1
|
Balonov I, Mattis M, Jarmusch S, Koletzko B, Heinrich K, Neumann J, Werner J, Angele MK, Heiliger C, Jacob S. Metabolomic profiling of upper GI malignancies in blood and tissue: a systematic review and meta-analysis. J Cancer Res Clin Oncol 2024; 150:331. [PMID: 38951269 PMCID: PMC11217139 DOI: 10.1007/s00432-024-05857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE To conduct a systematic review and meta-analysis of case-control and cohort human studies evaluating metabolite markers identified using high-throughput metabolomics techniques on esophageal cancer (EC), cancer of the gastroesophageal junction (GEJ), and gastric cancer (GC) in blood and tissue. BACKGROUND Upper gastrointestinal cancers (UGC), predominantly EC, GEJ, and GC, are malignant tumour types with high morbidity and mortality rates. Numerous studies have focused on metabolomic profiling of UGC in recent years. In this systematic review and meta-analysis, we have provided a collective summary of previous findings on metabolites and metabolomic profiling associated with EC, GEJ and GC. METHODS Following the PRISMA procedure, a systematic search of four databases (Embase, PubMed, MEDLINE, and Web of Science) for molecular epidemiologic studies on the metabolomic profiles of EC, GEJ and GC was conducted and registered at PROSPERO (CRD42023486631). The Newcastle-Ottawa Scale (NOS) was used to benchmark the risk of bias for case-controlled and cohort studies. QUADOMICS, an adaptation of the QUADAS-2 (Quality Assessment of Diagnostic Accuracy) tool, was used to rate diagnostic accuracy studies. Original articles comparing metabolite patterns between patients with and without UGC were included. Two investigators independently completed title and abstract screening, data extraction, and quality evaluation. Meta-analysis was conducted whenever possible. We used a random effects model to investigate the association between metabolite levels and UGC. RESULTS A total of 66 original studies involving 7267 patients that met the required criteria were included for review. 169 metabolites were differentially distributed in patients with UGC compared to healthy patients among 44 GC, 9 GEJ, and 25 EC studies including metabolites involved in glycolysis, anaerobic respiration, tricarboxylic acid cycle, and lipid metabolism. Phosphatidylcholines, eicosanoids, and adenosine triphosphate were among the most frequently reported lipids and metabolites of cellular respiration, while BCAA, lysine, and asparagine were among the most commonly reported amino acids. Previously identified lipid metabolites included saturated and unsaturated free fatty acids and ketones. However, the key findings across studies have been inconsistent, possibly due to limited sample sizes and the majority being hospital-based case-control analyses lacking an independent replication group. CONCLUSION Thus far, metabolomic studies have provided new opportunities for screening, etiological factors, and biomarkers for UGC, supporting the potential of applying metabolomic profiling in early cancer diagnosis. According to the results of our meta-analysis especially BCAA and TMAO as well as certain phosphatidylcholines should be implicated into the diagnostic procedure of patients with UGC. We envision that metabolomics will significantly enhance our understanding of the carcinogenesis and progression process of UGC and may eventually facilitate precise oncological and patient-tailored management of UGC.
Collapse
Affiliation(s)
- Ilja Balonov
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Minca Mattis
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Jarmusch
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University Munich Medical Center, Lindwurmstraße 4, 80337, Munich, Germany
| | - Kathrin Heinrich
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin K Angele
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian Heiliger
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sven Jacob
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
2
|
Song HW, Moon D, Won Y, Cha YK, Yoo J, Park TH, Oh JH. A pattern recognition artificial olfactory system based on human olfactory receptors and organic synaptic devices. SCIENCE ADVANCES 2024; 10:eadl2882. [PMID: 38781346 PMCID: PMC11114221 DOI: 10.1126/sciadv.adl2882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Neuromorphic sensors, designed to emulate natural sensory systems, hold the promise of revolutionizing data extraction by facilitating rapid and energy-efficient analysis of extensive datasets. However, a challenge lies in accurately distinguishing specific analytes within mixtures of chemically similar compounds using existing neuromorphic chemical sensors. In this study, we present an artificial olfactory system (AOS), developed through the integration of human olfactory receptors (hORs) and artificial synapses. This AOS is engineered by interfacing an hOR-functionalized extended gate with an organic synaptic device. The AOS generates distinct patterns for odorants and mixtures thereof, at the molecular chain length level, attributed to specific hOR-odorant binding affinities. This approach enables precise pattern recognition via training and inference simulations. These findings establish a foundation for the development of high-performance sensor platforms and artificial sensory systems, which are ideal for applications in wearable and implantable devices.
Collapse
Affiliation(s)
- Hyun Woo Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongseok Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yousang Won
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Kyung Cha
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jin Yoo
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Mezmale L, Ślefarska-Wolak D, Bhandari MP, Ager C, Veliks V, Patsko V, Lukashenko A, Dias-Neto E, Nunes DN, Bartelli TF, Pelosof AG, Sztokfisz CZ, Murillo R, Królicka A, Mayhew CA, Leja M, Haick H, Mochalski P. Volatilomic profiles of gastric juice in gastric cancer patients. J Breath Res 2024; 18:026010. [PMID: 38467063 DOI: 10.1088/1752-7163/ad324f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Volatilomics is a powerful tool capable of providing novel biomarkers for the diagnosis of gastric cancer. The main objective of this study was to characterize the volatilomic signatures of gastric juice in order to identify potential alterations induced by gastric cancer. Gas chromatography with mass spectrometric detection, coupled with headspace solid phase microextraction as the pre-concentration technique, was used to identify volatile organic compounds (VOCs) released by gastric juice samples collected from 78 gastric cancer patients and two cohorts of controls (80 and 96 subjects) from four different locations (Latvia, Ukraine, Brazil, and Colombia). 1440 distinct compounds were identified in samples obtained from patients and 1422 in samples provided by controls. However, only 6% of the VOCs exhibited an incidence higher than 20%. Amongst the volatiles emitted, 18 showed differences in their headspace concentrations above gastric juice of cancer patients and controls. Ten of these (1-propanol, 2,3-butanedione, 2-pentanone, benzeneacetaldehyde, 3-methylbutanal, butylated hydroxytoluene, 2-pentyl-furan, 2-ethylhexanal, 2-methylpropanal and phenol) appeared at significantly higher levels in the headspace of the gastric juice samples obtained from patients; whereas, eight species showed lower abundance in patients than found in controls. Given that the difference in the volatilomic signatures can be explained by cancer-related changes in the activity of certain enzymes or pathways, the former set can be considered potential biomarkers for gastric cancer, which may assist in developing non-invasive breath tests for the diagnosis of this disease. Further studies are required to elucidate further the mechanisms that underlie the changes in the volatilomic profile as a result of gastric cancer.
Collapse
Affiliation(s)
- Linda Mezmale
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
- Riga Stradins University, LV-1007, Riga, Latvia
| | - Daria Ślefarska-Wolak
- Institute for Breath Research, Universität Innsbruck, Innsbruck and Dornbirn, Austria
- Institute of Chemistry, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Manohar Prasad Bhandari
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Clemens Ager
- Institute for Breath Research, Universität Innsbruck, Innsbruck and Dornbirn, Austria
| | - Viktors Veliks
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga, Latvia
| | | | | | - Emmanuel Dias-Neto
- Medical Genomics group and Endoscopy Center, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Diana Noronha Nunes
- Medical Genomics group and Endoscopy Center, A.C.Camargo Cancer Center, São Paulo, Brazil
| | | | | | | | - Raúl Murillo
- University Hospital San Ignacio, Bogotá, Colombia
| | - Agnieszka Królicka
- Department of Building Materials Technology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, Krakow, Poland
| | - Chris A Mayhew
- Institute for Breath Research, Universität Innsbruck, Innsbruck and Dornbirn, Austria
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
- Digestive Diseases Centre GASTRO, Riga, Latvia
| | - Hossam Haick
- Department of Chemical Engineering and Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Pawel Mochalski
- Institute for Breath Research, Universität Innsbruck, Innsbruck and Dornbirn, Austria
- Institute of Chemistry, Jan Kochanowski University of Kielce, Kielce, Poland
| |
Collapse
|
4
|
Vassilenko V, Moura PC, Raposo M. Diagnosis of Carcinogenic Pathologies through Breath Biomarkers: Present and Future Trends. Biomedicines 2023; 11:3029. [PMID: 38002028 PMCID: PMC10669878 DOI: 10.3390/biomedicines11113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The assessment of volatile breath biomarkers has been targeted with a lot of interest by the scientific and medical communities during the past decades due to their suitability for an accurate, painless, non-invasive, and rapid diagnosis of health states and pathological conditions. This paper reviews the most relevant bibliographic sources aiming to gather the most pertinent volatile organic compounds (VOCs) already identified as putative cancer biomarkers. Here, a total of 265 VOCs and the respective bibliographic sources are addressed regarding their scientifically proven suitability to diagnose a total of six carcinogenic diseases, namely lung, breast, gastric, colorectal, prostate, and squamous cell (oesophageal and laryngeal) cancers. In addition, future trends in the identification of five other forms of cancer, such as bladder, liver, ovarian, pancreatic, and thyroid cancer, through perspective volatile breath biomarkers are equally presented and discussed. All the results already achieved in the detection, identification, and quantification of endogenous metabolites produced by all kinds of normal and abnormal processes in the human body denote a promising and auspicious future for this alternative diagnostic tool, whose future passes by the development and employment of newer and more accurate collection and analysis techniques, and the certification for utilisation in real clinical scenarios.
