1
|
Zhan X, Yang KL, Luo D. Liquid crystal based sensor for antimony ions detection using poly-adenine oligonucleotides. Talanta 2024; 267:125148. [PMID: 37678004 DOI: 10.1016/j.talanta.2023.125148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/12/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Antimony is highly toxic and a key water pollutant, which needs to be monitored closely. To date, however, most analytical methods for antimony detection are quite limited because they are complicated, expensive, and not suitable for real-time monitoring of antimony. In this study, a label-free and rapid method for antimony ions (Sb3+) detection is developed based on liquid crystals and a 10-mer poly-adenine oligonucleotide as a specific recognition probe for the first time. The working principle is based on the binding of the oligonucleotide to Sb3+, which weakens the interaction between the oligonucleotide and cationic surfactants. As a result, the event induces a planar-to-homeotropic orientational change of liquid crystals and a bright-to-dark optical change under crossed polars. This liquid crystal-based optical sensor exhibits a rapid response to Sb3+ in 10 s, a detection range between 20 nM and 5 μM, and a detection limit at 6.7 nM calculated from 10-mins assay time. It also shows good selectivity against other metal ions including Ag+, Cd2+, Cu2+, Fe3+, K+, Mg2+, Mn2+, Na+, Pb2+, and Zn2+. Moreover, this system can be used to detect Sb3+ in aqueous solutions with different pH or ionic strengths. This simple, fast, and low-cost liquid crystal-based sensing approach with high sensitivity and selectivity has a high potential for detecting Sb3+ in natural environments and industrial wastewater.
Collapse
Affiliation(s)
- Xiyun Zhan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, 518055, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore.
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Irshad H, Assiri MA, Rafique S, Khan AM, Imran M, Shahzad SA. Triazine based fluorescent sensor for sequential detection of Hg 2+ and L-Cysteine in real samples and application in logic Gate: A combination of Extensive experimental and theoretical analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122934. [PMID: 37270970 DOI: 10.1016/j.saa.2023.122934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Triazine based fluorescent sensor TBT was rationally designed and synthesized to achieve sequential detection of Hg2+ and L-cysteine based on the presence of sulfur moiety and suitable cavity in the molecule. Sensor TBT exhibited excellent sensing potential for the selective detection of Hg2+ ions and L-cysteine (Cys) in real samples. Upon addition of Hg2+ to sensor TBT, enhancement in emission intensity of sensor TBT was observed which was accredited to the presence of sulfur moiety and size of cavity in the sensor. Upon interaction with Hg2+ blockage of intramolecular charge transfer (ICT) along with chelation-enhanced fluorescence (CHEF) resulted in the increase in fluorescence emission intensity of sensor TBT. Further, TBT-Hg2+ complex was employed for the selective detection of Cys through fluorescence quenching mechanism. This was attributed to the significantly stronger interaction of Cys with Hg2+, which resulted in the formation of Cys-Hg2+ complex and subsequently sensor TBT was released from TBT-Hg2+ complex. The nature of interaction between TBT-Hg2+ and Cys-Hg2+ complex was evaluated through 1H NMR titration experimentations. Extensive DFT studies were also carried out which include thermodynamic stability, frontier molecular orbitals (FMO), density of states (DOS), non-covalent interaction (NCI), quantum theory of atom in molecule (QTAIM), electron density differences (EDD) and natural bond orbital (NBO) analyses. All the studies supported the non-covalent type of interaction between analytes and sensor TBT. The limit of detection for Hg2+ ions was found to be as low as 61.9 nM. Sensor TBT was also employed for the quantitative detection of Hg2+ and Cys in real samples. Additionally, logic gate was fabricated by using sequential detection strategy.
Collapse
Affiliation(s)
- Hasher Irshad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia
| | - Sanwa Rafique
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Asad Muhammad Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| |
Collapse
|
3
|
Wang Z, Lou X. Recent Progress in Functional-Nucleic-Acid-Based Fluorescent Fiber-Optic Evanescent Wave Biosensors. BIOSENSORS 2023; 13:bios13040425. [PMID: 37185500 PMCID: PMC10135899 DOI: 10.3390/bios13040425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/17/2023]
Abstract
Biosensors capable of onsite and continuous detection of environmental and food pollutants and biomarkers are highly desired, but only a few sensing platforms meet the "2-SAR" requirements (sensitivity, specificity, affordability, automation, rapidity, and reusability). A fiber optic evanescent wave (FOEW) sensor is an attractive type of portable device that has the advantages of high sensitivity, low cost, good reusability, and long-term stability. By utilizing functional nucleic acids (FNAs) such as aptamers, DNAzymes, and rational designed nucleic acid probes as specific recognition ligands, the FOEW sensor has been demonstrated to be a general sensing platform for the onsite and continuous detection of various targets ranging from small molecules and heavy metal ions to proteins, nucleic acids, and pathogens. In this review, we cover the progress of the fluorescent FNA-based FOEW biosensor since its first report in 1995. We focus on the chemical modification of the optical fiber and the sensing mechanisms for the five above-mentioned types of targets. The challenges and prospects on the isolation of high-quality aptamers, reagent-free detection, long-term stability under application conditions, and high throughput are also included in this review to highlight the future trends for the development of FOEW biosensors capable of onsite and continuous detection.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| |
Collapse
|
4
|
Selective chromogenic and fluorogenic signalling of Hg2+ ions using a benzothiazole-quinolinyl acrylate conjugate and its applications in the environmental water samples and living cells. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Yuan N, Jia L, Zhu J. Label-free Fluorescence Turn on Trypsin Assay Based on Gemini Surfactant/heparin/Nile Red Supramolecular Assembly. J Fluoresc 2021; 31:1537-1545. [PMID: 34319555 DOI: 10.1007/s10895-021-02785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
In this research, we designed a label-free fluorometric turn-on assay for trypsin and inhibitor screening, based on a spherical cationic gemini surfactant ethylene-bis (dodecyl dimethyl ammonium bromide) (EDAB)/heparin/Nile red (NR) supramolecular assembly system. The introduction of gemini surfactant EDAB as template greatly enhanced its salt resistance and resulted in the supramolecular assemblies with diameters ranging from 20 to 100 nm. The fluorometric assay for trypsin was performed by firstly disassembling with protamine (a heparin-binding protein) and then re-assembling through hydrolysis of protamine. The disassembly and reassembly of the system resulted in a turn-off first and then a turn-on behavior of the corresponding fluorescence. The overall processes were characterized by fluorescence spectra, TEM measurements and zeta potential tests. The detection level of this assembly system for trypsin was as low as 4.2 ng mL-1. Also, the EDAB/heparin/NR assembly could be used to screen the trypsin inhibitors. The assembly system was easily-fabricated and cost-effective, but also exhibited good salt tolerance in NaCl solution at the concentration of 0-500 mM. At last, the supramolecular assembly was successfully applied to detect trypsin in human urine, demonstrating its great potential on clinical diagnosis applications.
