1
|
Li Y, Wang Y, Shenoy VM, Niu S, Jenkins GJ, Sarvaiya H. Intact quantitation of cysteine-conjugated antibody-drug conjugates using native mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9774. [PMID: 38812280 DOI: 10.1002/rcm.9774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024]
Abstract
RATIONALE A common strategy for antibody-drug conjugate (ADC) quantitation from in vivo study samples involves measurement of total antibody, conjugated ADC, and free payload concentrations using multiple reaction monitoring (MRM) mass spectrometry. This not only provides a limited picture of biotransformation but can also involve lengthy method development. Quantitation of ADCs directly at the intact protein level in native conditions using high-resolution mass spectrometers presents the advantage of measuring exposure readout as well as monitoring the change in average drug-to-antibody ratio (DAR) and in vivo stability of new linker payloads with minimal method development. Furthermore, site-specific cysteine-conjugated ADCs often rely on non-covalent association to retain their quaternary structure, which highlights the unique capabilities of native mass spectrometry (nMS) for intact ADC quantitation. METHODS We developed an intact quantitation workflow involving three stages: automated affinity purification, nMS analysis, and data processing in batch fashion. The sample preparation method was modified to include only volatile ion-pairing reagents in the buffer systems. A capillary size-exclusion chromatography (SEC) column was coupled to a quadrupole time-of-flight high-resolution mass spectrometer for high-throughput nMS analysis. Samples from two mouse pharmacokinetic (PK) studies were analyzed using both intact quantitation workflow and the conventional MRM-based approach. RESULTS A linear dynamic range of 5-100 μg/mL was achieved using 20 μL of serum sample volume. The results of mouse in vivo PK measurement using the intact quantitation workflow and the MRM-based approach were compared, revealing excellent method agreement. CONCLUSIONS We demonstrated the feasibility of utilizing nMS for the quantitation of ADCs at the intact protein level in preclinical PK studies. Our results indicate that this intact quantitation workflow can serve as an alternative generic method for high-throughput analysis, enabling an in-depth understanding of ADC stability and safety in vivo.
Collapse
Affiliation(s)
- Yihan Li
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, California, USA
| | - Yuting Wang
- Department of Quantitative, Translational & ADME Sciences, AbbVie, Worcester, Massachusetts, USA
| | - Vikram M Shenoy
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, California, USA
| | - Shuai Niu
- Department of Quantitative, Translational & ADME Sciences, AbbVie, Worcester, Massachusetts, USA
| | - Gary J Jenkins
- Department of Quantitative, Translational & ADME Sciences, AbbVie, North Chicago, Illinois, USA
| | - Hetal Sarvaiya
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, California, USA
| |
Collapse
|
2
|
Shen X, Dong X, Shi J, Chen H, Lan Y, Lim AC, Xie F, Ang A, Kratzer A, Rock DA, Rock BM. Deciphering the Exact Sequence of Endogenous Soluble B Cell Maturation Antigen and Unbiased Quantitation in Multiple Myeloma Patient Samples by LC-MS. Clin Chem 2024; 70:339-349. [PMID: 38175591 DOI: 10.1093/clinchem/hvad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/07/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND B-cell maturation antigen is a pivotal therapeutic target for multiple myeloma (MM). Membrane-bound BCMA can be cleaved by γ-secretase and shed as soluble BCMA (sBCMA). sBCMA can act as a neutralizing sink to compete with drug, as well as serve as a diagnostic/prognostic biomarker for MM. Antibody-capture based methods, such as enzyme-linked immunosorbent assay (ELISA) and immunoaffinity-liquid chromatography-multiple reaction monitoring (IA-LC-MRM), have been reported and well adopted to measure sBCMA in clinical samples. However, both methods are biased by capturing antibodies. METHODS We have used various LC-MS workflows to characterize and quantify endogenous sBCMA in MM patient samples, including bottom-up peptide mapping, intact analysis, IA-based, and reagent-free (RF)-LC-MRM quantitation. RESULTS We have confirmed that sBCMA contains a variable N-terminus and a C-terminus that extends to the transmembrane domain, ending at amino acid 61. Leveraging an in-house synthesized G-1-61 sBCMA recombinant standard, we developed a RF-LC-MRM method for unbiased sBCMA quantitation in MM patient samples. By comparing the results from RF-LC-MRM with ELISA and IA-LC-MRM, we demonstrated that RF-LC-MRM measures a more complete pool of endogenous sBCMA compared to the antibody-based methods. CONCLUSIONS This work fills the knowledge gap of the exact sequence of endogenous sBCMA for the first time, which differs from the current commercially available standard. Additionally, this work highlights the necessity of identifying the actual sequence of an endogenous soluble target such as sBCMA, both for bioanalytical purposes and to underpin pharmacodynamic measurements.