Collapse
Affiliation(s)
- Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | - Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | | |
Collapse
|
5
|
Hansen AW, Venkatachalam KV. Sulfur-Element containing metabolic pathways in human health and crosstalk with the microbiome. Biochem Biophys Rep 2023; 35:101529. [PMID: 37601447 PMCID: PMC10439400 DOI: 10.1016/j.bbrep.2023.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
In humans, methionine derived from dietary proteins is necessary for cellular homeostasis and regeneration of sulfur containing pathways, which produce inorganic sulfur species (ISS) along with essential organic sulfur compounds (OSC). In recent years, inorganic sulfur species have gained attention as key players in the crosstalk of human health and the gut microbiome. Endogenously, ISS includes hydrogen sulfide (H2S), sulfite (SO32-), thiosulfate (S2O32-), and sulfate (SO42-), which are produced by enzymes in the transsulfuration and sulfur oxidation pathways. Additionally, sulfate-reducing bacteria (SRB) in the gut lumen are notable H2S producers which can contribute to the ISS pools of the human host. In this review, we will focus on the systemic effects of sulfur in biological pathways, describe the contrasting mechanisms of sulfurylation versus phosphorylation on the hydroxyl of serine/threonine and tyrosine residues of proteins in post-translational modifications, and the role of the gut microbiome in human sulfur metabolism.
Collapse
Affiliation(s)
- Austin W. Hansen
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | | |
Collapse
|
6
|
Identification and validation of volatile organic compounds in bile for differential diagnosis of perihilar cholangiocarcinoma. Clin Chim Acta 2023; 541:117235. [PMID: 36716909 DOI: 10.1016/j.cca.2023.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Early and differential diagnosis of perihilar cholangiocarcinoma (PHCCA) is highly challenging. This study aimed to evaluate whether volatile organic compounds (VOCs) in bile samples could be emerging diagnostic biomarkers for PHCCA. We collected 200 bile samples from patients with PHCCA and benign biliary diseases (BBD), including a 140-patient training cohort and an 60-patient test cohort. Gas chromatography-ion mobility spectrometry (GC-IMS) was used for VOCs detection. The predictive models were constructed using machine learning algorithms. Our analysis detected 19 VOC substances using GC-IMS in the bile samples and resulted in the identification of three new VOCs, 2-methoxyfuran, propyl isovalerate, and diethyl malonate that were found in bile. Unsupervised hierarchical clustering analysis supported that VOCs detected in the bile could distinguish PHCCA from BBD. Twelve VOCs defined according to 32 signal peaks had significant statistical significance between BBD and PHCCA, including four up-regulated VOCs in PHCCA, such as 2-ethyl-1-hexanol, propyl isovalerate, cyclohexanone, and acetophenone, while the rest eight VOCs were down-regulated. ROC curve analysis revealed that machine learning models based on VOCs could help diagnosing PHCCA. Among them, SVM provided the highest AUC of 0·966, with a sensitivity and specificity of 93·1% and 100%, respectively. The diagnostic model based on different VOC spectra could be a feasible method for the differential diagnosis of PHCCA.
Collapse
|
7
|
Yang H, Mou Y, Hu B. Diagnostic Ability of Volatile Organic Compounds in Digestive Cancer: A Systematic Review With Meta-Analysis. Clin Med Insights Oncol 2022; 16:11795549221105027. [PMID: 35754925 PMCID: PMC9218909 DOI: 10.1177/11795549221105027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Volatile organic compounds (VOCs) have been involved in cancer diagnosis via breath, urine, and feces. We aimed to assess the diagnostic ability of VOCs on digestive cancers. Methods: We systematically reviewed prospective clinical trials evaluating VOCs’ diagnostic ability on esophageal, gastric, colorectal, hepatic, and pancreatic cancer (PC). Databases including PubMed and Ovid-Medline were searched. Results: A total of 35 trials with 5314 patient-times qualified for inclusion. The pooled sensitivity of VOCs diagnosing gastroesophageal cancer from healthy controls is 0.89 (95% confidence interval [CI]: 0.82-0.94), the pooled specificity is 0.890 (95% CI: 0.84-0.93), and area under the curve (AUC) of the summary receiver operating characteristic curve is 0.95 (95% CI: 0.93-0.95). The pooled sensitivity of VOCs diagnosing colorectal cancer from heathy controls is 0.92 (95% CI: 0.85-0.96), the pooled specificity is 0.88 (95% CI: 0.77-0.94), and the AUC is 0.96 (95% CI: 0.94-0.97). The pooled sensitivity of VOCs distinguishing gastrointestinal (GI) cancer from precancerous lesions is 0.84 (95% CI: 0.67-0.92), the pooled specificity is 0.74 (95% CI: 0.43-0.91), and the AUC is 0.87 (95% CI: 0.84-0.89). The pooled sensitivity of VOCs diagnosing hepatocellular carcinoma is 0.68 (95% CI: 0.52-0.81), the pooled specificity is 0.81 (95% CI: 0.47-0.96), and the AUC is 0.78 (95% CI: 0.74-0.81). The pooled sensitivity of VOCs diagnosing PC is 0.88 (95% CI: 0.80-0.93), the pooled specificity is 0.82 (95% CI: 0.62-0.93), and the AUC is 0.92 (95% CI: 0.89-0.94). Conclusions: Volatile organic compounds have potential role in diagnosing GI cancer with comparatively high sensitivity, specificity, and AUC (PROSPERO registration number: CRD42021260039).
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Khattak S, Rauf MA, Khan NH, Zhang QQ, Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY, Ji XY, Wu DD. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules 2022; 27:3389. [PMID: 35684331 PMCID: PMC9181954 DOI: 10.3390/molecules27113389] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Muhammad Jahangir
- Department of Psychiatric and Mental Health, Central South University, Changsha 410078, China;
| | - Chun-Yang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of General Thoracic Surgery, Hami Central Hospital, Hami 839000, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
9
|
Molecular Functions of Hydrogen Sulfide in Cancer. PATHOPHYSIOLOGY 2021; 28:437-456. [PMID: 35366284 PMCID: PMC8830448 DOI: 10.3390/pathophysiology28030028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that exerts a multitude of functions in both physiologic and pathophysiologic processes. H2S-synthesizing enzymes are increased in a variety of human malignancies, including colon, prostate, breast, renal, urothelial, ovarian, oral squamous cell, and thyroid cancers. In cancer, H2S promotes tumor growth, cellular and mitochondrial bioenergetics, migration, invasion, angiogenesis, tumor blood flow, metastasis, epithelia–mesenchymal transition, DNA repair, protein sulfhydration, and chemotherapy resistance Additionally, in some malignancies, increased H2S-synthesizing enzyme expression correlates with a worse prognosis and a higher tumor stage. Here we review the role of H2S in cancer, with an emphasis on the molecular mechanisms by which H2S promotes cancer development, progression, dedifferentiation, and metastasis.
Collapse
|
10
|
Xiang L, Wu S, Hua Q, Bao C, Liu H. Volatile Organic Compounds in Human Exhaled Breath to Diagnose Gastrointestinal Cancer: A Meta-Analysis. Front Oncol 2021; 11:606915. [PMID: 33747921 PMCID: PMC7970758 DOI: 10.3389/fonc.2021.606915] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Human exhaled volatile organic compounds (VOCs) are being extensively studied for the purposes of noninvasive cancer diagnoses. This article was primarily to assess the feasibility of utilizing exhaled VOCs analysis for gastrointestinal cancer (GIC) diagnosis. Methods PRISMA-based system searches were conducted for related studies of exhaled VOCs in GIC diagnosis based on predetermined criteria. Relevant articles on colorectal cancer and gastroesophageal cancer were summarized, and meta analysis was performed on articles providing sensitivity and specificity data. Results From 2,227 articles, 14 were found to meet inclusion criteria, six of which were on colorectal cancer (CRC) and eight on Gastroesophageal cancer(GEC). Five articles could provide specific data of sensitivity and specificity in GEC, which were used for meta-analysis. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated based on the combination of these data, and were 85.0% [95% confidence interval (CI): 79.0%-90.0%], 89.0% (95%CI: 86.0%-91.0%), 41.30 (21.56-79.10), and 0.93, respectively. Conclusion VOCs can distinguish gastrointestinal cancers from other gastrointestinal diseases, opening up a new avenue for the diagnosis and identification of gastrointestinal cancers, and the analysis of VOCs in exhaled breath has potential clinical application in screening. VOCs are promising tumor biomarkers for GIC diagnosis. Furthermore, limitations like the heterogeneity of diagnostic VOCs between studies should be minded.