Collapse
Affiliation(s)
- Nan Yuan
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Lan Jia
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.
| | - Jingxin Zhu
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| |
Collapse
|
7
|
Fan C, Zhang X, Lv JM, Bai J, Qiu Z, Zhao YM, Wu ZL, Xu HJ. Detection of trace mercury ions in water with a bovine-serum-albumin-modified Au@SiNWA surface-enhanced-Raman-scattering sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3274-3281. [PMID: 34223572 DOI: 10.1039/d1ay00639h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurate detection of mercury ions (Hg2+) in water is of great importance for environmental protection. Here, a surface-enhanced Raman scattering (SERS) sensor using bovine-serum-albumin-modified gold-silicon nanowire arrays (Au@SiNWAs) is used to detect the ions. The SiNWAs were grown via chemical etching; the addition of modified gold particles on the surface formed Au@SiNWAs to increase the surface activity. The Raman enhancement factor was as large as ∼2.52 × 105, which was also confirmed with finite-difference time-domain simulations. The detection limit for Hg2+ ions in water was as low as ∼10-12 M, which is much lower than that stipulated by the United States Environmental Protection Agency's maximum residue requirements for drinking water. Furthermore, the SERS intensity was linear with the log of the Hg2+ concentration between 1 pM and 100 nM, with a correlation coefficient of 0.992. There was no significant interference when other metal ions were present, which shows the excellent selectivity of the SERS sensor. Unknown Hg2+ concentrations in water can be readily determined in an accurate and reliable manner, with a relative standard deviation of ∼9.21%.
Collapse
Affiliation(s)
- Chengshan Fan
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China. and College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Zhang
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China. and College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Meng Lv
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China. and College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiahao Bai
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China. and College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zenghui Qiu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China. and College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong Mei Zhao
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Long Wu
- Analytical and Testing Center, Beijing Normal University, Beijing, 100875, China
| | - Hai Jun Xu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China. and College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Trends in sensor development toward next-generation point-of-care testing for mercury. Biosens Bioelectron 2021; 183:113228. [PMID: 33862396 DOI: 10.1016/j.bios.2021.113228] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/01/2023]
Abstract
Mercury is one of the most common heavy metals and a major environmental pollutant that affects ecosystems. Since mercury and its compounds are toxic to humans, even at low concentrations, it is very important to monitor mercury contamination in water and foods. Although conventional mercury detection methods, including inductively coupled plasma mass spectrometry, atomic absorption spectroscopy, and gas chromatography-mass spectrometry, exhibit excellent sensitivity and accuracy, they require operation by an expert in a sophisticated and fully controlled laboratory environment. To overcome these limitations and realize point-of-care testing, many novel methods for direct sample analysis in the field have recently been developed by improving the speed and simplicity of detection. Commonly, these unconventional sensors rely on colorimetric, fluorescence, or electrochemical mechanisms to transduce signals from mercury. In the case of colorimetric and fluorescent sensors, benchtop methods have gradually evolved through technology convergence to give standalone platforms, such as paper-based assays and lab-on-a-chip systems, and portable measurement devices, such as smartphones. Electrochemical sensors that use screen-printed electrodes with carbon or metal nanomaterials or hybrid materials to improve sensitivity and stability also provide promising detection platforms. This review summarizes the current state of sensor platforms for the on-field detection of mercury with a focus on key features and recent developments. Furthermore, trends for next-generation mercury sensors are suggested based on a paradigm shift to the active integration of cutting-edge technologies, such as drones, systems based on artificial intelligence, machine learning, and three-dimensional printing, and high-quality smartphones.
Collapse
|
9
|
Vineetha PK, Krishnan A, Aswathy A, Chandrasekaran PO, Manoj N. Pyran based bipodal D–π–A systems: colorimetric and ratiometric sensing of mercury – experimental and theoretical approach. NEW J CHEM 2021. [DOI: 10.1039/d1nj01167g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible and selective Hg2+ ion complexation of the two pyran based colorimetric and fluorescent ratiometric probes.