Collapse
Affiliation(s)
- Xiaomeng Shen
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Xue Dong
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Jianxia Shi
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Hao Chen
- Protein Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Yun Lan
- Clinical Biomarkers, Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Ai Ching Lim
- Protein Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Fang Xie
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Agnes Ang
- Clinical Biomarkers, Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Andrea Kratzer
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., München, Germany
| | - Dan A Rock
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Brooke M Rock
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
3
|
Maráková K, Renner BJ, Thomas SL, Opetová M, Tomašovský R, Rai AJ, Schug KA. Solid phase extraction as sample pretreatment method for top-down quantitative analysis of low molecular weight proteins from biological samples using liquid chromatography - triple quadrupole mass spectrometry. Anal Chim Acta 2023; 1243:340801. [PMID: 36697174 DOI: 10.1016/j.aca.2023.340801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Targeting and quantifying intact proteins from biological samples is still a very challenging research area. Several crucial steps exist in the analytical workflow, including development of a reliable sample preparation method. Here, we developed and applied for the first time a non-immunoaffinity sample preparation method based on a generally widely available micro-elution solid phase extraction (μSPE) strategy for the extraction of multiple lower molecular weight intact proteins (<30 kDa) from various biological matrices. Omission of a time-consuming drying and reconstitution step after extraction resulted in a more simple and rapid sample preparation procedure. A model set of eleven intact proteins (molecular weights: 5.5-29 kDa; isoelectric points: 4.5-11.3) were analyzed in multiple biological fluids using reversed-phase liquid chromatography with a triple quadrupole mass spectrometer operated in multiple reaction monitoring mode. Various sample pre-treatment reagents, sorbent types, and washing and elution solvents were experimentally tested and optimized to obtain the μSPE clean-up condition for a broad mixture of intact proteins having variable physicochemical properties. 1% trifluoroacetic acid and 0.2% Triton 100-X were selected as suitable sample pre-treatment reagents for releasing protein-protein interactions in human serum/plasma and human urine, respectively. Hydrophilic lipophilic balanced μSPE sorbent was selected as a high performing stationary phase. Addition of 1% trifluoroacetic acid to all washing and elution solutions showed the most beneficial effect for the extraction recovery of the proteins. Under the optimized conditions, reproducible extraction recoveries >65% for all targeted proteins (up to 30 kDa) in human urine and >50% for most of the proteins in serum/plasma were achieved. The selected conditions were applied also for the analysis of clinical serum and urine samples to demonstrate the feasibility of the developed method to target intact proteins directly by more affordable μSPE sample preparation and triple quadrupole mass spectrometry, which could be beneficial in many application fields.
Collapse
Affiliation(s)
- Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Comenius University in Bratislava, Bratislava, Slovakia.
| | - Beatriz J Renner
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Shannon L Thomas
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Martina Opetová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Comenius University in Bratislava, Bratislava, Slovakia
| | - Radovan Tomašovský
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alex J Rai
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Kevin A Schug
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
4
|
FitzHugh ZT, Schiller MR. Systematic Assessment of Protein C-Termini Mutated in Human Disorders. Biomolecules 2023; 13:biom13020355. [PMID: 36830724 PMCID: PMC9953674 DOI: 10.3390/biom13020355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
All proteins have a carboxyl terminus, and we previously summarized eight mutations in binding and trafficking sequence determinants in the C-terminus that, when disrupted, cause human diseases. These sequence elements for binding and trafficking sites, as well as post-translational modifications (PTMs), are called minimotifs or short linear motifs. We wanted to determine how frequently mutations in minimotifs in the C-terminus cause disease. We searched specifically for PTMs because mutation of a modified amino acid almost always changes the chemistry of the side chain and can be interpreted as loss-of-function. We analyzed data from ClinVar for disease variants, Minimotif Miner and the C-terminome for PTMs, and RefSeq for protein sequences, yielding 20 such potential disease-causing variants. After additional screening, they include six with a previously reported PTM disruption mechanism and nine with new hypotheses for mutated minimotifs in C-termini that may cause disease. These mutations were generally for different genes, with four different PTM types and several different diseases. Our study helps to identify new molecular mechanisms for nine separate variants that cause disease, and this type of analysis could be extended as databases grow and to binding and trafficking motifs. We conclude that mutated motifs in C-termini are an infrequent cause of disease.