Collapse
Affiliation(s)
- Lijuan Xiang
- Department of Tumor Biotherapy (5th Ward of the Department of Oncology), Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sihan Wu
- Department of Tumor Biotherapy (5th Ward of the Department of Oncology), Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Oncology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Qingling Hua
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, China
| | - Chuyang Bao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hu Liu
- Department of Tumor Biotherapy (5th Ward of the Department of Oncology), Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
Leiherer A, Ślefarska D, Leja M, Heinzle C, Mündlein A, Kikuste I, Mezmale L, Drexel H, Mayhew CA, Mochalski P. The Volatilomic Footprints of Human HGC-27 and CLS-145 Gastric Cancer Cell Lines. Front Mol Biosci 2021; 7:607904. [PMID: 33585559 PMCID: PMC7874186 DOI: 10.3389/fmolb.2020.607904] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
The presence of certain volatile biomarkers in the breath of patients with gastric cancer has been reported by several studies; however, the origin of these compounds remains controversial. In vitro studies, involving gastric cancer cells may address this problem and aid in revealing the biochemical pathways underlying the production and metabolism of gastric cancer volatile indicators. Gas chromatography with mass spectrometric detection, coupled with headspace needle trap extraction as the pre-concentration technique, has been applied to map the volatilomic footprints of human HGC-27 and CLS-145 gastric cancer cell lines and normal Human Stomach Epithelial Cells (HSEC). In total, 27 volatile compounds are found to be associated with metabolism occurring in HGC-27, CLS-145, and HSEC. Amongst these, the headspace concentrations of 12 volatiles were found to be reduced compared to those above just the cultivating medium, namely there was an observed uptake of eight aldehydes (2-methylpropanal, 2-methyl-2-propenal, 2-methylbutanal, 3-methylbutanal, hexanal, heptanal, nonanal, and benzaldehyde), three heterocyclic compounds (2-methyl-furan, 2-ethyl-furan, and 2-pentyl-furan), and one sulfur-containing compound (dimethyl disulphide). For the other 15 volatiles, the headspace concentrations above the healthy and cancerous cells were found to be higher than those found above the cultivating medium, namely the cells were found to release three esters (ethyl acetate, ethyl propanoate, and ethyl 2-methylbutyrate), seven ketones (2-pentanone, 2-heptanone, 2-nonanone, 2-undecanone, 2-tridecanone, 2-pentadecanone, and 2-heptadecanone), three alcohols (2-methyl-1-butanol, 3-methyl-1-butanol, and 2-ethyl-1-hexanol), one aromatic compound (toluene), and one sulfur containing compound [2-methyl-5-(methylthio) furan]. In comparison to HSEC, HGC-27 cancer cell lines were found to have significantly altered metabolism, manifested by an increased production of methyl ketones containing an odd number of carbons. Amongst these species, three volatiles were found exclusively to be produced by this cell line, namely 2-undecanone, 2-tridecanone, and 2-heptadecanone. Another interesting feature of the HGC-27 footprint is the lowered level of alcohols and esters. The CLS-145 cells exhibited less pronounced changes in their volatilomic pattern compared to HSEC. Their footprint was characterized by the upregulated production of esters and 2-ethyl-hexanol and downregulated production of other alcohols. We have therefore demonstrated that it is possible to differentiate between cancerous and healthy gastric cells using biochemical volatile signatures.
Collapse
Affiliation(s)
- Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Medical Central Laboratories, Feldkirch, Austria
| | - Daria Ślefarska
- Institute for Breath Research, University of Innsbruck, Dornbirn, Austria
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Axel Mündlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Ilze Kikuste
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
| | - Linda Mezmale
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Drexel University College of Medicine, Philadelphia, PA, United States
| | - Chris A. Mayhew
- Institute for Breath Research, University of Innsbruck, Dornbirn, Austria
- Molecular Physics Group, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
| | - Paweł Mochalski
- Institute for Breath Research, University of Innsbruck, Dornbirn, Austria
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
12
|
Xie Y, Li Q, Hua L, Chen P, Hu F, Wan N, Li H. Highly selective and sensitive online measurement of trace exhaled HCN by acetone-assisted negative photoionization time-of-flight mass spectrometry with in-source CID. Anal Chim Acta 2020; 1111:31-39. [PMID: 32312394 DOI: 10.1016/j.aca.2020.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
Exhaled hydrogen cyanide (HCN) has been extensively investigated as a promising biomarker of the presence of Pseudomonas aeruginosa in the airways of patients with cystic fibrosis (CF) disease. Its concentration profile for exhalation can provide useful information for medical disease diagnosis and therapeutic procedures. However, the complexity of breath gas, like high humidity, carbon dioxide (CO2) and trace organic compounds, usually leads to quantitative error, poor selectivity and sensitivity for HCN with some of existing analytical techniques. In this work, acetone-assisted negative photoionization (AANP) based on a vacuum ultraviolet (VUV) lamp with a time-of- flight mass spectrometer (AANP-TOFMS) was firstly proposed for online measurement of trace HCN in human breath. In-source collision-induced dissociation (CID) was adopted for sensitivity improvement and the signal response of the characteristic ion CN- (m/z 26) was improved by about 24-fold. For accurate and reliable analysis of the exhaled HCN, matrix influences in the human breath including humidity and CO2 were investigated, respectively. A Nafion tube was used for online dehumidification of breath samples. Matrix-adapted calibration in the concentration range of 0.5-50 ppbv with satisfactory dynamic linearity and repeatability was obtained. The limit of quantitation (LOQ) for HCN at 0.5 ppbv was achieved in the presence of 100% relative humidity and 4% CO2. Finally, the method was successfully applied for online determination of human mouth- and nose-exhaled HCN, and the nose-exhaled HCN were proved to be reliable for assessing systemic HCN levels for individuals. The results are encouraging and highlight the potential of AANP-TOFMS with in-source CID as a selective, accurate, sensitive and noninvasive technique for determination of the exhaled HCN for CF clinical diagnosis and HCN poisoning assessment.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Qingyun Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Lei Hua
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China.
| | - Ping Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Fan Hu
- Henan Province Medical Instrument Testing Institute, 79 Xiongerhe Road, Zhengzhou, 450018, People's Republic of China
| | - Ningbo Wan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China.
| |
Collapse
|
13
|
Gastric cancer depends on aldehyde dehydrogenase 3A1 for fatty acid oxidation. Sci Rep 2019; 9:16313. [PMID: 31705020 PMCID: PMC6841934 DOI: 10.1038/s41598-019-52814-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
The major source of ATP in cancer cells remains unclear. Here, we examined energy metabolism in gastric cancer cells and found increased fatty acid oxidation and increased expression of ALDH3A1. Metabolic analysis showed that lipid peroxidation by reactive oxygen species led to spontaneous production of 4-hydroxynonenal, which was converted to fatty acids with NADH production by ALDH3A1, resulting in further fatty acid oxidation. Inhibition of ALDH3A1 by knock down using siRNA of ALDH3A1 resulted in significantly reduced ATP production by cancer cells, leading to apoptosis. Oxidative phosphorylation by mitochondria in gastric cancer cells was driven by NADH supplied via fatty acid oxidation. Therefore, blockade of ALDH3A1 together with mitochondrial complex I using gossypol and phenformin led to significant therapeutic effects in a preclinical gastric cancer model.
Collapse
|
14
|
Adam ME, Fehervari M, Boshier PR, Chin ST, Lin GP, Romano A, Kumar S, Hanna GB. Mass-Spectrometry Analysis of Mixed-Breath, Isolated-Bronchial-Breath, and Gastric-Endoluminal-Air Volatile Fatty Acids in Esophagogastric Cancer. Anal Chem 2019; 91:3740-3746. [PMID: 30699297 DOI: 10.1021/acs.analchem.9b00148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A noninvasive breath test has the potential to improve survival from esophagogastric cancer by facilitating earlier detection. This study aimed to investigate the production of target volatile fatty acids (VFAs) in esophagogastric cancer through analysis of the ex vivo headspace above underivatized tissues and in vivo analysis within defined anatomical compartments, including analysis of mixed breath, isolated bronchial breath, and gastric-endoluminal air. VFAs were measured by PTR-ToF-MS and GC-MS. Levels of VFAs (acetic, butyric, pentanoic, and hexanoic acids) and acetone were elevated in ex vivo experiments in the headspace above esophagogastric cancer compared with the levels in samples from control subjects with morphologically normal and benign conditions of the upper gastrointestinal tract. In 25 patients with esophagogastric cancer and 20 control subjects, receiver-operating-characteristic analysis for the cancer-specific VFAs butyric acid ( P < 0.001) and pentatonic acid ( P = 0.005) within in vivo gastric-endoluminal air gave an area under the curve of 0.80 (95% confidence interval of 0.65 to 0.93, P = 0.01). Compared with mixed- and bronchial-breath samples, all examined VFAs were found in highest concentrations within esophagogastric-endoluminal air. In addition, VFAs were higher in all samples derived from cancer patients compared with in the controls. Equivalence of VFA levels within the mixed and bronchial breath of cancer patients suggests that their origin within breath is principally derived from the lungs and, by inference, from the systemic circulation as opposed to direct passage from the upper gastrointestinal tract. These findings highlight the potential to utilize VFAs for endoluminal-gas biopsies and noninvasive mixed-exhaled-breath testing for esophagogastric-cancer detection.
