HC, Carlson RP, Hanley L. Laser desorption VUV postionization MS imaging of a cocultured biofilm. Anal Bioanal Chem 2012; 405:6969-77. [PMID: 23052888 DOI: 10.1007/s00216-012-6454-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/14/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Laser desorption postionization mass spectrometry (LDPI-MS) imaging is demonstrated with a 10.5 eV photon energy source for analysis and imaging of small endogenous molecules within intact biofilms. Biofilm consortia comprised of a synthetic Escherichia coli K12 coculture engineered for syntrophic metabolite exchange are grown on membranes and then used to test LDPI-MS analysis and imaging. Both E. coli strains displayed many similar peaks in LDPI-MS up to m/z 650, although some observed differences in peak intensities were consistent with the appearance of byproducts preferentially expressed by one strain. The relatively low mass resolution and accuracy of this specific LDPI-MS instrument prevented definitive assignment of species to peaks, but strategies are discussed to overcome this shortcoming. The results are also discussed in terms of desorption and ionization issues related to the use of 10.5 eV single-photon ionization, with control experiments providing additional mechanistic information. Finally, 10.5 eV LDPI-MS was able to collect ion images from intact, electrically insulating biofilms at ~100 μm spatial resolution. Spatial resolution of ~20 μm was possible, although a relatively long acquisition time resulted from the 10 Hz repetition rate of the single-photon ionization source.
Collapse
Affiliation(s)
- Chhavi Bhardwaj
- Department of Chemistry, MC 111, University of Illinois at Chicago, Chicago, IL 60607-7061, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Cui Y, Moore JF, Milasinovic S, Liu Y, Gordon RJ, Hanley L. Depth profiling and imaging capabilities of an ultrashort pulse laser ablation time of flight mass spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:093702. [PMID: 23020378 PMCID: PMC3461015 DOI: 10.1063/1.4750974] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
An ultrafast laser ablation time-of-flight mass spectrometer (AToF-MS) and associated data acquisition software that permits imaging at micron-scale resolution and sub-micron-scale depth profiling are described. The ion funnel-based source of this instrument can be operated at pressures ranging from 10(-8) to ~0.3 mbar. Mass spectra may be collected and stored at a rate of 1 kHz by the data acquisition system, allowing the instrument to be coupled with standard commercial Ti:sapphire lasers. The capabilities of the AToF-MS instrument are demonstrated on metal foils and semiconductor wafers using a Ti:sapphire laser emitting 800 nm, ~75 fs pulses at 1 kHz. Results show that elemental quantification and depth profiling are feasible with this instrument.
Collapse
Affiliation(s)
- Yang Cui
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | |
Collapse
|
18
|
Sparvero L, Amoscato A, Dixon C, Long J, Kochanek P, Pitt B, Bayir H, Kagan V. Mapping of phospholipids by MALDI imaging (MALDI-MSI): realities and expectations. Chem Phys Lipids 2012; 165:545-62. [PMID: 22692104 PMCID: PMC3642772 DOI: 10.1016/j.chemphyslip.2012.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has emerged as a novel powerful MS methodology that has the ability to generate both molecular and spatial information within a tissue section. Application of this technology as a new type of biochemical lipid microscopy may lead to new discoveries of the lipid metabolism and biomarkers associated with area-specific alterations or damage under stress/disease conditions such as traumatic brain injury or acute lung injury, among others. However there are limitations in the range of what it can detect as compared with liquid chromatography-MS (LC-MS) of a lipid extract from a tissue section. The goal of the current work was to critically consider remarkable new opportunities along with the limitations and approaches for further improvements of MALDI-MSI. Based on our experimental data and assessments, improvements of the spectral and spatial resolution, sensitivity and specificity towards low abundance species of lipids are proposed. This is followed by a review of the current literature, including methodologies that other laboratories have used to overcome these challenges.
Collapse
Affiliation(s)
- L.J. Sparvero
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - A.A. Amoscato
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - C.E. Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - J.B. Long
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 21910, USA
| | - P.M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - B.R. Pitt
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - H. Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - V.E. Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|