Collapse
Affiliation(s)
- Zachary T. FitzHugh
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
- Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
- Correspondence: ; Tel.: +1-702-895-5546; Fax: +1-702-895-5728
| |
Collapse
|
5
|
CD14 +-Monocytes Exposed to Apolipoprotein CIII Express Tissue Factor. Int J Mol Sci 2023; 24:ijms24032223. [PMID: 36768547 PMCID: PMC9916694 DOI: 10.3390/ijms24032223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Apolipoprotein CIII (ApoCIII) represents a key regulator of plasma lipid metabolism and a recognized risk factor for atherosclerosis and cardiovascular diseases. Beyond the regulation of lipoprotein trafficking, ApoCIII is also involved in endothelial dysfunction and monocyte recruitment related to atherothrombosis. With tissue factor (TF) being the primary initiator of the blood coagulation cascade, we hypothesized that ApoCIII-treated monocytes could express it. Hence, human CD14+-monocytes and autologous neutrophils were incubated with ApoCIII and sera from human subjects containing previously measured ApoCIII amounts. By RT-qPCR and ELISA, CD14+-monocytes, but not neutrophils, were found to show increased mRNA expression and production of TNFα, IL-1β and IL-6 as well as TF mRNA once exposed to ultra-purified ApoCIII. By flow cytometry, CD14+-monocytes were found to rapidly express TF on their cell surface membrane when incubated with either ApoCIII or sera with known concentrations of ApoCIII. Finally, preincubation with specific ApoCIII-neutralizing antibodies significantly reduced the ability of most sera with known concentrations of ApoCIII to upregulate TF protein, other than partially inhibiting cytokine release, in CD14+-monocytes. In sum, herein we demonstrate that ApoCIII activates CD14+-monocytes to express TF. The data identify a potential mechanism which links circulating apolipoproteins with inflammation and atherothrombosis-related processes underlying cardiovascular risk.
Collapse
|
6
|
Kim H, Cheon DH, Yang WS, Baek JH. Simultaneous Quantification of Apolipoprotein C-III O-Glycoforms by Protein-MRM. J Proteome Res 2023; 22:91-100. [PMID: 36412001 DOI: 10.1021/acs.jproteome.2c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Apolipoprotein C-III (APOC-III) regulates triglyceride levels, associated with a risk of cardiovascular disease. One gene generates several proteoforms, each with a different molecular mass and a unique function. Unlike peptide multiple reaction monitoring (MRM), protein-MRM without digestion is required to analyze clinically relevant individual proteoforms. We developed a protein-MRM method without digestion to individually quantify APOC-III proteoforms in human serum. We optimized the protein-MRM method following 60% acetonitrile extraction with C18 filtration. Bovine serum and myoglobin served as supporting cushions and the internal standard during sample preparation, respectively. Furthermore, we evaluated the LOD, lower limit of quantification, linearity, accuracy, and precision. Good correlation compared with turbidimetric immunoassay (TIA) and peptide-MRM was observed using 30 clinical sera. Individual APOC-III O-glycoforms were identified by top-down proteomics and simultaneously quantified using the protein-MRM method. The sum abundance of APOC-III proteoforms was significantly correlated with TIA and peptide-MRM. Our protein-MRM method provides an affordable and rapid quantification of potential disease-specific proteoforms. Precise quantification of each proteoform allows investigators to identify novel biological roles potentially related to cardiovascular disease or novel biomarkers. We expect our protein-oriented method to be more clinically useful than antibody-based immunoassays and peptide-oriented MRM analysis, especially for quantification of a biomarker proteoform with certain post-translational modifications.