Collapse
Affiliation(s)
- Mina E Adam
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Matyas Fehervari
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Piers R Boshier
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Sung-Tong Chin
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Geng-Ping Lin
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Andrea Romano
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| | - Sacheen Kumar
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
- Department of Upper Gastrointestinal Surgery , The Royal Marsden Hospital , London SW3 6JJ , United Kingdom
| | - George B Hanna
- Department of Surgery & Cancer , Imperial College London , London W2 1NY , United Kingdom
| |
Collapse
|
15
|
Mochalski P, Leja M, Gasenko E, Skapars R, Santare D, Sivins A, Aronsson DE, Ager C, Jaeschke C, Shani G, Mitrovics J, Mayhew CA, Haick H. Ex vivo emission of volatile organic compounds from gastric cancer and non-cancerous tissue. J Breath Res 2018; 12:046005. [PMID: 29893713 DOI: 10.1088/1752-7163/aacbfb] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The presence of certain volatile organic compounds (VOCs) in the breath of patients with gastric cancer has been reported by a number of research groups; however, the source of these compounds remains controversial. Comparison of VOCs emitted from gastric cancer tissue to those emitted from non-cancerous tissue would help in understanding which of the VOCs are associated with gastric cancer and provide a deeper knowledge on their generation. Gas chromatography with mass spectrometric detection (GC-MS) coupled with head-space needle trap extraction (HS-NTE) as the pre-concentration technique, was used to identify and quantify VOCs released by gastric cancer and non-cancerous tissue samples collected from 41 patients during surgery. Excluding contaminants, a total of 32 VOCs were liberated by the tissue samples. The emission of four of them (carbon disulfide, pyridine, 3-methyl-2-butanone and 2-pentanone) was significantly higher from cancer tissue, whereas three compounds (isoprene, γ-butyrolactone and dimethyl sulfide) were in greater concentration from the non-cancerous tissues (Wilcoxon signed-rank test, p < 0.05). Furthermore, the levels of three VOCs (2-methyl-1-propene, 2-propenenitrile and pyrrole) were correlated with the occurrence of H. pylori; and four compounds (acetonitrile, pyridine, toluene and 3-methylpyridine) were associated with tobacco smoking. Ex vivo analysis of VOCs emitted by human tissue samples provides a unique opportunity to identify chemical patterns associated with a cancerous state and can be considered as a complementary source of information on volatile biomarkers found in breath, blood or urine.
Collapse
Affiliation(s)
- Pawel Mochalski
- Institute for Breath Research, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria. Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15G, PL-25406 Kielce, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yazbeck R, Jaenisch SE, Watson DI. From blood to breath: New horizons for esophageal cancer biomarkers. World J Gastroenterol 2016; 22:10077-10083. [PMID: 28028355 PMCID: PMC5155166 DOI: 10.3748/wjg.v22.i46.10077] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/05/2016] [Accepted: 10/30/2016] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer is a lethal cancer encompassing adenocarcinoma and squamous cell carcinoma sub-types. The global incidence of esophageal cancer is increasing world-wide, associated with the increased prevalence of associated risk factors. The asymptomatic nature of disease often leads to late diagnosis and five-year survival rates of less than 15%. Current diagnostic tools are restricted to invasive and costly endoscopy and biopsy for histopathology. Minimally and non-invasive biomarkers of esophageal cancer are needed to facilitate earlier detection and better clinical management of patients. This paper summarises recent insights into the development and clinical validation of esophageal cancer biomarkers, focussing on circulating markers in the blood, and the emerging area of breath and odorant biomarkers.
Collapse
|
17
|
Španěl P, Sovová K, Dryahina K, Doušová T, Dřevínek P, Smith D. Do linear logistic model analyses of volatile biomarkers in exhaled breath of cystic fibrosis patients reliably indicate
Pseudomonas aeruginosa
infection? J Breath Res 2016; 10:036013. [DOI: 10.1088/1752-7155/10/3/036013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Trecate G, Sinues PML, Orlandi R. Noninvasive strategies for breast cancer early detection. Future Oncol 2016; 12:1395-411. [DOI: 10.2217/fon-2015-0071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast cancer screening and presurgical diagnosis are currently based on mammography, ultrasound and more sensitive imaging technologies; however, noninvasive biomarkers represent both a challenge and an opportunity for early detection of cancer. An extensive number of potential breast cancer biomarkers have been discovered by microarray hybridization or sequencing of circulating DNA, noncoding RNA and blood cell RNA; multiplex analysis of immune-related molecules and mass spectrometry-based approaches for high-throughput detection of protein, endogenous peptides, circulating and volatile metabolites. However, their medical relevance and their translation to clinics remain to be exploited. Once they will be fully validated, cancer biomarkers, used in combination with the current and emerging imaging technologies, represent an avenue to a personalized breast cancer diagnosis.
Collapse
Affiliation(s)
- Giovanna Trecate
- Department of Imaging Diagnosis & Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Rosaria Orlandi
- Molecular Targeting Unit, Department of Experimental Oncology & Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
19
|
Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas. Bioanalysis 2016; 8:1183-201. [PMID: 27212131 DOI: 10.4155/bio-2016-0038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This article reflects our observations of recent accomplishments made using selected ion flow tube MS (SIFT-MS). Only brief descriptions are given of SIFT-MS as an analytical method and of the recent extensions to the underpinning analytical ion chemistry required to realize more robust analyses. The challenge of breath analysis is given special attention because, when achieved, it renders analysis of other air media relatively straightforward. Brief overviews are given of recent SIFT-MS breath analyses by leading research groups, noting the desirability of detection and quantification of single volatile biomarkers rather than reliance on statistical analyses, if breath analysis is to be accepted into clinical practice. A 'strengths, weaknesses, opportunities and threats' analysis of SIFT-MS is made, which should help to increase its utility for trace gas analysis.
Collapse
|
20
|
Jaenisch S, Squire M, Butler R, Yazbeck R. In vitro development and validation of a non-invasive (13)C-stable isotope assay for ornithine decarboxylase. J Breath Res 2016; 10:026009. [PMID: 27137347 DOI: 10.1088/1752-7155/10/2/026009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oesophageal cancer is a significant cause of cancer related mortality, with increasing incidence worldwide. Ornithine decarboxylase (ODC) is an enzyme involved in polyamine synthesis and cellular proliferation, and ODC expression and activity has been implicated as a prognostic marker of oesophageal cancer. This study aimed to develop and optimise an in vitro (13)C-stable isotope assay for ODC activity as a non-invasive marker of oesophageal cancer. Experiments were performed in triplicate (n = 3/group/cell line) using Caco2, HeLa, Flo-1, OE33, TE7 and OE21 cell lines (colorectal, cervical, oesophageal adenocarcinoma and oesophageal squamous carcinoma respectively). Following addition of 2mM (13)C-ornithine to cells, 10 ml gas samples were collected from the headspace every 20 min for a total of five hours. Gas samples were analysed using isotope ratio mass spectrometry to quantify (13)CO2. Assay specificity was determined using the selective ODC inhibitor, N-(4'-Pyridoxil)-Ornithine(BOC)-OMe (POB). All data is expressed as δ (13)CO2 from baseline. High ODC activity was detected by (13)C-ornithine assay in Caco2 (32.00 ± 1.12 δ (13)CO2) in contrast to HeLa cells (5.44 ± 0.14 δ (13)CO2) cells. POB inhibited activity in Caco2 cells to 12.87 ± 1.10 δ (13)CO2. Differential ODC activity was detected in all oesophageal cancer cells, and 53 h incubation of cell lines with POB reduced activity by 72%, 56%, 64% and 69% in the Flo-1, OE33, OE21 and TE7 cell lines respectively. We have shown that ODC activity can be selectively detected by a non-invasive, stable-isotope (13)C-ornithine assay. ODC activity was detected in all oesophageal cancer cell lines in vitro. Further studies are indicated to quantify ODC activity in oesophageal cancer patients.
Collapse
Affiliation(s)
- Simone Jaenisch
- School of Medicine, Department of Surgery, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia. Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
21
|
Differentiating head and neck carcinoma from lung carcinoma with an electronic nose: a proof of concept study. Eur Arch Otorhinolaryngol 2016; 273:3897-3903. [PMID: 27083159 PMCID: PMC5052311 DOI: 10.1007/s00405-016-4038-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/06/2016] [Indexed: 12/26/2022]
Abstract
Disease specific patterns of volatile organic compounds can be detected in exhaled breath using an electronic nose (e-nose). The aim of this study is to explore whether an e-nose can differentiate between head and neck, and lung carcinoma. Eighty-seven patients received an e-nose measurement before any oncologic treatment. We used PARAFAC/TUCKER3 tensor decomposition for data reduction and an artificial neural network for analysis to obtain binary results; either diagnosed as head and neck or lung carcinoma. Via a leave-one-out method, cross-validation of the data was performed. In differentiating head and neck from lung carcinoma patients, a diagnostic accuracy of 93 % was found. After cross-validation of the data, this resulted in a diagnostic accuracy of 85 %. There seems to be a potential for e-nose as a diagnostic tool in HNC and lung carcinoma. With a fair diagnostic accuracy, an e-nose can differentiate between the two tumor entities.