Collapse
Affiliation(s)
- Pookalavan Karicherry Vineetha
- Department of Applied Chemistry, Centre of Excellence in Advanced Materials and Inter-University Centre for Nanomaterials and Devices, CUSAT, Kochi – 682022, Kerala, India
| | - Aravind Krishnan
- Department of Chemistry, St.Berchman's College, Changanassery – 686101, Kerala, India
| | - Ajayakumar Aswathy
- Department of Applied Chemistry, Centre of Excellence in Advanced Materials and Inter-University Centre for Nanomaterials and Devices, CUSAT, Kochi – 682022, Kerala, India
| | - Parvathy O. Chandrasekaran
- Department of Applied Chemistry, Centre of Excellence in Advanced Materials and Inter-University Centre for Nanomaterials and Devices, CUSAT, Kochi – 682022, Kerala, India
| | - Narayanapillai Manoj
- Department of Applied Chemistry, Centre of Excellence in Advanced Materials and Inter-University Centre for Nanomaterials and Devices, CUSAT, Kochi – 682022, Kerala, India
| |
Collapse
|
10
|
Chen X, Sun Y, Mo X, Gao Q, Deng Y, Hu M, Zou J, Nie J, Zhang Y. On-site, rapid and visual method for nanomolar Hg 2+ detection based on the thymine–Hg 2+–thymine triggered “double” aggregation of Au nanoparticles enhancing the Tyndall effect. RSC Adv 2021; 11:36859-36865. [PMID: 35494369 PMCID: PMC9043572 DOI: 10.1039/d1ra07211k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 01/07/2023] Open
Abstract
This work describes a new nanosensor for the simple, rapid, portable, colorimetric analysis of mercury(ii) (Hg2+) ions by combining the sensitive Tyndall effect (TE) of colloidal Au nanoparticles (AuNPs) with specific thymine–Hg2+–thymine (T–Hg2+–T) coordination chemistry for the first time. For the TE-inspired assay (TEA), in the presence of Hg2+ in a sample, the analyte can selectively mediate the hybridization of three types of flexible single-stranded DNAs (ssDNAs) to form stable rigid double-stranded DNAs (dsDNAs) via the T–Hg2+–T ligand interaction. Subsequent self-assembly of the dsDNAs with terminal thiol groups on the AuNPs' surfaces led to their “double” aggregation in addition to the lack of sufficient ssDNAs as the stabilizing molecules in a high-salt solution, resulting in a remarkably enhanced TE signal that positively relied on the Hg2+ level. The results demonstrated that such a TEA method enabled rapid naked-eye qualitative analysis of 625 nM Hg2+ within 10 min with an inexpensive laser pointer pen as an inexpensive handheld light source to generate the TE response. Making use of a smartphone for portable TE readout could further quantitatively detect the Hg2+ ions in a linear concentration range from 156 to 2500 nM with a limit of detection as low as 25 nM. Moreover, the developed equipment-free nanosensor was also used to analyze the Hg2+ ions in real samples including tap water, drinking water, and pond water, the obtained recoveries were within the range of 93.68 to 108.71%. To the best of our knowledge, this is the first report of using the AuNPs and functional nucleic acids to design a TE-based biosensor for the analysis of highly toxic heavy metal ions. A new equipment-free colorimetric nanosensor was initially developed for quantitative point-of-need detection of nanomolar Hg2+ ions based on the enhancement in Tyndall effect of Au nanoparticles via their target-triggered “double” aggregation.![]()
Collapse
Affiliation(s)
- Xuejiang Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Yao Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Xiaomei Mo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Qian Gao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Yanan Deng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Miao Hu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Jianmei Zou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
11
|
Singh G, Satija P, Singh A, Chowdhary K, Sharma G, Mohit, Shilpy, Singh J, Singh J. Bis-Organosilicon based receptor for detection of Hg2+ ions: Low detection limit and excellent selectivity. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Şener G, Denizli A. Colorimetric Sensor Array Based on Amino Acid-Modified Gold Nanoparticles for Toxic Metal Ion Detection in Water. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2027:75-80. [PMID: 31309473 DOI: 10.1007/978-1-4939-9616-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Several chromatographic and spectroscopic methods are available for the detection of toxic mercury (Hg2+) in water; however simple, rapid, inexpensive, and sensitive methods are still needed. In this chapter, we describe a facile, very sensitive, and rapid method for the colorimetric detection of Hg2+ in water with the detection limit of 2.9 nM. This simple procedure is based on the lysine-induced aggregation of citrate-capped gold nanoparticles (AuNPs) in the presence of Hg2+ ions.
Collapse
Affiliation(s)
- Gülsu Şener
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
13
|
Arslan T, Güney O. Ratiometric sensor based on imprinted quantum dots-cationic dye nanohybrids for selective sensing of dsDNA. Anal Biochem 2020; 591:113540. [DOI: 10.1016/j.ab.2019.113540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
|
14
|
Zhao M, Shao GK, Guo YS, Tang YL, Liu JB, Guo DS. A reaction-type receptor for the multi-feature detection of Hg2+ in water and living cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj01995j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first optical and redox-active receptor of reaction-type has been developed for efficiently multi-model survey of Hg2+.
Collapse
Affiliation(s)
- Mei Zhao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Guang-Kui Shao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Yu-Shuang Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Yan-Ling Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Jian-Biao Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Dian-Shun Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| |
Collapse
|
15
|
Gao H, Zhao J, Huang Y, Cheng X, Wang S, Han Y, Xiao Y, Lou X. Universal Design of Structure-Switching Aptamers with Signal Reporting Functionality. Anal Chem 2019; 91:14514-14521. [PMID: 31614078 DOI: 10.1021/acs.analchem.9b03368] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Structure-switching aptamers (SSAs) offer a promising recognition element for sensor development. However, the generation of SSAs via in vitro aptamer selection technologies or postselection engineering is challenging. Inspired by the two-domain structure of antibodies, we have devised a simple, universal strategy for engineering aptamers into SSAs with signal reporting functionality. These constructs consist of a "constant" domain, comprising a split DNAzyme G-quadruplex (G4) region for signal transduction, and a "variable" domain, comprising an aptamer sequence capable of specific target binding. In the absence of target, the G4-SSA construct folds into a parallel G4 structure with high peroxidase catalytic activity. Target binding disrupts the G4 structure, resulting in low enzymatic activity. We demonstrate that this change in DNAzyme activity enables sensitive and specific colorimetric detection of diverse targets including Hg2+, thrombin, sulfadimethoxine, cocaine, and 17β-estradiol. G4-SSAs can also achieve label-free fluorescence detection of various targets using a specific G4-binding dye. We demonstrate that diverse aptamers can be readily engineered into G4-SSA constructs independent of target class, binding affinity, aptamer length, or structure. This design strategy could broadly extend the power, accessibility, and utility of numerous SSA-based biosensors.