Collapse
Affiliation(s)
- Hyojin Kim
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul 04805, Korea
| | - Dong Huey Cheon
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul 04805, Korea
| | - Won Suk Yang
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul 04805, Korea
| | - Je-Hyun Baek
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul 04805, Korea
| |
Collapse
|
7
|
George AL, Foreman RE, Sayda MH, Reimann F, Gribble FM, Kay RG. Rapid and Quantitative Enrichment of Peptides from Plasma for Mass Spectrometric Analysis. Methods Mol Biol 2023; 2628:477-488. [PMID: 36781802 DOI: 10.1007/978-1-0716-2978-9_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Mass spectrometric analysis of peptides enables the assignment of their exact mass and confirmation of all or a significant portion of the peptide's amino acid sequence. LC-MS/MS analysis has proven invaluable in peptidomics research and can identify new biomarkers and assign their circulatory concentrations to aid research into disease processes. However, due to the high background plasma protein content, which masks the presence of the naturally low abundance circulatory peptidome, extraction of peptides from plasma prior to mass spectrometric analysis is therefore crucial. Organic solvents efficiently precipitate these high molecular weight plasma proteins while leaving small molecular weight peptides in solution, providing a rapid and effective technique for separating peptides from the contaminating plasma proteins. A secondary cleanup step involving solid phase extraction is required to remove lipids and highly hydrophobic contaminants before LC-MS/MS analysis. The method described within this chapter is effective at enriching circulatory plasma peptides prior to LC-MS/MS analysis and has been used in multiple peptidomic studies to improve peptide detection and quantification. Peptides studied using this methodology include insulin, C-peptide, glucagon, PYY, GIP, and a number of other challenging gut peptide hormones. Quantitative analyses of peptides using the described method showed good correlation with existing immunoassays.
Collapse
Affiliation(s)
- Amy L George
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Rachel E Foreman
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Mariwan H Sayda
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Fiona M Gribble
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Richard G Kay
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
8
|
Wada Y, Okamoto N. Electrospray Ionization Mass Spectrometry of Apolipoprotein CIII to Evaluate O-glycan Site Occupancy and Sialylation in Congenital Disorders of Glycosylation. Mass Spectrom (Tokyo) 2022; 11:A0104. [PMID: 36060528 PMCID: PMC9396207 DOI: 10.5702/massspectrometry.a0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are inherited metabolic diseases that affect the synthesis of glycoconjugates. Defects in mucin-type O-glycosylation occur independently or in combination with N-glycosylation disorders, and the profiling of the O-glycans of apolipoprotein CIII (apoCIII) by mass spectrometry (MS) can be used to support a diagnosis. The biomarkers are site occupancy and sialylation levels, which are indicated by the content of non-glycosylated apoCIII0a isoform and by the ratio of monosialylated apoCIII1 to disialylated apoCIII2 isoforms, respectively. In this report, electrospray ionization (ESI) quadrupole MS of apoCIII was used to identify these biomarkers. Among the instrumental parameters, the declustering potential (DP) induced the fragmentation of the O-glycan moiety including the Thr-GalNAc linkage, resulting in an increase in apoCIII0a ions. This incurs the risk of creating a false positive for reduced site occupancy. The apoCIII1/apoCIII2 ratio was substantially unchanged despite some dissociation of sialic acids. Therefore, appropriate DP settings are especially important when transferrin, which requires a higher DP, for N-glycosylation disorders is analyzed simultaneously with apoCIII in a single ESI MS measurement. Finally, a reference range of diagnostic biomarkers and mass spectra of apoCIII obtained from patients with SLC35A1-, TRAPPC11-, and ATP6V0A2-CDG are presented.