Collapse
|
22
|
Amal H, Leja M, Funka K, Skapars R, Sivins A, Ancans G, Liepniece-Karele I, Kikuste I, Lasina I, Haick H. Detection of precancerous gastric lesions and gastric cancer through exhaled breath. Gut 2016; 65:400-7. [PMID: 25869737 DOI: 10.1136/gutjnl-2014-308536] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/07/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Timely detection of gastric cancer (GC) and the related precancerous lesions could provide a tool for decreasing both cancer mortality and incidence. DESIGN 968 breath samples were collected from 484 patients (including 99 with GC) for two different analyses. The first sample was analysed by gas chromatography linked to mass spectrometry (GCMS) while applying t test with multiple corrections (p value<0.017); the second by cross-reactive nanoarrays combined with pattern recognition. For the latter, 70% of the samples were randomly selected and used in the training set while the remaining 30% constituted the validation set. The operative link on gastric intestinal metaplasia (OLGIM) assessment staging system was used to stratify the presence/absence and risk level of precancerous lesions. Patients with OLGIM stages III-IV were considered to be at high risk. RESULTS According to the GCMS results, patients with cancer as well as those at high risk had distinctive breath-print compositions. Eight significant volatile organic compounds (p value<0.017) were detected in exhaled breath in the different comparisons. The nanoarray analysis made it possible to discriminate between the patients with GC and the control group (OLGIM 0-IV) with 73% sensitivity, 98% specificity and 92% accuracy. The classification sensitivity, specificity, and accuracy between the subgroups was as follows: GC versus OLGIM 0-II-97%, 84% and 87%; GC versus OLGIM III-IV-93%, 80% and 90%; but OLGIM I-II versus OLGIM III-IV and dysplasia combined-83%, 60% and 61%, respectively. CONCLUSIONS Nanoarray analysis could provide the missing non-invasive screening tool for GC and related precancerous lesions as well as for surveillance of the latter. TRIAL REGISTRATION NUMBER Clinical Trials.gov number, NCT01420588 (3/11/2013).
Collapse
Affiliation(s)
- Haitham Amal
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Marcis Leja
- Faculty of Medicine, University of Latvia, Riga, Latvia Department of Research, Riga East University Hospital, Riga, Latvia Digestive Diseases Centre GASTRO, Riga, Latvia
| | - Konrads Funka
- Faculty of Medicine, University of Latvia, Riga, Latvia Department of Research, Riga East University Hospital, Riga, Latvia Digestive Diseases Centre GASTRO, Riga, Latvia
| | - Roberts Skapars
- Faculty of Medicine, University of Latvia, Riga, Latvia Department of Research, Riga East University Hospital, Riga, Latvia
| | - Armands Sivins
- Faculty of Medicine, University of Latvia, Riga, Latvia Department of Research, Riga East University Hospital, Riga, Latvia
| | - Guntis Ancans
- Faculty of Medicine, University of Latvia, Riga, Latvia Department of Research, Riga East University Hospital, Riga, Latvia
| | - Inta Liepniece-Karele
- Faculty of Medicine, University of Latvia, Riga, Latvia Department of Research, Riga East University Hospital, Riga, Latvia Academic Histology laboratory, Riga, Latvia
| | - Ilze Kikuste
- Faculty of Medicine, University of Latvia, Riga, Latvia Digestive Diseases Centre GASTRO, Riga, Latvia
| | - Ieva Lasina
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
23
|
Mass Spectrometric Analysis of Exhaled Breath for the Identification of Volatile Organic Compound Biomarkers in Esophageal and Gastric Adenocarcinoma. Ann Surg 2016; 262:981-90. [PMID: 25575255 DOI: 10.1097/sla.0000000000001101] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The present study assessed whether exhaled breath analysis using Selected Ion Flow Tube Mass Spectrometry could distinguish esophageal and gastric adenocarcinoma from noncancer controls. BACKGROUND The majority of patients with upper gastrointestinal cancer present with advanced disease, resulting in poor long-term survival rates. Novel methods are needed to diagnose potentially curable upper gastrointestinal malignancies. METHODS A Profile-3 Selected Ion Flow Tube Mass Spectrometry instrument was used for analysis of volatile organic compounds (VOCs) within exhaled breath samples. All study participants had undergone upper gastrointestinal endoscopy on the day of breath sampling. Receiver operating characteristic analysis and a diagnostic risk prediction model were used to assess the discriminatory accuracy of the identified VOCs. RESULTS Exhaled breath samples were analyzed from 81 patients with esophageal (N = 48) or gastric adenocarcinoma (N = 33) and 129 controls including Barrett's metaplasia (N = 16), benign upper gastrointestinal diseases (N = 62), or a normal upper gastrointestinal tract (N = 51). Twelve VOCs-pentanoic acid, hexanoic acid, phenol, methyl phenol, ethyl phenol, butanal, pentanal, hexanal, heptanal, octanal, nonanal, and decanal-were present at significantly higher concentrations (P < 0.05) in the cancer groups than in the noncancer controls. The area under the ROC curve using these significant VOCs to discriminate esophageal and gastric adenocarcinoma from those with normal upper gastrointestinal tracts was 0.97 and 0.98, respectively. The area under the ROC curve for the model and validation subsets of the diagnostic prediction model was 0.92 ± 0.01 and 0.87 ± 0.03, respectively. CONCLUSIONS Distinct exhaled breath VOC profiles can distinguish patients with esophageal and gastric adenocarcinoma from noncancer controls.
Collapse
|
24
|
Markar SR, Lagergren J, Hanna GB. Research protocol for a diagnostic study of non-invasive exhaled breath analysis for the prediction of oesophago-gastric cancer. BMJ Open 2016; 6:e009139. [PMID: 26739727 PMCID: PMC4716255 DOI: 10.1136/bmjopen-2015-009139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Despite improvements in a range of chemo, radio and surgical therapies, the overall survival at 5 years from oesophago-gastric cancer remains poor and ranges from 10% to 30%. Early diagnosis is a key strategy to improve survival but early disease stage has non-specific symptoms that are very common while the warning clinical picture often indicates advanced disease. The aim of this research is to validate a breath test to predict oesophago-gastric cancer therefore allowing earlier diagnosis and introduction of treatment. METHODS AND ANALYSIS The study will include 325 patients and be conducted across four major oesophago-gastric cancer centres in London, UK. This research will utilise selected ion flow-tube mass spectrometry (SIFT-MS) exhaled breath analysis, for comparison of predicted cancer risk based on the previously developed volatile organic compound exhaled breath model, with endoscopic findings and histology biopsies. This will determine the overall diagnostic accuracy for non-invasive breath testing for the diagnosis of oesophago-gastric cancer. ETHICS AND DISSEMINATION Approval was gained from NRES Committee London, on 16 July 2014 (REC reference 14/LO/1136) for the completion of this study. Different methods of dissemination will be employed including international clinical and patient group presentations, and publication of research outputs in a high-impact clinical journal. This is to ensure that the findings from this research will reach patients, primary care practitioners, scientists, hospital specialists in gastroenterology, oncology and surgery, health policymakers and commissioners as well as NHS regulatory bodies. TRIALS REGISTRATION NUMBER UKCRN18063; Pre-results.
Collapse
Affiliation(s)
- Sheraz R Markar
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jesper Lagergren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - George B Hanna
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
25
|
Hydrogen sulfide in cancer: Friend or foe? Nitric Oxide 2015; 50:38-45. [PMID: 26297862 DOI: 10.1016/j.niox.2015.08.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/26/2015] [Accepted: 08/17/2015] [Indexed: 01/07/2023]
Abstract
Hydrogen sulfide (H2S) is the third gaseous signaling molecule that plays important roles in cancer biological processes. Recent studies indicate that H2S has both pro-cancer and anti-cancer effects. Endogenous H2S can exert pro-cancer functions through induction of angiogenesis regulation of mitochondrial bioenergetics, acceleration of cell cycle progression, and anti-apoptosis mechanisms. Thus, the inhibition of the production of H2S in cancer cells may be a new cancer treatment strategy. In contrast to the pro-cancer effect of H2S, relatively high concentrations of exogenous H2S could suppress the growth of cancer cells by inducing uncontrolled intracellular acidification, inducing cell cycle arrest, and promoting apoptosis. Therefore, H2S donors and H2S-releasing hybrids could be designed and developed as novel anti-cancer drugs. In this review, the production and metabolism of H2S in cancer cells are summarized and the role and mechanism of H2S in cancer development and progression are further discussed.
Collapse
|
26
|
Navaneethan U, Parsi MA, Lourdusamy D, Grove D, Sanaka MR, Hammel JP, Vargo JJ, Dweik RA. Volatile Organic Compounds in Urine for Noninvasive Diagnosis of Malignant Biliary Strictures: A Pilot Study. Dig Dis Sci 2015; 60:2150-7. [PMID: 25708900 DOI: 10.1007/s10620-015-3596-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/17/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND The use of volatile organic compounds (VOCs) in bile was recently studied and appeared promising for diagnosis of malignancy. Noninvasive diagnosis of malignant biliary strictures by using VOCs in urine has not been studied. AIM To identify potential VOCs in urine to diagnose malignant biliary strictures. METHODS In this prospective cross-sectional study, urine was obtained immediately prior to ERCP from consecutive patients with biliary strictures. Selected-ion flow-tube mass spectrometry was used to analyze the concentration of VOCs in urine samples. RESULTS Fifty-four patients with biliary strictures were enrolled. Fifteen patients had malignant stricture [six cholangiocarcinoma (CCA) and nine pancreatic cancer], and 39 patients had benign strictures [10 primary sclerosing cholangitis (PSC) and 29 with benign biliary conditions including chronic pancreatitis and papillary stenosis]. The concentration of several compounds (ethanol and 2-propanol) was significantly different in patients with malignant compared with benign biliary strictures (p < 0.05). Using receiver operating characteristic curve analysis, we developed a model for the diagnosis of malignant biliary strictures adjusted for age and gender based on VOC levels of 2-propranol, carbon disulfide, and trimethyl amine (TMA). The model [-2.4191 * log(2-propanol) + 1.1617 * log(TMA) - 1.2172 * log(carbon disulfide)] ≥ 7.73 identified the patients with malignant biliary stricture [area under the curve (AUC = 0.83)], with 93.3 % sensitivity and 61.5 % specificity (p = 0.009). Comparing patients with CCA and PSC, the model [38.864 * log(ethane) - 3.989 * log(1-octene)] ≤ 169.9 could identify CCA with 80 % sensitivity and 100 % specificity (AUC = 0.9). CONCLUSIONS Measurement of VOCs in urine may diagnose malignant biliary strictures noninvasively.