Collapse
Affiliation(s)
- Hualong Gao
- Department of Chemistry , Capital Normal University , Xisanhuan North Road, 105 , Beijing 100048 , China
| | - Jiaoxing Zhao
- Department of Chemistry , Capital Normal University , Xisanhuan North Road, 105 , Beijing 100048 , China
| | - Yang Huang
- Department of Chemistry , Capital Normal University , Xisanhuan North Road, 105 , Beijing 100048 , China
| | - Xiao Cheng
- Department of Chemistry , Capital Normal University , Xisanhuan North Road, 105 , Beijing 100048 , China
| | - Shuo Wang
- Department of Chemistry , Capital Normal University , Xisanhuan North Road, 105 , Beijing 100048 , China
| | - Yu Han
- Department of Chemistry , Capital Normal University , Xisanhuan North Road, 105 , Beijing 100048 , China
| | - Yi Xiao
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Xinhui Lou
- Department of Chemistry , Capital Normal University , Xisanhuan North Road, 105 , Beijing 100048 , China.,Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|
16
|
Xue J, Yang L, Jia Y, Wang H, Zhang N, Ren X, Ma H, Wei Q, Ju H. Electrochemiluminescence Double Quenching System Based on Novel Emitter GdPO 4:Eu with Low-Excited Positive Potential for Ultrasensitive Procalcitonin Detection. ACS Sens 2019; 4:2825-2831. [PMID: 31588728 DOI: 10.1021/acssensors.9b01552] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nowadays, the electrochemiluminescence (ECL) immunosensor with the unique superiority of tunable luminescence and ultrahigh sensitivity has become one of the most promising immunoassay techniques, especially for low-abundance biomarkers analysis. However, the use of signal probes with high excited potential and applied emitters which owned good intensity but biotoxicity limited its application. Herein, an ECL resonance energy transfer strategy was developed based on protein bioactivity protection utilizing europium-doped phosphoric acid gadolinium (GdPO4:Eu) as novel low-potential luminophor (donor) and Pd@Cu2O as the quenching probe (acceptor). Specifically, GdPO4:Eu was first prepared by using the hydrothermal synthesis method to apply in ECL, and when it coexisted with K2S2O8, cathode, a strong ECL signal would be generated at a low potential of -1.15 V (vs Ag/AgCl), where the immunocompetence of antigens and antibodies can be maintained well. Electrical pair Eu3+/Eu2+, as the coreactant promoter, produced by potential excitation could produce more SO4•- to accelerate the oxidation process of GdPO4:Eu. Meanwhile, Cu2O coated onto Pd (Pd@Cu2O), as a dual-quencher, enhanced the quenching effect of Pd alone and controlled the ECL intensity of the "signal on" state within a reasonable range. As a result, the proposed biosensor for detection of trace procalcitonin, a biomarker of systemic inflammatory response syndrome, exhibited a far low detection limit, 0.402 fg/mL (S/N = 3). Importantly, this work not only utilized a promising ECL emitter for biosensing platform construction but also had momentous potential in biomarker detection of disease diagnosis and clinical analysis.
Collapse
Affiliation(s)
- Jingwei Xue
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lei Yang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
17
|
Yang Z, Li H, Yang J, Yang Q, Zhao J, Yang J, Qu W, Feng Y, Shih K. Amorphous Molybdenum Selenide Nanosheet as an Efficient Trap for the Permanent Sequestration of Vapor-Phase Elemental Mercury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901410. [PMID: 31637169 PMCID: PMC6794631 DOI: 10.1002/advs.201901410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/14/2019] [Indexed: 05/17/2023]
Abstract
The key challenge of vapor-phase elemental mercury (Hg0) sequestration is the rational design of a sorbent with abundantly available ligands that exhibit excellent affinity toward Hg0 to simultaneously achieve a high uptake capacity and rapid capture rate. In this work, it is demonstrated how the correct combination of functional ligands and structural properties can form an ideal remediator for permanent Hg0 immobilization. The adsorption capacity of an amorphous molybdenum triselenide (MoSe3) nanosheet greater than 1000 mg g-1 is the highest recorded value compared to previously reported sorbents tested in a fixed-bed reactor. Meanwhile, the uptake rate of 240 µg g-1 min-1 is also the highest recorded rate value. Mercury selenide as formed exhibits extremely low leachability when environmentally exposed. This impressive performance is primarily attributed to the appropriate layer space between the nanosheets that permeated Hg0 and the existence of diselenide (Se2 2-) ligands that exhibit excellent affinity toward Hg0. Thus, this work not only provides a promising trap for permanent Hg0 sequestration from industrial and domestic sources with minimum hazard but also provides a detailed illustration of using structural advantages to obtain an ideal sorbent as well as guidance for the further development of Hg0 decontamination techniques.
Collapse
Affiliation(s)
- Zequn Yang
- Department of Civil EngineeringThe University of Hong KongHong Kong SAR, China
| | - Hailong Li
- School of Energy Science and EngineeringCentral South UniversityChangsha410083China
| | - Junwei Yang
- College of Environmental Science and EngineeringNankai UniversityTianjin300071China
| | - Qin Yang
- School of Energy Science and EngineeringCentral South UniversityChangsha410083China
| | - Jiexia Zhao
- School of Energy Science and EngineeringCentral South UniversityChangsha410083China
| | - Jianping Yang
- School of Energy Science and EngineeringCentral South UniversityChangsha410083China
| | - Wenqi Qu
- School of Energy Science and EngineeringCentral South UniversityChangsha410083China
| | - Yong Feng
- Department of Civil EngineeringThe University of Hong KongHong Kong SAR, China
| | - Kaimin Shih
- Department of Civil EngineeringThe University of Hong KongHong Kong SAR, China
| |
Collapse
|
18
|
Aloisi A, Della Torre A, De Benedetto A, Rinaldi R. Bio-Recognition in Spectroscopy-Based Biosensors for *Heavy Metals-Water and Waterborne Contamination Analysis. BIOSENSORS 2019; 9:E96. [PMID: 31366137 PMCID: PMC6784378 DOI: 10.3390/bios9030096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
: Microsystems and biomolecules integration as well multiplexing determinations are key aspects of sensing devices in the field of heavy metal contamination monitoring. The present review collects the most relevant information about optical biosensors development in the last decade. Focus is put on analytical characteristics and applications that are dependent on: (i) Signal transduction method (luminescence, colorimetry, evanescent wave (EW), surface-enhanced Raman spectroscopy (SERS), Förster resonance energy transfer (FRET), surface plasmon resonance (SPR)); (ii) biorecognition molecules employed (proteins, nucleic acids, aptamers, and enzymes). The biosensing systems applied (or applicable) to water and milk samples will be considered for a comparative analysis, with an emphasis on water as the primary source of possible contamination along the food chain.