Collapse
Affiliation(s)
- Yoshinao Wada
- Department of Obstetric Medicine, Osaka Women’s and Children’s Hospital (OWCH), 840 Murodo-cho, Izumi, Osaka 594–1101, Japan
- Department of Molecular Medicine, Osaka Women’s and Children’s Hospital (OWCH), 840 Murodo-cho, Izumi, Osaka 594–1101, Japan
| | - Nobuhiko Okamoto
- Department of Molecular Medicine, Osaka Women’s and Children’s Hospital (OWCH), 840 Murodo-cho, Izumi, Osaka 594–1101, Japan
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital (OWCH), 840 Murodo-cho, Izumi, Osaka 594–1101, Japan
| |
Collapse
|
9
|
Wilkins JT, Rohatgi A. Resolution of apolipoprotein A1 and A2 proteoforms: their cardiometabolic correlates and implications for future research. Curr Opin Lipidol 2022; 33:264-269. [PMID: 36082946 PMCID: PMC10903106 DOI: 10.1097/mol.0000000000000840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW A 'proteoform' is defined as one specific protein structural form that results from the combination of allelic variation, alternative RNA splicing, and/or posttranslational modifications (PTMs) in specific locations on the amino acid backbone. Apolipoproteins A1 and A2 are highly abundant apolipoproteins that mediate HDL structure and function. ApoA1 and apoA2 are known to undergo PTMs, which results in multiple proteoforms. However, the catalogue of apoA1 and apoA2 proteoforms as well as their associations with cardiometabolic health characteristics has not been described until recently. In this brief review, we discuss recent efforts to catalogue the spectrum of apoA1 and apoA2 proteoforms, to understand the relationships between the relative abundance of these proteoforms with cardiometabolic phenotypic characteristics, and we will discuss the implications of these findings to future research. RECENT FINDINGS A broad spectrum of apoA1 and apoA2 proteoforms has been characterized. Although, the types of apoA1 and A2 proteoforms are consistent across individuals, the relative abundances of proteoforms can vary substantially between individuals. Proteoform-specific associations with cardiometabolic characteristics in humans, independent of absolute apolipoprotein abundance, have been described. These recent findings suggest multiple levels of protein structural variation that arise from known and unknown metabolic pathways may be important markers or mediators of cardiometabolic health. SUMMARY Understanding the associations between apolipoprotein proteoforms and phenotype may lead to enhanced understanding of how apolipoproteins mediate lipid metabolism and affect atherosclerotic cardiovascular disease (ASCVD) risk, which may lead to discovery of novel markers of risk and/or key mechanistic insights that may drive further druggable targets for modifying lipid metabolism and reducing ASCVD risk.
Collapse
Affiliation(s)
- John T Wilkins
- Division of Cardiology, Department of Medicine
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anand Rohatgi
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Tuttle RR, Daly RE, Rithner CD, Reynolds MM. Monitoring a MOF Catalyzed Reaction Directly in Blood Plasma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52006-52013. [PMID: 34280308 DOI: 10.1021/acsami.1c08917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we establish a method to quantitatively monitor a metal-organic framework (MOF)-catalyzed, biomedically relevant reaction directly in blood plasma, specifically, the generation of nitric oxide (NO) from the endogenous substrate S-nitrosoglutathione (GSNO) catalyzed by H3[(Cu4Cl)3-(BTTri)8] (CuBTTri). The reaction monitoring method uses UV-vis and 1H NMR spectroscopies along with a nitric oxide analyzer (NOA) to yield the reaction stoichiometry and catalytic rate for GSNO to NO conversion catalyzed by CuBTTri in blood plasma. The results show 100% loss of GSNO within 16 h and production of 1 equiv. of glutathione disulfide (GSSG) per 2 equiv. of GSNO. Only 78 ± 10% recovery of NO(g) was observed, indicating that blood plasma can scavenge the generated NO before it can escape the reaction vessel. Significantly, to best apply and understand reaction systems with biomedical importance, such as NO release catalyzed by CuBTTri, methods to study the reaction directly in biological solvents must be developed.