Collapse
Affiliation(s)
- Udayakumar Navaneethan
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland, OH, USA,
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Huddy JR, Ni MZ, Markar SR, Hanna GB. Point-of-care testing in the diagnosis of gastrointestinal cancers: Current technology and future directions. World J Gastroenterol 2015; 21:4111-4120. [PMID: 25892860 PMCID: PMC4394071 DOI: 10.3748/wjg.v21.i14.4111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/20/2015] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
Abstract
Point-of-care (POC) tests enable rapid results and are well established in medical practice. Recent advances in analytical techniques have led to a new generation of POC devices that will alter gastrointestinal diagnostic pathways. This review aims to identify current and new technologies for the POC diagnosis of gastrointestinal cancer. A structured search of the Embase and Medline databases was performed. Papers reporting diagnostic tests for gastrointestinal cancer available as a POC device or containing a description of feasibility for POC application were included. Studies recovered were heterogeneous and therefore results are presented as a narrative review. Six diagnostic methods were identified (fecal occult blood, fecal proteins, volatile organic compounds, pyruvate kinase isoenzyme type M2, tumour markers and DNA analysis). Fecal occult blood testing has a reported sensitivity of 66%-85% and specificity greater than 95%. The others are at a range of development and clinical application. POC devices have a proven role in the diagnosis of gastrointestinal cancer. Barriers to their implementation exist and the transition from experimental to clinical medicine is currently slow. New technologies demonstrate potential to provide accurate POC tests and an ability to diagnose gastrointestinal cancer at an early stage with improved clinical outcome and survival.
Collapse
|
28
|
Zhu H, Huang G. Humidity independent mass spectrometry for gas phase chemical analysis via ambient proton transfer reaction. Anal Chim Acta 2015; 867:67-73. [PMID: 25813029 DOI: 10.1016/j.aca.2015.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
Abstract
In this work, a humidity independent mass spectrometric method was developed for rapid analysis of gas phase chemicals. This method is based upon ambient proton transfer reaction between gas phase chemicals and charged water droplets, in a reaction chamber with nearly saturate humidity under atmospheric pressure. The humidity independent nature enables direct and rapid analysis of raw gas phase samples, avoiding time- and sample-consuming sample pretreatments in conventional mass spectrometry methods to control sample humidity. Acetone, benzene, toluene, ethylbenzene and meta-xylene were used to evaluate the analytical performance of present method. The limits of detection for benzene, toluene, ethylbenzene and meta-xylene are in the range of ∼0.1 to ∼0.3 ppbV; that of benzene is well below the present European Union permissible exposure limit for benzene vapor (5 μg m(-3), ∼1.44 ppbV), with linear ranges of approximately two orders of magnitude. The majority of the homemade device contains a stainless steel tube as reaction chamber and an ultrasonic humidifier as the source of charged water droplets, which makes this cheap device easy to assemble and facile to operate. In addition, potential application of this method was illustrated by the real time identification of raw gas phase chemicals released from plants at different physiological stages.
Collapse
Affiliation(s)
- Hongying Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Guangming Huang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
29
|
Jiang Y, Zhang P, Li LP, He YC, Gao RJ, Gao YF. Identification of novel thyroid cancer-related genes and chemicals using shortest path algorithm. BIOMED RESEARCH INTERNATIONAL 2015; 2015:964795. [PMID: 25874234 PMCID: PMC4385622 DOI: 10.1155/2015/964795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023]
Abstract
Thyroid cancer is a typical endocrine malignancy. In the past three decades, the continued growth of its incidence has made it urgent to design effective treatments to treat this disease. To this end, it is necessary to uncover the mechanism underlying this disease. Identification of thyroid cancer-related genes and chemicals is helpful to understand the mechanism of thyroid cancer. In this study, we generalized some previous methods to discover both disease genes and chemicals. The method was based on shortest path algorithm and applied to discover novel thyroid cancer-related genes and chemicals. The analysis of the final obtained genes and chemicals suggests that some of them are crucial to the formation and development of thyroid cancer. It is indicated that the proposed method is effective for the discovery of novel disease genes and chemicals.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Peiwei Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Peng Li
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yi-Chun He
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Ru-jian Gao
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yu-Fei Gao
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
30
|
Hellmich MR, Coletta C, Chao C, Szabo C. The therapeutic potential of cystathionine β-synthetase/hydrogen sulfide inhibition in cancer. Antioxid Redox Signal 2015; 22:424-48. [PMID: 24730679 PMCID: PMC4307161 DOI: 10.1089/ars.2014.5933] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Cancer represents a major socioeconomic problem; there is a significant need for novel therapeutic approaches targeting tumor-specific pathways. RECENT ADVANCES In colorectal and ovarian cancers, an increase in the intratumor production of hydrogen sulfide (H2S) from cystathionine β-synthase (CBS) plays an important role in promoting the cellular bioenergetics, proliferation, and migration of cancer cells. It also stimulates peritumor angiogenesis inhibition or genetic silencing of CBS exerts antitumor effects both in vitro and in vivo, and potentiates the antitumor efficacy of anticancer therapeutics. CRITICAL ISSUES Recently published studies are reviewed, implicating CBS overexpression and H2S overproduction in tumor cells as a tumor-growth promoting "bioenergetic fuel" and "survival factor," followed by an overview of the experimental evidence demonstrating the anticancer effect of CBS inhibition. Next, the current state of the art of pharmacological CBS inhibitors is reviewed, with special reference to the complex pharmacological actions of aminooxyacetic acid. Finally, new experimental evidence is presented to reconcile a controversy in the literature regarding the effects of H2S donor on cancer cell proliferation and survival. FUTURE DIRECTIONS From a basic science standpoint, future directions in the field include the delineation of the molecular mechanism of CBS up-regulation of cancer cells and the delineation of the interactions of H2S with other intracellular pathways of cancer cell metabolism and proliferation. From the translational science standpoint, future directions include the translation of the recently emerging roles of H2S in cancer into human diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Mark R. Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Ciro Coletta
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
31
|
Smith D, Španěl P. SIFT-MS and FA-MS methods for ambient gas phase analysis: developments and applications in the UK. Analyst 2015; 140:2573-91. [DOI: 10.1039/c4an02049a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The origins of SIFT created to study interstellar chemistry and SIFT-MS developed for ambient gas and exhaled breath analysis and the UK centres in which these techniques are being exploited.
Collapse
Affiliation(s)
- David Smith
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent
- UK
| | - Patrik Španěl
- Institute for Science and Technology in Medicine – Keele University
- Guy Hilton Research Centre
- Stoke-on-Trent
- UK
- J. Heyrovský Institute of Physical Chemistry
| |
Collapse
|
32
|
Módis K, Bos EM, Calzia E, van Goor H, Coletta C, Papapetropoulos A, Hellmich MR, Radermacher P, Bouillaud F, Szabo C. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol 2014; 171:2123-46. [PMID: 23991749 DOI: 10.1111/bph.12368] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 12/15/2022] Open
Abstract
Emerging work demonstrates the dual regulation of mitochondrial function by hydrogen sulfide (H2 S), including, at lower concentrations, a stimulatory effect as an electron donor, and, at higher concentrations, an inhibitory effect on cytochrome C oxidase. In the current article, we overview the pathophysiological and therapeutic aspects of these processes. During cellular hypoxia/acidosis, the inhibitory effect of H2 S on complex IV is enhanced, which may shift the balance of H2 S from protective to deleterious. Several pathophysiological conditions are associated with an overproduction of H2 S (e.g. sepsis), while in other disease states H2 S levels and H2 S bioavailability are reduced and its therapeutic replacement is warranted (e.g. diabetic vascular complications). Moreover, recent studies demonstrate that colorectal cancer cells up-regulate the H2 S-producing enzyme cystathionine β-synthase (CBS), and utilize its product, H2 S, as a metabolic fuel and tumour-cell survival factor; pharmacological CBS inhibition or genetic CBS silencing suppresses cancer cell bioenergetics and suppresses cell proliferation and cell chemotaxis. In the last chapter of the current article, we overview the field of H2 S-induced therapeutic 'suspended animation', a concept in which a temporary pharmacological reduction in cell metabolism is achieved, producing a decreased oxygen demand for the experimental therapy of critical illness and/or organ transplantation.