Collapse
Affiliation(s)
- Alessandra Aloisi
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy
| | - Antonio Della Torre
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy
| | - Angelantonio De Benedetto
- Mathematics and Physics "E. De Giorgi" Department, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Rosaria Rinaldi
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy.
- Mathematics and Physics "E. De Giorgi" Department, University of Salento, Via Monteroni, 73100 Lecce, Italy.
- ISUFI, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
19
|
Xia H, Li C, Chen H. Green preparation of CuI particles in dielectric barrier discharge for colorimetric determination of trace mercury in comparison with atomic fluorescence spectrometric determination. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Ultrasensitive and portable assay of mercury (II) ions via gas pressure as readout. Biosens Bioelectron 2018; 122:32-36. [DOI: 10.1016/j.bios.2018.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/22/2018] [Accepted: 09/05/2018] [Indexed: 01/24/2023]
|
21
|
Xiong Y, Cheng Y, Wang L, Li Y. An ''off-on'' phosphorescent aptasensor switch for the detection of ATP. Talanta 2018; 190:226-234. [PMID: 30172503 DOI: 10.1016/j.talanta.2018.07.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/12/2023]
Abstract
An "off-on" phosphorescent aptasensor based on the 3-mercaptopropionic acid (MPA) capped Mn-doped ZnS quantum dots (MPA-Mn:ZnS QDs)/aptamer hybrid system was developed to detect adenosine triphosphate (ATP) in biological fluids. The phosphorescence of MPA-Mn:ZnS QDs was obviously quenched when ATP aptamer was added due to the aggregation induced effect. ATP aptamer, adsorbed on the surface of the phosphorescent MPA-Mn:ZnS QDs, has a high affinity for ATP. And then, with the addition of ATP, phosphorescence was gradually recovered because of the stronger special binding interaction between ATP and ATP aptamer than that between QDs and ATP aptamer. In this case, a high sensitivity and selectivity of phosphorescent aptasensor for the detection of ATP has constructed with a low detection limit of 0.9 nM and a wide linear range from 2 nM to 9 µM. What's more, the phosphorescent aptasensor does not require complex pretreatments and can effectively eliminate the interference from auto fluorescence and scattering light.
Collapse
Affiliation(s)
- Yan Xiong
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Yue Cheng
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Lu Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Yan Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China.
| |
Collapse
|
22
|
Li MJ, Zheng YN, Liang WB, Yuan R, Chai YQ. Using p-type PbS Quantum Dots to Quench Photocurrent of Fullerene-Au NP@MoS 2 Composite Structure for Ultrasensitive Photoelectrochemical Detection of ATP. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42111-42120. [PMID: 29111661 DOI: 10.1021/acsami.7b13894] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ultrasensitive and rapid quantification of the universal energy currency adenosine triphosphate (ATP) is an extremely critical mission in clinical applications. In this work, a "signal-off" photoelectrochemical (PEC) biosensor was designed for ultrasensitive ATP detection based on a fullerene (C60)-decorated Au nanoparticle@MoS2 (C60-Au NP@MoS2) composite material as a signal indicator and a p-type PbS quantum dot (QD) as an efficient signal quencher. Modification of wide band gap C60 with narrow band gap MoS2 to form an ideal PEC signal indicator was proposed, which could significantly improve photocurrent conversion efficiency, leading to a desirable PEC signal. In the presence of p-type PbS QDs, the PEC signal of n-type C60-Au NP@MoS2 was effectively quenched because p-type PbS QDs could compete with C60-Au NP@MoS2 to consume light energy and electron donor. Besides, the conversion of a limited amount of target ATP into an amplified output PbS QD-labeled short DNA sequence (output S1) was achieved via target-mediated aptazyme cycling amplification strategy, facilitating ultrasensitive ATP detection. The proposed signal-off PEC strategy exhibited a wide linear range from 1.00 × 10-2 pM to 100 nM with a low detection limit of 3.30 fM. Importantly, this proposed strategy provides a promising platform to detect ATP at ultralow levels and has potential applications, including diagnosis of ATP-related diseases, monitoring of diseases progression and evaluation of prognosis.
Collapse
Affiliation(s)
- Meng-Jie Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Ying-Ning Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| |
Collapse
|
23
|
Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci Rep 2017; 7:2806. [PMID: 28584238 PMCID: PMC5459837 DOI: 10.1038/s41598-017-02948-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/25/2017] [Indexed: 01/06/2023] Open
Abstract
In this study, we developed a facile gold nanozyme-based paper chip (AuNZ-PAD) for Hg2+ detection. This device has the advantages of being simple, rapid, cost effective, sensitive, selective, high throughput, and applicable to onsite detection. The colorimetric mercury assay on the AuNZ-PAD is established based on the enzyme-like catalytic activity of gold nanoparticles promoted by the formation of Au–Hg amalgam, which is correlated to the intensity of the colorimetric response resulting from the catalytic reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) and H2O2. Highly sensitive and selective detection of Hg2+ ions is achieved in both distilled and tap water samples, indicating the feasibility and applicability of our device for the determination of mercury pollution in real samples. Moreover, AuNZ-PAD analysis using a smartphone camera eliminates the need for expensive analytical equipment, thereby increasing the practicality of field monitoring of trace Hg2+ compared with other sensing methods.
