• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4672291)   Today's Articles (241)
For: Zambre A, Chanda N, Prayaga S, Almudhafar R, Afrasiabi Z, Upendran A, Kannan R. Design and Development of a Field Applicable Gold Nanosensor for the Detection of Luteinizing Hormone. Anal Chem 2012;84:9478-84. [DOI: 10.1021/ac302314e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Number Cited by Other Article(s)
1
Yuksel M, Dunlop T, Luo W, McCloy B, Mills J, Kayaharman M, Yeow JTW. Quantitative detection of pre-ovulatory luteinizing hormone surges in urine using the microfluidic vertical agitation approach. Talanta 2024;279:126567. [PMID: 39059065 DOI: 10.1016/j.talanta.2024.126567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
2
Xue K, Cai B, Yang Y, He A, Chen Z, Zhang C. A dry chemistry-based self-enhanced electrochemiluminescence lateral flow immunoassay sensor for accurate sample-to-answer detection of luteinizing hormone. Anal Chim Acta 2024;1309:342646. [PMID: 38772670 DOI: 10.1016/j.aca.2024.342646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
3
Kumar P, Anitha A, Das A, Deepalakshmi G, Suman P. Point-of-care impedimetric aptasensor to detect the luteinizing hormone. Mikrochim Acta 2024;191:115. [PMID: 38286844 DOI: 10.1007/s00604-024-06191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
4
Issaka E, Wariboko MA, Johnson NAN, Aniagyei OND. Advanced visual sensing techniques for on-site detection of pesticide residue in water environments. Heliyon 2023;9:e13986. [PMID: 36915503 PMCID: PMC10006482 DOI: 10.1016/j.heliyon.2023.e13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]  Open
5
Nayan V, Onteru SK, Singh D. Epitope-based in silico peptide design yields peptide-directed antibodies that recognize the buffalo luteinizing hormone. Int J Biol Macromol 2021;176:260-271. [PMID: 33592264 DOI: 10.1016/j.ijbiomac.2021.02.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/27/2022]
6
Nayan V, Sinha ES, Onteru SK, Singh D. A proof-of-concept of lateral flow based luteinizing hormone detection in urine for ovulation prediction in buffaloes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020;12:3411-3424. [PMID: 32930230 DOI: 10.1039/d0ay00787k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
7
Ling R, Zhang Q, Ren H, Tursen J, Bi J, Wu Z, Qin W, Zhang C. Label-free, sensitive colorimetric detection of mercury(II) by target-disturbed in situ seeding growth of gold triangular nanoprisms. NANOTECHNOLOGY 2020;31:225501. [PMID: 32050186 DOI: 10.1088/1361-6528/ab7584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
8
Cheung SF, Yee MF, Le NK, Gomes EA, Afrasiabi Z, Kamei DT. A Combined Aqueous Two-Phase System and Spot-Test Platform for the Rapid Detection of Escherichia coli O157:H7 in Milk. SLAS Technol 2017;23:57-63. [DOI: 10.1177/2472630317731892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
9
López-Marzo AM, Merkoçi A. Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. LAB ON A CHIP 2016;16:3150-76. [PMID: 27412239 DOI: 10.1039/c6lc00737f] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
10
Srikar R, Suresh D, Saranathan S, Zambre A, Kannan R. Three-Dimensional Nanocomposites: Fluidics Driven Assembly of Metal Nanoparticles on Protein Nanostructures and Their Cell-Line-Dependent Intracellular Trafficking Pattern. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016;32:4877-4885. [PMID: 27088307 DOI: 10.1021/acs.langmuir.6b00911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
11
Verma MS, Wei SC, Rogowski JL, Tsuji JM, Chen PZ, Lin CW, Jones L, Gu FX. Interactions between bacterial surface and nanoparticles govern the performance of "chemical nose" biosensors. Biosens Bioelectron 2016;83:115-25. [PMID: 27108254 DOI: 10.1016/j.bios.2016.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 12/26/2022]
12
Zhao Q, Huang H, Zhang L, Wang L, Zeng Y, Xia X, Liu F, Chen Y. Strategy To Fabricate Naked-Eye Readout Ultrasensitive Plasmonic Nanosensor Based on Enzyme Mimetic Gold Nanoclusters. Anal Chem 2015;88:1412-8. [DOI: 10.1021/acs.analchem.5b04089] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
13
Kumar A, Hens A, Arun RK, Chatterjee M, Mahato K, Layek K, Chanda N. A paper based microfluidic device for easy detection of uric acid using positively charged gold nanoparticles. Analyst 2015;140:1817-21. [PMID: 25655365 DOI: 10.1039/c4an02333a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
14
Nath P, Arun RK, Chanda N. Smart gold nanosensor for easy sensing of lead and copper ions in solution and using paper strips. RSC Adv 2015. [DOI: 10.1039/c5ra14886c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
15
Chen YY, Unnikrishnan B, Li YJ, Huang CC. Functional gold nanoparticles coupled with microporous membranes: a flow controlled assay for colorimetric visualization of proteins. Analyst 2014;139:5977-82. [DOI: 10.1039/c4an01269k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA