1
|
Influence of cross-linker polarity on selectivity towards lysine side chains. J Proteomics 2020; 218:103716. [DOI: 10.1016/j.jprot.2020.103716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/02/2020] [Accepted: 02/19/2020] [Indexed: 11/19/2022]
|
2
|
MS-Based Approaches Enable the Structural Characterization of Transcription Factor/DNA Response Element Complex. Biomolecules 2019; 9:biom9100535. [PMID: 31561554 PMCID: PMC6843354 DOI: 10.3390/biom9100535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
The limited information available on the structure of complexes involving transcription factors and cognate DNA response elements represents a major obstacle in the quest to understand their mechanism of action at the molecular level. We implemented a concerted structural proteomics approach, which combined hydrogen-deuterium exchange (HDX), quantitative protein-protein and protein-nucleic acid cross-linking (XL), and homology analysis, to model the structure of the complex between the full-length DNA binding domain (DBD) of Forkhead box protein O4 (FOXO4) and its DNA binding element (DBE). The results confirmed that FOXO4-DBD assumes the characteristic forkhead topology shared by these types of transcription factors, but its binding mode differs significantly from those of other members of the family. The results showed that the binding interaction stabilized regions that were rather flexible and disordered in the unbound form. Surprisingly, the conformational effects were not limited only to the interface between bound components, but extended also to distal regions that may be essential to recruiting additional factors to the transcription machinery. In addition to providing valuable new insights into the binding mechanism, this project provided an excellent evaluation of the merits of structural proteomics approaches in the investigation of systems that are not directly amenable to traditional high-resolution techniques.
Collapse
|
3
|
Hernychová L, Rosůlek M, Kádek A, Mareška V, Chmelík J, Adámková L, Grobárová V, Šebesta O, Kukačka Z, Skála K, Spiwok V, Černý J, Novák P. The C-type lectin-like receptor Nkrp1b: Structural proteomics reveals features affecting protein conformation and interactions. J Proteomics 2019; 196:162-172. [DOI: 10.1016/j.jprot.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
|
4
|
Mohr JP, Perumalla P, Chavez JD, Eng JK, Bruce JE. Mango: A General Tool for Collision Induced Dissociation-Cleavable Cross-Linked Peptide Identification. Anal Chem 2018; 90:6028-6034. [PMID: 29676898 PMCID: PMC5959040 DOI: 10.1021/acs.analchem.7b04991] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chemical cross-linking combined with mass spectrometry provides a method to study protein structures and interactions. The introduction of cleavable bonds in a cross-linker provides an avenue to decouple released peptide masses from their precursor species, greatly simplifying the downstream search, allowing for whole proteome investigations to be performed. Typically, these experiments have been challenging to carry out, often utilizing nonstandard methods to fully identify cross-linked peptides. Mango is an open source software tool that extracts precursor masses from chimeric spectra generated using cleavable cross-linkers, greatly simplifying the downstream search. As it is designed to work with chimeric spectra, Mango can be used on traditional high-resolution tandem mass spectrometry (MS/MS) capable mass spectrometers without the need for additional modifications. When paired with a traditional proteomics search engine, Mango can be used to identify several thousand cross-linked peptide pairs searching against the entire Escherichia coli proteome. Mango provides an avenue to perform whole proteome cross-linking experiments without specialized instrumentation or access to nonstandard methods.
Collapse
Affiliation(s)
- Jared P. Mohr
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Poorna Perumalla
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Juan D. Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Jimmy K. Eng
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
5
|
Hnízda A, Fábry M, Moriyama T, Pachl P, Kugler M, Brinsa V, Ascher DB, Carroll WL, Novák P, Žaliová M, Trka J, Řezáčová P, Yang JJ, Veverka V. Relapsed acute lymphoblastic leukemia-specific mutations in NT5C2 cluster into hotspots driving intersubunit stimulation. Leukemia 2018. [PMID: 29535428 DOI: 10.1038/s41375-018-0073-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activating mutations in NT5C2, a gene encoding cytosolic purine 5'-nucleotidase (cN-II), confer chemoresistance in relapsed acute lymphoblastic leukemia. Here we show that all mutants became independent of allosteric effects of ATP and thus constitutively active. Structural mapping of mutations described in patients demonstrates that 90% of leukemia-specific allelles directly affect two regulatory hotspots within the cN-II molecule-the helix A region: residues 355-365, and the intersubunit interface: helix B (232-242) and flexible interhelical loop L (400-418). Furthermore, analysis of hetero-oligomeric complexes combining wild-type (WT) and mutant subunits showed that the activation is transmitted from the mutated to the WT subunit. This intersubunit interaction forms structural basis of hyperactive NT5C2 in drug-resistant leukemia in which heterozygous NT5C2 mutation gave rise to hetero-tetramer mutant and WT proteins. This enabled us to define criteria to aid the prediction of NT5C2 drug resistance mutations in leukemia.