Collapse
|
24
|
Yu T, Zhang TT, Zhao W, Xu JJ, Chen HY. A colorimetric/fluorescent dual-mode sensor for ultra-sensitive detection of Hg 2+. Talanta 2017; 165:570-576. [DOI: 10.1016/j.talanta.2017.01.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 02/07/2023]
|
25
|
A mini-review on functional nucleic acids-based heavy metal ion detection. Biosens Bioelectron 2016; 86:353-368. [DOI: 10.1016/j.bios.2016.06.075] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 02/07/2023]
|
26
|
Whitaker CM, Derouin EE, O'Connor MB, Whitaker CK, Whitaker JA, Snyder JJ, Kaufmann NR, Gilliard AN, Reitmayer AK. Smart hydrogel sensor for detection of organophosphorus chemical warfare nerve agents. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2016. [DOI: 10.1080/10601325.2017.1250313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Mi H, Guan M, Shan H, Fei Q, Huan Y, Zhang Z, Feng G. Highly Sensitive Fluorescence Detection of Hg 2+ Based on a Water-soluble Conjugated Polymer with Carboxylate Groups. ANAL SCI 2016; 32:1039-1045. [PMID: 27725601 DOI: 10.2116/analsci.32.1039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A label-free, highly selective, and highly sensitive fluorescent sensor to detect Hg2+ was developed using a water-soluble conjugated polymer with carboxylate groups (poly(2,5-bis(sodium 4-oxybutyrate)-1,4-phenylethynylene-alt-1,4-phenyleneethynylene, PPE-OBS) in this work. The fluorescence of PPE-OBS would be quenched because of the effect among the unique coordination-induced aggregation and electron transfers of PPE-OBS toward Hg2+. The linear relationship between the fluorescence intensity and concentration of Hg2+ was observed within the range from 6 × 10-8 to 8 × 10-5 mol L-1 (R2 = 0.9985), and the limit of detection was 2.10 × 10-9 mol L-1. The proposed method was applied to detect Hg2+ in environmental water samples, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Hongyu Mi
- Department of Analytical Chemistry, College of Chemistry, Jilin University
| | | | | | | | | | | | | |
Collapse
|
28
|
Su Q, Niu Q, Sun T, Li T. A simple fluorescence turn-on chemosensor based on Schiff-base for Hg2+-selective detection. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Han S, Zhou X, Tang Y, He M, Zhang X, Shi H, Xiang Y. Practical, highly sensitive, and regenerable evanescent-wave biosensor for detection of Hg2+ and Pb2+ in water. Biosens Bioelectron 2016; 80:265-272. [DOI: 10.1016/j.bios.2016.01.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
30
|
Hu J, Hu Z, Chen Z, Gao HW, Uvdal K. A logic gate-based fluorogenic probe for Hg2+ detection and its applications in cellular imaging. Anal Chim Acta 2016; 919:85-93. [DOI: 10.1016/j.aca.2016.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 02/02/2023]
|
31
|
Lv X, Wu W, Niu C, Huang D, Wang X, Zhang X. A facile "turn-on" fluorescent method with high sensitivity for Hg(2+) detection using magnetic Fe3O4 nanoparticles and hybridization chain reactions. Talanta 2016; 151:62-67. [PMID: 26946010 DOI: 10.1016/j.talanta.2016.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 01/12/2023]
Abstract
In this manuscript, the authors molecularly engineered a hybridization chain reactions (HCRs) based probe on magnetic Fe3O4 nanoparticles for the sensitive detection of Hg(2+). The sensing system comprised three probes: capture probe H1, report probe H2, and report probe H3. The capture probe was modified on the surface of magnetic Fe3O4 nanoparticles. The report probes were labeled with fluorescein isothiocyanate (FITC). Without Hg(2+), the report probes were stable as molecular beacons in solution. In the presence of Hg(2+), the T-rich capture probes and report probes will hybridize into double-helical DNA domains with the aid of T-Hg(2+)-T coordination chemistry. Trigged by this reaction, more molecular beacons open and form a super tandem structure. Herein, the fluorescence signal was magnified by capturing more report probes. Separating the target and captured report probes from reaction solution was benefit to decrease the background signal and interference from other metal ions. The detection limit of this method was about 0.36nM, which is much lower than the regulations of World Health Organization and U.S. Environmental Protection Agency on Hg(2+) in drink water. This proposed sensing strategy also showed favorable selectivity over other common metal ions. In addition, it has good practicability in real water samples.
Collapse
Affiliation(s)
- Xiaoxiao Lv
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Wenchen Wu
- Department of Orthopaedics, Heji Hospital, Changzhi Medical College, Shanxi 046000, China
| | - Chenggang Niu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Dawei Huang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection of PRC, Guangzhou 510655, China.
| | - Xiaoyu Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xuegang Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
32
|
Wei H, Wang L, Xu X, Zhu J, Jiang W. A T–Hg2+–T metallo-base pair-mediated dual amplification fluorescent strategy for the selective and sensitive detection of Hg2+. RSC Adv 2016. [DOI: 10.1039/c6ra14910c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thematic illustration of the dual amplification fluorescent strategy based on target cycle and DNAzyme cycle for the selective and sensitive detection of Hg2+.
Collapse
Affiliation(s)
- Haiping Wei
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Lei Wang
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
- P. R. China
| | - Xiaowen Xu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Jing Zhu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| |
Collapse
|
33
|
Liang X, Wang L, Wang D, Zeng L, Fang Z. Portable and quantitative monitoring of mercury ions using DNA-gated mesoporous silica nanoparticles using a glucometer readout. Chem Commun (Camb) 2016; 52:2192-4. [DOI: 10.1039/c5cc08611f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel glucometer biosensor was developed for the quantitative detection of mercury ions (Hg2+) based on glucose-loaded DNA-gated mesoporous silica nanoparticles (MSNs).