Collapse
|
11
|
Wilkins JT, Seckler HS, Rink J, Compton PD, Fornelli L, Thaxton CS, LeDuc R, Jacobs D, Doubleday PF, Sniderman A, Lloyd-Jones DM, Kelleher NL. Spectrum of Apolipoprotein AI and Apolipoprotein AII Proteoforms and Their Associations With Indices of Cardiometabolic Health: The CARDIA Study. J Am Heart Assoc 2021; 10:e019890. [PMID: 34472376 PMCID: PMC8649248 DOI: 10.1161/jaha.120.019890] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background ApoAI (apolipoproteins AI) and apoAII (apolipoprotein AII) are structural and functional proteins of high‐density lipoproteins (HDL) which undergo post‐translational modifications at specific residues, creating distinct proteoforms. While specific post‐translational modifications have been reported to alter apolipoprotein function, the full spectrum of apoAI and apoAII proteoforms and their associations with cardiometabolic phenotype remains unknown. Herein, we comprehensively characterize apoAI and apoAII proteoforms detectable in serum and their post‐translational modifications and quantify their associations with cardiometabolic health indices. Methods and Results Using top‐down proteomics (mass‐spectrometric analysis of intact proteins), we analyzed paired serum samples from 150 CARDIA (Coronary Artery Risk Development in Young Adults) study participants from year 20 and 25 exams. Measuring 15 apoAI and 9 apoAII proteoforms, 6 of which carried novel post‐translational modifications, we quantified associations between percent proteoform abundance and key cardiometabolic indices. Canonical (unmodified) apoAI had inverse associations with HDL cholesterol and HDL‐cholesterol efflux, and positive associations with obesity indices (body mass index, waist circumference), and triglycerides, whereas glycated apoAI showed positive associations with serum glucose and diabetes mellitus. Fatty‐acid‒modified ApoAI proteoforms had positive associations with HDL cholesterol and efflux, and inverse associations with obesity indices and triglycerides. Truncated and dimerized proteoforms of apoAII were associated with HDL cholesterol (positively) and obesity indices (inversely). Several proteoforms had no significant associations with phenotype. Conclusions Associations between apoAI and AII and cardiometabolic indices are proteoform‐specific. These results provide “proof‐of‐concept” that precise chemical characterization of human apolipoproteins will yield improved insights into the complex pathways through which proteins signify and mediate health and disease.
Collapse
Affiliation(s)
- John T Wilkins
- Department of Medicine (Cardiology) and Department of Preventive Medicine Northwestern University Chicago IL
| | - Henrique S Seckler
- Department of Chemistry Chemistry of Life Processes Institute and Proteomics Center of Excellence Northwestern University Evanston IL
| | - Jonathan Rink
- Department of Medicine (Urology) Northwestern University Chicago IL
| | - Philip D Compton
- Department of Chemistry Chemistry of Life Processes Institute and Proteomics Center of Excellence Northwestern University Evanston IL
| | - Luca Fornelli
- Department of Molecular Biology University of Oklahoma Norman OK
| | - C Shad Thaxton
- Department of Medicine (Urology) Northwestern University Chicago IL
| | - Rich LeDuc
- Department of Chemistry Chemistry of Life Processes Institute and Proteomics Center of Excellence Northwestern University Evanston IL
| | - David Jacobs
- Division of Epidemiology and Community Health School of Public Health University of Minnesota Minneapolis MN
| | - Peter F Doubleday
- Department of Chemistry Chemistry of Life Processes Institute and Proteomics Center of Excellence Northwestern University Evanston IL
| | - Allan Sniderman
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention Department of Medicine McGill University Health Centre Montreal Quebec Canada
| | - Donald M Lloyd-Jones
- Department of Medicine (Cardiology) and Department of Preventive Medicine Northwestern University Chicago IL
| | - Neil L Kelleher
- Department of Chemistry Chemistry of Life Processes Institute and Proteomics Center of Excellence Northwestern University Evanston IL
| |
Collapse
|
12
|
Kellie JF, Tran JC, Jian W, Jones B, Mehl JT, Ge Y, Henion J, Bateman KP. Intact Protein Mass Spectrometry for Therapeutic Protein Quantitation, Pharmacokinetics, and Biotransformation in Preclinical and Clinical Studies: An Industry Perspective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1886-1900. [PMID: 32869982 DOI: 10.1021/jasms.0c00270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advancements in immunocapture methods and mass spectrometer technology have enabled intact protein mass spectrometry to be applied for the characterization of antibodies and other large biotherapeutics from in-life studies. Protein molecules have not been traditionally studied by intact mass or screened for catabolites in the same manner as small molecules, but the landscape has changed. Researchers have presented methods that can be applied to the drug discovery and development stages, and others are exploring the possibilities of the new approaches. However, a wide variety of options for assay development exists without clear recommendation on best practice, and data processing workflows may have limitations depending on the vendor. In this perspective, we share experiences and recommendations for current and future application of mass spectrometry for biotherapeutic molecule monitoring from preclinical and clinical studies.