Collapse
Affiliation(s)
- Aleš Hnízda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic. .,Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK.
| | - Milan Fábry
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Takaya Moriyama
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Michael Kugler
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic.,Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Vítězslav Brinsa
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - David B Ascher
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.,Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | | | - Petr Novák
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague, 4 142 20, Czech Republic
| | - Markéta Žaliová
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic.,Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| |
Collapse
|
6
|
Rozbeský D, Rosůlek M, Kukačka Z, Chmelík J, Man P, Novák P. Impact of Chemical Cross-Linking on Protein Structure and Function. Anal Chem 2018; 90:1104-1113. [DOI: 10.1021/acs.analchem.7b02863] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Rozbeský
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| | - Michal Rosůlek
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| | - Zdeněk Kukačka
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| | - Josef Chmelík
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| | - Petr Man
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| | - Petr Novák
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| |
Collapse
|
7
|
Kukacka Z, Rosulek M, Strohalm M, Kavan D, Novak P. Mapping protein structural changes by quantitative cross-linking. Methods 2015; 89:112-20. [DOI: 10.1016/j.ymeth.2015.05.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 11/24/2022] Open
|
8
|
Marcoux J, Cianférani S. Towards integrative structural mass spectrometry: Benefits from hybrid approaches. Methods 2015; 89:4-12. [DOI: 10.1016/j.ymeth.2015.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/06/2015] [Accepted: 05/25/2015] [Indexed: 01/10/2023] Open
|
9
|
HERNYCHOVÁ L, MRÁZEK H, IVANOVA L, KUKAČKA Z, CHMELÍK J, NOVÁK P. Recombinant Expression, In Vitro Refolding and Characterizing Disulfide Bonds of a Mouse Inhibitory C-Type Lectin-Like Receptor Nkrp1b. Physiol Res 2015; 64:S85-93. [DOI: 10.33549/physiolres.933136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
As a part of the innate immunity, NK (Natural Killer) cells provide an early immune response to different stimuli, e.g. viral infections and tumor growths. However, their functions are more complex; they play an important role in reproduction, alloimmunity, autoimmunity and allergic diseases. NK cell activities require an intricate system of regulation that is ensured by many different receptors on a cell surface which integrate signals from interacting cells and soluble factors. One way to understand NK cell biology is through the structure of NK receptors, which can reveal ligand binding conditions. We present a modified protocol for recombinant expression in Escherichia coli and in vitro refolding of the ligand-binding domain of the inhibitory Nkrp1b (SJL/J) protein. Nkrp1b identity and folding was confirmed using mass spectrometry (accurate mass of the intact protein and evaluation of disulfide bonds) and one-dimensional nuclear magnetic resonance spectroscopy. The intention is to provide the basis for conducting structural studies of the inhibitory Nkrp1b protein, since only the activating Nkrp1a receptor structure is known.
Collapse
Affiliation(s)
- L. HERNYCHOVÁ
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | - P. NOVÁK
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
10
|
Rozbeský D, Ivanova L, Hernychová L, Grobárová V, Novák P, Černý J. Nkrp1 family, from lectins to protein interacting molecules. Molecules 2015; 20:3463-78. [PMID: 25690298 PMCID: PMC6272133 DOI: 10.3390/molecules20023463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022] Open
Abstract
The C-type lectin-like receptors include the Nkrp1 protein family that regulates the activity of natural killer (NK) cells. Rat Nkrp1a was reported to bind monosaccharide moieties in a Ca2+-dependent manner in preference order of GalNac > GlcNAc >> Fuc >> Gal > Man. These findings established for rat Nkrp1a have been extrapolated to all additional Nkrp1 receptors and have been supported by numerous studies over the past two decades. However, since 1996 there has been controversy and another article showed lack of interactions with saccharides in 1999. Nevertheless, several high affinity saccharide ligands were synthesized in order to utilize their potential in antitumor therapy. Subsequently, protein ligands were introduced as specific binders for Nkrp1 proteins and three dimensional models of receptor/protein ligand interaction were derived from crystallographic data. Finally, for at least some members of the NK cell C-type lectin-like proteins, the “sweet story” was impaired by two reports in recent years. It has been shown that the rat Nkrp1a and CD69 do not bind saccharide ligands such as GlcNAc, GalNAc, chitotetraose and saccharide derivatives (GlcNAc-PAMAM) do not directly and specifically influence cytotoxic activity of NK cells as it was previously described.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/chemistry
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Humans
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/chemistry
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Male
- NK Cell Lectin-Like Receptor Subfamily B/chemistry
- NK Cell Lectin-Like Receptor Subfamily B/immunology
- NK Cell Lectin-Like Receptor Subfamily B/metabolism
- Oligosaccharides/chemistry
- Oligosaccharides/immunology
- Oligosaccharides/metabolism
- Protein Structure, Tertiary
- Rats
Collapse
Affiliation(s)
- Daniel Rozbeský
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 212843, Czech Republic.
| | - Ljubina Ivanova
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
| | - Lucie Hernychová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| | - Valéria Grobárová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| | - Petr Novák
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 414220, Czech Republic.