Collapse
Affiliation(s)
- Xiaoling Liang
- Key Laboratory of Regenerative Biology
- South China Institute for Stem Cell Biology and Regenerative Medicine
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Key Laboratory of Guangdong Province
| | - Lin Wang
- Key Laboratory of Regenerative Biology
- South China Institute for Stem Cell Biology and Regenerative Medicine
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Key Laboratory of Guangdong Province
| | - Dou Wang
- Key Laboratory of Regenerative Biology
- South China Institute for Stem Cell Biology and Regenerative Medicine
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Key Laboratory of Guangdong Province
| | - Lingwen Zeng
- Key Laboratory of Regenerative Biology
- South China Institute for Stem Cell Biology and Regenerative Medicine
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Key Laboratory of Guangdong Province
| | - Zhiyuan Fang
- Key Laboratory of Regenerative Biology
- South China Institute for Stem Cell Biology and Regenerative Medicine
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Key Laboratory of Guangdong Province
| |
Collapse
|
34
|
Shi W, Zhao S, Su Y, Hui Y, Xie Z. Barbituric acid–triphenylamine adduct as an AIEE-type molecule and optical probe for mercury(ii). NEW J CHEM 2016. [DOI: 10.1039/c6nj00894a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A barbituric acid–triphenylamine adduct displayed interesting aggregation-induced emission enhancement (AIEE) features in a THF–water co-solvent system and can act as a fluorescence turn-on probe for Hg2+.
Collapse
Affiliation(s)
- Wei Shi
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- China
| | - Shiyu Zhao
- Key Laboratory of Petroleum and Gas Fine Chemicals
- Educational Ministry of China
- School of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Yue Su
- Key Laboratory of Petroleum and Gas Fine Chemicals
- Educational Ministry of China
- School of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Yonghai Hui
- Key Laboratory of Petroleum and Gas Fine Chemicals
- Educational Ministry of China
- School of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- China
| |
Collapse
|
35
|
Song C, Yang B, Yang Y, Wang L. SERS-based mercury ion detections: principles, strategies and recent advances. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5504-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Signaling-Probe Displacement Electrochemical Aptamer-based Sensor (SD-EAB) for Detection of Nanomolar Kanamycin A. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.09.140] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Erdemir S, Kocyigit O, Malkondu S. Detection of Hg 2+ ion in aqueous media by new fluorometric and colorimetric sensor based on triazole–rhodamine. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Highly sensitive DNA-based fluorometric mercury(II) bioassay based on graphene oxide and exonuclease III-assisted signal amplification. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1482-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
“Turn off–on” phosphorescent biosensors for detection of DNA based on quantum dots/acridine orange. Anal Biochem 2015; 475:32-9. [DOI: 10.1016/j.ab.2015.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 01/01/2023]
|
40
|
Pang Y, Rong Z, Xiao R, Wang S. "Turn on" and label-free core-shell Ag@SiO2 nanoparticles-based metal-enhanced fluorescent (MEF) aptasensor for Hg(2+). Sci Rep 2015; 5:9451. [PMID: 25819733 PMCID: PMC4377581 DOI: 10.1038/srep09451] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/12/2015] [Indexed: 12/23/2022] Open
Abstract
A turn on and label-free fluorescent apasensor for Hg(2+) with high sensitivity and selectivity has been demonstrated in this report. Firstly, core-shell Ag@SiO2 nanoparticles (NPs) were synthetized as a Metal-Enhanced Fluorescent (MEF) substrate, T-rich DNA aptamers were immobilized on the surface of Ag@SiO2 NPs and thiazole orange (TO) was selected as fluorescent reporter. After Hg(2+) was added to the aptamer-Ag@SiO2 NPs and TO mixture buffer solution, the aptamer strand can bind Hg(2+) to form T-Hg(2+)-T complex with a hairpin structure which TO can insert into. When clamped by the nucleic acid bases, the fluorescence quanta yield of TO will be increased under laser excitation and emitted a fluorescence emission. Furthermore, the fluorescence emission can be amplified largely by the MEF effect of the Ag@SiO2 NPs. The whole experiment can be finished within 30 min and the limit of detection is 0.33 nM even with interference by high concentrations of other metal ions. Finally, the sensor was applied for detecting Hg(2+) in different real water samples with satisfying recoveries over 94%.
Collapse
Affiliation(s)
- Yuanfeng Pang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, China
| | - Zhen Rong
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, China
| |
Collapse
|
41
|
Rodríguez-Hermida S, Lago AB, Carballo R, Fabelo O, Vázquez-López EM. Homo- and Heteronuclear Compounds with a Symmetrical Bis-hydrazone Ligand: Synthesis, Structural Studies, and Luminescent Properties. Chemistry 2015; 21:6605-16. [DOI: 10.1002/chem.201405962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 02/02/2023]
|
42
|
Han DM, Jiang LY, Tang WY, Xu JJ, Chen HY. Photoelectrochemical determination of inorganic mercury ions based on energy transfer between CdS quantum dots and Au nanoparticles. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2014.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
43
|
Sun B, Jiang X, Wang H, Song B, Zhu Y, Wang H, Su Y, He Y. Surface-Enhancement Raman Scattering Sensing Strategy for Discriminating Trace Mercuric Ion (II) from Real Water Samples in Sensitive, Specific, Recyclable, and Reproducible Manners. Anal Chem 2015; 87:1250-6. [DOI: 10.1021/ac503939d] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bin Sun
- Institute of Functional
Nano
and Soft Materials (FUNSOM) and Collaborative Innovation Center of
Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiangxu Jiang
- Institute of Functional
Nano
and Soft Materials (FUNSOM) and Collaborative Innovation Center of
Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Houyu Wang
- Institute of Functional
Nano
and Soft Materials (FUNSOM) and Collaborative Innovation Center of
Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bin Song
- Institute of Functional
Nano
and Soft Materials (FUNSOM) and Collaborative Innovation Center of
Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Zhu
- Institute of Functional
Nano
and Soft Materials (FUNSOM) and Collaborative Innovation Center of
Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hui Wang
- Institute of Functional
Nano
and Soft Materials (FUNSOM) and Collaborative Innovation Center of
Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuanyuan Su
- Institute of Functional
Nano
and Soft Materials (FUNSOM) and Collaborative Innovation Center of
Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yao He
- Institute of Functional
Nano
and Soft Materials (FUNSOM) and Collaborative Innovation Center of
Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
44
|
A highly sensitive protocol for the determination of Hg2+ in environmental water using time-gated mode. Talanta 2015; 132:606-12. [DOI: 10.1016/j.talanta.2014.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/28/2014] [Accepted: 10/02/2014] [Indexed: 12/31/2022]
|
45
|
Heng C, Liu M, Wang K, Zheng X, Huang H, Deng F, Hui J, Zhang X, Wei Y. Fabrication of silica nanoparticle based polymer nanocomposites via a combination of mussel inspired chemistry and SET-LRP. RSC Adv 2015. [DOI: 10.1039/c5ra19658b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A facile and efficient strategy combination of mussel inspired chemistry and SET-LRP has been developed for the surface modification of silica nanoparticles.