Collapse
Affiliation(s)
- Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wiggins T, Kumar S, Markar SR, Antonowicz S, Hanna GB. Tyrosine, phenylalanine, and tryptophan in gastroesophageal malignancy: a systematic review. Cancer Epidemiol Biomarkers Prev 2014; 24:32-8. [PMID: 25344892 DOI: 10.1158/1055-9965.epi-14-0980] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gastroesophageal cancer has a rapidly increasing incidence worldwide and reliable biomarkers are urgently required to facilitate earlier diagnosis and improve survival. The aromatic amino acids tyrosine, phenylalanine, and tryptophan represent potential biomarkers and their relation to gastroesophageal cancer will be evaluated in this review. An electronic literature search was performed to identify all published research relating to the measurement of tyrosine, phenylalanine, or tryptophan in the biofluids or tissues of patients with gastroesophageal cancer. Sixteen studies were included in this systematic review. Six studies investigated serum concentrations, which all found decreased concentrations of these aromatic amino acids, except one study that found increased phenylalanine. Five studies reported increased concentrations within gastric content of these patients and two reported increased urinary concentrations. Tissue concentrations of these aromatic amino acids were increased in three studies. Tyrosine, phenylalanine, and tryptophan represent potential biomarkers of gastroesophageal cancer, and further research is necessary to definitively establish the mechanism responsible for altered concentrations of these compounds in patients with gastroesophageal cancer.
Collapse
Affiliation(s)
- Tom Wiggins
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London, United Kingdom
| | - Sacheen Kumar
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London, United Kingdom
| | - Sheraz R Markar
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London, United Kingdom
| | - Stefan Antonowicz
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London, United Kingdom
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London, United Kingdom.
| |
Collapse
|
34
|
Huang J, Kumar S, Hanna GB. Investigation of C3-C10 aldehydes in the exhaled breath of healthy subjects using selected ion flow tube-mass spectrometry (SIFT-MS). J Breath Res 2014; 8:037104. [PMID: 25190002 DOI: 10.1088/1752-7155/8/3/037104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aldehydes have attracted great scientific and clinical interest as potential disease biomarkers. We have investigated selected ion flow tube-mass spectrometry (SIFT-MS) in detecting and quantifying C3 to C10 saturated aldehydes (propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal and decanal) from the exhaled breath of 26 healthy human volunteers. To assess the reliability of the Nalophan® bag sampling method employed, the water level in the breath sample was measured up to 4 h after collection and showed no significant degradation. Propanal was found to be the most abundant aldehyde in the exhaled breath of healthy volunteers. For the C4-C10 aldehydes, their median concentrations were all less than 3 ppbv, demonstrating only trace quantities are present in the exhaled breath of the 26 healthy volunteers.
Collapse
|
35
|
Dryahina K, Pospíšilová V, Sovová K, Shestivska V, Kubišta J, Spesyvyi A, Pehal F, Turzíková J, Votruba J, Španěl P. Exhaled breath concentrations of acetic acid vapour in gastro-esophageal reflux disease. J Breath Res 2014; 8:037109. [DOI: 10.1088/1752-7155/8/3/037109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Shepherd SF, McGuire ND, de Lacy Costello BPJ, Ewen RJ, Jayasena DH, Vaughan K, Ahmed I, Probert CS, Ratcliffe NM. The use of a gas chromatograph coupled to a metal oxide sensor for rapid assessment of stool samples from irritable bowel syndrome and inflammatory bowel disease patients. J Breath Res 2014; 8:026001. [PMID: 24674940 PMCID: PMC4871257 DOI: 10.1088/1752-7155/8/2/026001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There is much clinical interest in the development of a low-cost and reliable test for diagnosing inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), two very distinct diseases that can present with similar symptoms. The assessment of stool samples for the diagnosis of gastro-intestinal diseases is in principle an ideal non-invasive testing method. This paper presents an approach to stool analysis using headspace gas chromatography and a single metal oxide sensor coupled to artificial neural network software. Currently, the system is able to distinguish samples from patients with IBS from patients with IBD with a sensitivity and specificity of 76% and 88% respectively, with an overall mean predictive accuracy of 76%.
Collapse
Affiliation(s)
- S F Shepherd
- Institute of Bio-sensing Technology, University of the West of England, Bristol, BS16 1QY
| | - N D McGuire
- Institute of Bio-sensing Technology, University of the West of England, Bristol, BS16 1QY
| | - B P J de Lacy Costello
- Institute of Bio-sensing Technology, University of the West of England, Bristol, BS16 1QY
| | - R J Ewen
- Institute of Bio-sensing Technology, University of the West of England, Bristol, BS16 1QY
| | - D H Jayasena
- Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW
| | - K Vaughan
- Institute of Bio-sensing Technology, University of the West of England, Bristol, BS16 1QY
| | - I Ahmed
- Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW
| | - C S Probert
- Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX
| | - N M Ratcliffe
- Institute of Bio-sensing Technology, University of the West of England, Bristol, BS16 1QY
| |
Collapse
|
37
|
Arasaradnam RP, Covington JA, Harmston C, Nwokolo CU. Review article: next generation diagnostic modalities in gastroenterology--gas phase volatile compound biomarker detection. Aliment Pharmacol Ther 2014; 39:780-9. [PMID: 24612215 DOI: 10.1111/apt.12657] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 10/08/2013] [Accepted: 01/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The detection of airborne gas phase biomarkers that emanate from biological samples like urine, breath and faeces may herald a new age of non-invasive diagnostics. These biomarkers may reflect status in health and disease and can be detected by humans and other animals, to some extent, but far more consistently with instruments. The continued advancement in micro and nanotechnology has produced a range of compact and sophisticated gas analysis sensors and sensor systems, focussed primarily towards environmental and security applications. These instruments are now increasingly adapted for use in clinical testing and with the discovery of new gas volatile compound biomarkers, lead naturally to a new era of non-invasive diagnostics. AIM To review current sensor instruments like the electronic nose (e-nose) and ion mobility spectroscopy (IMS), existing technology like gas chromatography-mass spectroscopy (GC-MS) and their application in the detection of gas phase volatile compound biomarkers in medicine - focussing on gastroenterology. METHODS A systematic search on Medline and Pubmed databases was performed to identify articles relevant to gas and volatile organic compounds. RESULTS E-nose and IMS instruments achieve sensitivities and specificities ranging from 75 to 92% in differentiating between inflammatory bowel disease, bile acid diarrhoea and colon cancer from controls. For pulmonary disease, the sensitivities and specificities exceed 90% in differentiating between pulmonary malignancy, pneumonia and obstructive airways disease. These sensitivity levels also hold true for diabetes (92%) and bladder cancer (90%) when GC-MS is combined with an e-nose. CONCLUSIONS The accurate reproducible sensing of volatile organic compounds (VOCs) using portable near-patient devices is a goal within reach for today's clinicians.
Collapse
Affiliation(s)
- R P Arasaradnam
- Clinical Sciences Research Institute, University of Warwick, Coventry, UK; Department of Gastroenterology, University Hospital Coventry & Warwickshire, Coventry, UK
| | | | | | | |
Collapse
|
38
|
Smith D, Španěl P, Herbig J, Beauchamp J. Mass spectrometry for real-time quantitative breath analysis. J Breath Res 2014; 8:027101. [PMID: 24682047 DOI: 10.1088/1752-7155/8/2/027101] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Módis K, Coletta C, Asimakopoulou A, Szczesny B, Chao C, Papapetropoulos A, Hellmich MR, Szabo C. Effect of S-adenosyl-L-methionine (SAM), an allosteric activator of cystathionine-β-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro. Nitric Oxide 2014; 41:146-56. [PMID: 24667534 DOI: 10.1016/j.niox.2014.03.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023]
Abstract
Recent data show that colon cancer cells selectively overexpress cystathionine-β-synthase (CBS), which produces hydrogen sulfide (H2S), to maintain cellular bioenergetics, support tumor growth and stimulate angiogenesis and vasorelaxation in the tumor microenvironment. The purpose of the current study was to investigate the effect of the allosteric CBS activator S-adenosyl-L-methionine (SAM) on the proliferation and bioenergetics of the CBS-expressing colon cancer cell line HCT116. The non-transformed, non-tumorigenic colon epithelial cell line NCM356 was used as control. For assessment of cell proliferation, the xCELLigence system was used. Bioenergetic function was measured by Extracellular Flux Analysis. Experiments using human recombinant CBS or HCT116 homogenates complemented the cell-based studies. SAM markedly enhanced CBS-mediated H2S production in vitro, especially when a combination of cysteine and homocysteine was used as substrates. Addition of SAM (0.1-3 mM) to HCT116 cells induced a concentration-dependent increase H2S production. SAM exerted time- and concentration-dependent modulatory effects on cell proliferation. At 0.1-1 mM SAM increased HCT116 proliferation between 0 and 12 h, while the highest SAM concentration (3 mM) inhibited proliferation. Over a longer time period (12-24 h), only the lowest concentration of SAM used (0.1 mM) stimulated cell proliferation; higher SAM concentrations produced a concentration-dependent inhibition. The short-term stimulatory effects of SAM were attenuated by the CBS inhibitor aminooxyacetic acid (AOAA) or by stable silencing of CBS. In contrast, the inhibitory effects of SAM on cell proliferation was unaffected by CBS inhibition or CBS silencing. In contrast to HCT116 cells, the lower rate of proliferation of the low-CBS expressor NCM356 cells was unaffected by SAM. Short-term (1 h) exposure of HCT116 cells to SAM induced a concentration-dependent increase in oxygen consumption and bioenergetic function at 0.1-1 mM, while 3 mM was inhibitory. Longer-term (72 h) exposure of HCT116 cells to all concentrations of SAM tested suppressed mitochondrial oxygen consumption rate, cellular ATP content and cell viability. The stimulatory effect of SAM on bioenergetics was attenuated in cells with stable CBS silencing, while the inhibitory effects were unaffected. In NCM356 cells SAM exerted smaller effects on cellular bioenergetics than in HCT116 cells. We have also observed a downregulation of CBS in response to prolonged exposure of SAM both in HCT116 and NCM356 cells. Taken together, the results demonstrate that H2S production in HCT116 cells is stimulated by the allosteric CBS activator, SAM. At low-to intermediate levels and early time periods the resulting H2S serves as an endogenous cancer cell growth and bioenergetic factor. In contrast, the inhibition of cell proliferation and bioenergetic function by SAM does not appear to relate to adverse autocrine effects of H2S resulting from CBS over-stimulation but, rather to CBS-independent pharmacological effects.