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 212843, Czech Republic.
| | - Jan Černý
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 212843, Czech Republic.
| |
Collapse
|
11
|
A mass spectrometry view of stable and transient protein interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:263-82. [PMID: 24952186 DOI: 10.1007/978-3-319-06068-2_11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Through an impressive range of dynamic interactions, proteins succeed to carry out the majority of functions in a cell. These temporally and spatially regulated interactions provide the means through which one single protein can perform diverse functions and modulate different cellular pathways. Understanding the identity and nature of these interactions is therefore critical for defining protein functions and their contribution to health and disease processes. Here, we provide an overview of workflows that incorporate immunoaffinity purifications and quantitative mass spectrometry (frequently abbreviated as IP-MS or AP-MS) for characterizing protein-protein interactions. We discuss experimental aspects that should be considered when optimizing the isolation of a protein complex. As the presence of nonspecific associations is a concern in these experiments, we discuss the common sources of nonspecific interactions and present label-free and metabolic labeling mass spectrometry-based methods that can help determine the specificity of interactions. The effective regulation of cellular pathways and the rapid reaction to various environmental stresses rely on the formation of stable, transient, and fast-exchanging protein-protein interactions. While determining the exact nature of an interaction remains challenging, we review cross-linking and metabolic labeling approaches that can help address this important aspect of characterizing protein interactions and macromolecular assemblies.
Collapse
|
12
|
Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Proc Natl Acad Sci U S A 2014; 111:9455-60. [PMID: 24938783 DOI: 10.1073/pnas.1320298111] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches.
Collapse
|
13
|
Thalassinos K, Pandurangan AP, Xu M, Alber F, Topf M. Conformational States of macromolecular assemblies explored by integrative structure calculation. Structure 2014; 21:1500-8. [PMID: 24010709 PMCID: PMC3988990 DOI: 10.1016/j.str.2013.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 12/22/2022]
Abstract
A detailed description of macromolecular assemblies in multiple conformational states can be very valuable for understanding cellular processes. At present, structural determination of most assemblies in different biologically relevant conformations cannot be achieved by a single technique and thus requires an integrative approach that combines information from multiple sources. Different techniques require different computational methods to allow efficient and accurate data processing and analysis. Here, we summarize the latest advances and future challenges in computational methods that help the interpretation of data from two techniques—mass spectrometry and three-dimensional cryo-electron microscopy (with focus on alignment and classification of heterogeneous subtomograms from cryo-electron tomography). We evaluate how new developments in these two broad fields will lead to further integration with atomic structures to broaden our picture of the dynamic behavior of assemblies in their native environment.
Collapse
Affiliation(s)
- Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
14
|
Grobárová V, Benson V, Rozbeský D, Novák P, Cerný J. Re-evaluation of the involvement of NK cells and C-type lectin-like NK receptors in modulation of immune responses by multivalent GlcNAc-terminated oligosaccharides. Immunol Lett 2013; 156:110-7. [PMID: 24076118 DOI: 10.1016/j.imlet.2013.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 02/04/2023]
Abstract
Recognition of glycosylation patterns is one of the basic features of innate immunity. Ability of C-type lectin-like receptors such as NKR-P1 to bind saccharide moieties has become recently a controversial issue. In the present study, binding assay with soluble fluorescently labeled recombinant rat NKR-P1A and mouse NKR-P1C proteins revealed apparently no affinity to the various neoglycoproteins. Lack of functional linkage between NKR-P1 and previously described saccharide binder was supported by the fact, that synthetic N-acetyl-D-glucosamine octabranched dendrimer on polyamidoamine scaffold (GN8P) did not change gene expression of NKR-P1 isoforms in C57BL/6 and BALB/c mice divergent in the NK gene complex (both in vitro and in vivo). Surprisingly, N-acetyl-D-glucosamine-coated tetrabranched polyamido-amine dendrimer specifically binds to NKT cells and macrophages but not to NK cells (consistently with changes in cytokine patterns). Despite the fact that GN8P has been tested as an immunomodulator in anti-cancer treatment animal models for many years, surprisingly no changes in cytokine profiles in serum relevant to anti-cancer responses using B16F10 and CT26 harboring mouse strains C57BL/6 and BALB/c are observed. Our results indicate possible indirect involvement of NK cells in GN8P mediated immune responses.
Collapse
Affiliation(s)
- Valéria Grobárová
- Institute of Microbiology, ASCR v.v.i., Department of Immunology and Gnotobiology, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|