Collapse
Affiliation(s)
- John F Kellie
- Bioanalysis, Immunogenicity & Biomarkers, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - John C Tran
- Biochemical & Cellular Pharmacology, Genentech Inc., South San Francisco, California 94080, United States
| | - Wenying Jian
- DMPK, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Barry Jones
- Q Squared Solutions, 19 Brown Road, Ithaca, New York 14850, United States
| | - John T Mehl
- Bioanalytical Research, Bristol-Myers Squibb, Princeton, New Jersey 08648, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jack Henion
- Advion, Inc., 61 Brown Road, Ithaca, New York 14850, United States
| | - Kevin P Bateman
- PPDM, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
13
|
Santos Seckler HD, Park HM, Lloyd-Jones CM, Melani RD, Camarillo JM, Wilkins JT, Compton PD, Kelleher NL. New Interface for Faster Proteoform Analysis: Immunoprecipitation Coupled with SampleStream-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1659-1670. [PMID: 34043341 PMCID: PMC8530194 DOI: 10.1021/jasms.1c00026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Different proteoform products of the same gene can exhibit differing associations with health and disease, and their patterns of modifications may offer more precise markers of phenotypic differences between individuals. However, currently employed protein-biomarker discovery and quantification tools, such as bottom-up proteomics and ELISAs, are mostly proteoform-unaware. Moreover, the current throughput for proteoform-level analyses by liquid chromatography mass spectrometry (LCMS) for quantitative top-down proteomics is incompatible with population-level biomarker surveys requiring robust, faster proteoform analysis. To this end, we developed immunoprecipitation coupled to SampleStream mass spectrometry (IP-SampleStream-MS) as a high-throughput, automated technique for the targeted quantification of proteoforms. We applied IP-SampleStream-MS to serum samples of 25 individuals to assess the proteoform abundances of apolipoproteins A-I (ApoA-I) and C-III (ApoC-III). The results for ApoA-I were compared to those of LCMS for these individuals, with IP-SampleStream-MS showing a >7-fold higher throughput with >50% better analytical variation. Proteoform abundances measured by IP-SampleStream-MS correlated strongly to LCMS-based values (R2 = 0.6-0.9) and produced convergent proteoform-to-phenotype associations, namely, the abundance of canonical ApoA-I was associated with lower HDL-C (R = 0.5) and glycated ApoA-I with higher fasting glucose (R = 0.6). We also observed proteoform-to-phenotype associations for ApoC-III, 22 glycoproteoforms of which were characterized in this study. The abundance of ApoC-III modified by a single N-acetyl hexosamine (HexNAc) was associated with indices of obesity, such as BMI, weight, and waist circumference (R ∼ 0.7). These data show IP-SampleStream-MS to be a robust, scalable workflow for high-throughput associations of proteoforms to phenotypes.