Collapse
Affiliation(s)
- Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ciro Coletta
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonia Asimakopoulou
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology, University of Patras, Patras, Greece
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Andreas Papapetropoulos
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology, University of Patras, Patras, Greece
| | - Mark R Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
40
|
Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques. Bioanalysis 2013; 5:2287-306. [DOI: 10.4155/bio.13.183] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Breath is a rich mixture containing numerous volatile organic compounds at trace amounts (ppbv–pptv level) such as: hydrocarbons, alcohols, ketones, aldehydes, esters or heterocycles. The presence of some of them depends on health status. Therefore, breath analysis might be useful for clinical diagnostics, therapy monitoring and control of metabolic or biochemical cell cycle products. This Review presents an update on the latest developments in breath analysis applied to diagnosing different diseases with the help of high-quality equipment. Efforts were made to fully and accurately describe traditional and modern techniques used to determine the components of breath. The techniques were compared in terms of design, function and also detection limit of different volatile organic compounds. GC with different detectors, MS, optical sensor and laser spectroscopic detection techniques are also discussed.
Collapse
|
41
|
Abbassi-Ghadi N, Kumar S, Huang J, Goldin R, Takats Z, Hanna GB. Metabolomic profiling of oesophago-gastric cancer: a systematic review. Eur J Cancer 2013; 49:3625-37. [PMID: 23896378 DOI: 10.1016/j.ejca.2013.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 12/16/2022]
Abstract
AIMS This review aims to identify metabolomic biomarkers of oesophago-gastric (OG) cancer in human biological samples, and to discuss the dominant metabolic pathways associated with the observed changes. METHODS A systematic review of the literature, up to and including 9th November 2012, was conducted for experimental studies investigating the metabolomic profile of human biological samples from patients with OG cancer compared to a control group. Inclusion criteria for analytical platforms were mass spectrometry or nuclear magnetic resonance spectroscopy. The QUADAS-2 tool was used to assess the quality of the included studies. RESULTS Twenty studies met the inclusion criteria and samples utilised for metabolomic analysis included tissue (n = 11), serum (n = 8), urine (n = 1) and gastric content (n = 1). Several metabolites of glycolysis, the tricarboxylic acid cycle, anaerobic respiration and protein/lipid metabolism were found to be significantly different between cancer and control samples. Lactate and fumurate were the most commonly recognised biomarkers of OG cancer related to cellular respiration. Valine, glutamine and glutamate were the most commonly identified amino acid biomarkers. Products of lipid metabolism including saturated and un-saturated free fatty acids, ketones and aldehydes and triacylglycerides were also identified as biomarkers of OG cancer. Unclear risk of bias for patient selection was reported for the majority of studies due to the lack of clarity regarding patient recruitment. CONCLUSION The application of metabolomics for biomarker detection in OG cancer presents new opportunities for the purposes of screening and therapeutic monitoring. Future studies should provide clear details of patient selection and develop metabolite assays suitable for progress beyond phase 1 pre-clinical exploratory studies.
Collapse
Affiliation(s)
- N Abbassi-Ghadi
- Department of Surgery and Cancer, Imperial College London, 10th Floor, QEQM Wing, St Mary's Hospital, London W2 1NY, UK
| | | | | | | | | | | |
Collapse
|
42
|
Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci U S A 2013; 110:12474-9. [PMID: 23836652 DOI: 10.1073/pnas.1306241110] [Citation(s) in RCA: 545] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The physiological functions of hydrogen sulfide (H2S) include vasorelaxation, stimulation of cellular bioenergetics, and promotion of angiogenesis. Analysis of human colon cancer biopsies and patient-matched normal margin mucosa revealed the selective up-regulation of the H2S-producing enzyme cystathionine-β-synthase (CBS) in colon cancer, resulting in an increased rate of H2S production. Similarly, colon cancer-derived epithelial cell lines (HCT116, HT-29, LoVo) exhibited selective CBS up-regulation and increased H2S production, compared with the nonmalignant colonic mucosa cells, NCM356. CBS localized to the cytosol, as well as the mitochondrial outer membrane. ShRNA-mediated silencing of CBS or its pharmacological inhibition with aminooxyacetic acid reduced HCT116 cell proliferation, migration, and invasion; reduced endothelial cell migration in tumor/endothelial cell cocultures; and suppressed mitochondrial function (oxygen consumption, ATP turnover, and respiratory reserve capacity), as well as glycolysis. Treatment of nude mice with aminooxyacetic acid attenuated the growth of patient-derived colon cancer xenografts and reduced tumor blood flow. Similarly, CBS silencing of the tumor cells decreased xenograft growth and suppressed neovessel density, suggesting a role for endogenous H2S in tumor angiogenesis. In contrast to CBS, silencing of cystathionine-γ-lyase (the expression of which was unchanged in colon cancer) did not affect tumor growth or bioenergetics. In conclusion, H2S produced from CBS serves to (i) maintain colon cancer cellular bioenergetics, thereby supporting tumor growth and proliferation, and (ii) promote angiogenesis and vasorelaxation, consequently providing the tumor with blood and nutritients. The current findings identify CBS-derived H2S as a tumor growth factor and anticancer drug target.
Collapse
|
43
|
Kumar S, Huang J, Abbassi-Ghadi N, Španěl P, Smith D, Hanna GB. Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. Anal Chem 2013; 85:6121-8. [PMID: 23659180 DOI: 10.1021/ac4010309] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Exhaled breath analysis of volatile organic compounds (VOCs) has great potential in terms of disease diagnosis and measuring physiological response to treatment. In this study, selected ion flow tube mass spectrometry (SIFT-MS) has been applied for the quantification of VOCs in the exhaled breath from 3 groups of patients, viz., those with esophago-gastric cancer, noncancer diseases of the upper gastro-intestinal tract, and a healthy upper gastrointestinal tract cohort. A total of 17 VOCs have been investigated in this study. The concentrations of 4 VOCs, hexanoic acid, phenol, methyl phenol, and ethyl phenol, were found to be significantly different between cancer and positive control groups using the Mann-Whitney U test. Receiver operating characteristics (ROC) analysis was applied for a combination of 4 VOCs (hexanoic acid, phenol, methyl phenol, and ethyl phenol) to discriminate the esophago-gastric cancer cohort from positive controls. The integrated area under the ROC curve (AUC) is 0.91. The results highlight the potential of VOC profiling as a noninvasive test to identify those with esophago-gastric cancer.
Collapse
Affiliation(s)
- Sacheen Kumar
- Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Wing, St Mary's Hospital, London, W2 1NY United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Huang J, Kumar S, Abbassi-Ghadi N, Spaněl P, Smith D, Hanna GB. Selected ion flow tube mass spectrometry analysis of volatile metabolites in urine headspace for the profiling of gastro-esophageal cancer. Anal Chem 2013; 85:3409-16. [PMID: 23421902 DOI: 10.1021/ac4000656] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Urine is considered an ideal biofluid for clinical investigation because it is obtained noninvasively and relatively large volumes are easily acquired. In this study, selected ion flow tube mass spectrometry (SIFT-MS) has been applied for the quantification of volatile organic compounds (VOCs) in the headspace vapor of urine samples, which were retrieved from three groups of patients with gastro-esophageal cancer, noncancer diseases of the upper gastro-intestinal tract, and a healthy cohort. Eleven VOCs have been investigated in this study. The concentrations of seven VOCs-acetaldehyde, acetone, acetic acid, hexanoic acid, hydrogen sulfide, methanol, and phenol-were found to be significantly different between cancer, positive control, and healthy groups using the Kruskal-Wallis test. The concentrations of acetaldehyde, acetone, acetic acid, hexanoic acid, hydrogen sulfide, and methanol were increased in the cancer cohort compared with healthy controls while the concentration of phenol decreased. The differences in the concentrations of ethanol, propanol, methyl phenol, and ethyl phenol were not significant between cancer and control groups. Receiver operating characteristics (ROC) analysis was applied for a combination of six VOCs (acetaldehyde, acetone, acetic acid, hexanoic acid, hydrogen sulfide, and methanol) to discriminate cancer patients from noncancer controls. The integrated area under ROC curve is 0.904. This result indicates that VOC profiling may be suitable in identifying those at high risk of gastro-esophageal cancer. Therefore, further investigations should be undertaken to assess the potential for VOC profiling as a new screening test in gastro-esophageal cancer.
Collapse
Affiliation(s)
- Juzheng Huang
- Department of Surgery and Cancer, Imperial College London, St Mary's Hospital, London, United Kingdom
| | | | | | | | | | | |
Collapse
|