Collapse
Affiliation(s)
- Chunning Heng
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
- Shaanxi Key Laboratory of Degradable Biomedical Materials
| | - Meiying Liu
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Ke Wang
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing
- P. R. China
| | - Xiaoyan Zheng
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering
- School of Chemical and Engineering
- Northwest University
- Xi’an
| | - Hongye Huang
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Fengjie Deng
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering
- School of Chemical and Engineering
- Northwest University
- Xi’an
| | - Xiaoyong Zhang
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
- Tsinghua University
- Beijing
- P. R. China
| |
Collapse
|
46
|
Shi D, Ni M, Luo J, Akashi M, Liu X, Chen M. Fabrication of novel chemosensors composed of rhodamine derivative for the detection of ferric ion and mechanism studies on the interaction between sensor and ferric ion. Analyst 2015; 140:1306-13. [DOI: 10.1039/c4an01991a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents the design and preparation of novel fluorescence chemosensors for detection ferric ions based on rhodamine derivatives, and studies on the recognition mechanisms and interaction between probes and metal ions.
Collapse
Affiliation(s)
- Dongjian Shi
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Ming Ni
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Jing Luo
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Mitsuru Akashi
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita 565-0871
- Japan
| | - Xiaoya Liu
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Mingqing Chen
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- P. R. China
| |
Collapse
|
47
|
Chen G, Guo Z, Zeng G, Tang L. Fluorescent and colorimetric sensors for environmental mercury detection. Analyst 2015; 140:5400-43. [DOI: 10.1039/c5an00389j] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of fluorescent and colorimetric sensing strategies for environmental mercury is described.
Collapse
Affiliation(s)
- Guiqiu Chen
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Zhi Guo
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Guangming Zeng
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Lin Tang
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- P.R. China
- Key Laboratory of Environmental Biology and Pollution Control
| |
Collapse
|
48
|
Murudkar S, Mora AK, Singh PK, Bandyopadhyay T, Nath S. An ultrafast molecular rotor based ternary complex in a nanocavity: a potential “turn on” fluorescence sensor for the hydrocarbon chain. Phys Chem Chem Phys 2015; 17:5691-703. [DOI: 10.1039/c4cp04636f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Formation of a ternary complex by an ultrafast molecular rotor (UMR) with a macrocyclic cavitand has been investigated for the sensitive detection of the alkyl chain of a surfactant.
Collapse
Affiliation(s)
- Sushant Murudkar
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Aruna K. Mora
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Prabhat K. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Tusar Bandyopadhyay
- Theoretical Chemistry Section
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Sukhendu Nath
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| |
Collapse
|
49
|
Singh VV, Kaufmann K, Orozco J, Li J, Galarnyk M, Arya G, Wang J. Micromotor-based on–off fluorescence detection of sarin and soman simulants. Chem Commun (Camb) 2015; 51:11190-3. [DOI: 10.1039/c5cc04120a] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Self-propelled micromotor-based fluorescent “On–Off” detection of nerve agents is described.
Collapse
Affiliation(s)
- Virendra V. Singh
- Department of Nanoengineering
- University of California San Diego
- La Jolla
- USA
| | - Kevin Kaufmann
- Department of Nanoengineering
- University of California San Diego
- La Jolla
- USA
| | - Jahir Orozco
- Department of Nanoengineering
- University of California San Diego
- La Jolla
- USA
| | - Jinxing Li
- Department of Nanoengineering
- University of California San Diego
- La Jolla
- USA
| | - Michael Galarnyk
- Department of Nanoengineering
- University of California San Diego
- La Jolla
- USA
| | - Gaurav Arya
- Department of Nanoengineering
- University of California San Diego
- La Jolla
- USA
| | - Joseph Wang
- Department of Nanoengineering
- University of California San Diego
- La Jolla
- USA
| |
Collapse
|
50
|
Shi X, Wen J, Li Y, Zheng Y, Zhou J, Li X, Yu HZ. DNA molecular beacon-based plastic biochip: a versatile and sensitive scanometric detection platform. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21788-21797. [PMID: 24852130 DOI: 10.1021/am5007029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, we report a novel DNA molecular beacon (MB)-based plastic biochip platform for scanometric detection of a range of analytical targets. Hairpin DNA strands, which are dually modified with amino and biotin groups at their two ends are immobilized on a disposable plastic (polycarbonate) substrate as recognition element and gold nanoparticle-assisted silver-staining as signal reading protocol. Initially, the immobilized DNA probes are in their folded forms; upon target binding the hairpin secondary structure of the probe strand is "forced" open (i.e., converted to the unfolded state). Nanogold-streptavidin conjugates can then bind the terminal biotin groups and promote the deposition of rather large silver particles which can be either directly visualized or quantified with a standard flatbed scanner. We demonstrate that with properly designed probe sequences and optimized preparation conditions, a range of molecular targets, such as DNA strands, proteins (thrombin) and heavy metal ions (Hg(2+)), can be detected with high sensitivity and excellent selectivity. The detection can be done in both standard physiological buffers and real world samples. This constitutes a platform technology for performing rapid, sensitive, cost-effective, and point-of-care (POC) chemical analysis and medical diagnosis.
Collapse
Affiliation(s)
- Xiaoli Shi
- Department of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | | | | | | | | | | | | |
Collapse
|