Collapse
Affiliation(s)
- Henrique Dos Santos Seckler
- Department of Chemistry, Chemistry of Life Processes Institute and Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Hae-Min Park
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Cameron M Lloyd-Jones
- Department of Chemistry, Chemistry of Life Processes Institute and Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Department of Chemistry, Chemistry of Life Processes Institute and Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeannie M Camarillo
- Department of Chemistry, Chemistry of Life Processes Institute and Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - John T Wilkins
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Philip D Compton
- Department of Chemistry, Chemistry of Life Processes Institute and Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
- Integrated Protein Technologies, Inc., Evanston, Illinois 60646, United States
| | - Neil L Kelleher
- Department of Chemistry, Chemistry of Life Processes Institute and Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Wada Y, Okamoto N. Apolipoprotein C-III O-glycoform profiling of 500 serum samples by matrix-assisted laser desorption/ionization mass spectrometry for diagnosis of congenital disorders of glycosylation. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4597. [PMID: 32677746 DOI: 10.1002/jms.4597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Congenital disorders of glycosylation (CDG) are caused by defects in various genes governing glycoconjugate biosynthesis. Several responsible genes have been identified in the protein N-glycosylation process. Analyses of mucin-type core-1 O-glycoform of apolipoprotein C-III (apoCIII) have recently revealed combined N- and O-glycosylation defects. We applied matrix-assisted laser desorption/ionization mass spectrometry profiling of apoCIII glycoforms to 500 serum samples for CDG screening, and reference values were determined. The content of unglycosylated apoCIII was low in early infancy, indicating that the O-glycan occupancy should be assessed based on age-matched reference values. The samples from patients with mutations in the ALG1, ATP6V0A2, B4GALT1, COG2, GCS1, PGM1, SLC35A2, and TRAPPC11 genes were analyzed. B4GALT1- and TRAPPC11-CDG were accompanied by under-sialylation of O-glycans and are now recognized as combined N- and O-glycosylation disorders.
Collapse
Affiliation(s)
- Yoshinao Wada
- Department of Molecular Medicine, Osaka Women's and Children's Hospital (OWCH), Osaka, Japan
| | - Nobuhiko Okamoto
- Department of Molecular Medicine, Osaka Women's and Children's Hospital (OWCH), Osaka, Japan
| |
Collapse
|
15
|
Delafield DG, Li L. Recent Advances in Analytical Approaches for Glycan and Glycopeptide Quantitation. Mol Cell Proteomics 2021; 20:100054. [PMID: 32576592 PMCID: PMC8724918 DOI: 10.1074/mcp.r120.002095] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing implications of glycosylation in physiological occurrences and human disease have prompted intensive focus on revealing glycomic perturbations through absolute and relative quantification. Empowered by seminal methodologies and increasing capacity for detection, identification, and characterization, the past decade has provided a significant increase in the number of suitable strategies for glycan and glycopeptide quantification. Mass-spectrometry-based strategies for glycomic quantitation have grown to include metabolic incorporation of stable isotopes, deposition of mass difference and mass defect isotopic labels, and isobaric chemical labeling, providing researchers with ample tools for accurate and robust quantitation. Beyond this, workflows have been designed to harness instrument capability for label-free quantification, and numerous software packages have been developed to facilitate reliable spectrum scoring. In this review, we present and highlight the most recent advances in chemical labeling and associated techniques for glycan and glycopeptide quantification.
Collapse
Affiliation(s)
- Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
16
|
CDG biochemical screening: Where do we stand? Biochim Biophys Acta Gen Subj 2020; 1864:129652. [DOI: 10.1016/j.bbagen.2020.129652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
|
17
|
Nedelkov D, Hu Y. Complexity, cost, and content – three important factors for translation of clinical protein mass spectrometry tests, and the case for apolipoprotein C-III proteoform testing. Clin Chem Lab Med 2019; 58:858-863. [DOI: 10.1515/cclm-2019-0977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
Abstract
Complexity, cost, and content are three important factors that can impede translation of clinical protein mass spectrometry (MS) tests at a larger scale. Complexity stems from the many components/steps involved in bottom-up protein MS workflows, making them significantly more complicated than enzymatic immunoassays (EIA) that currently dominate clinical testing. This complexity inevitably leads to increased costs, which is detrimental in the price-competitive clinical marketplace. To successfully compete, new clinical protein MS tests need to offer something new and unique that EIAs cannot – a new content of proteoform detection. The preferred method for proteoform profiling is intact protein MS analysis, in which all proteins are measured as intact species thus allowing discovery of new proteoforms. To illustrate the importance of intact proteoform testing with MS and its potential clinical implications, we discuss here recent findings from multiple studies on the distribution of apolipoprotein C-III proteoforms and their correlations with key clinical measures of dyslipidemia. Such studies are only made possible with assays that are low in cost, avoid unnecessary complexity, and are unique in providing the content of proteoforms.
Collapse
Affiliation(s)
- Dobrin Nedelkov
- Isoformix Inc. , 9830 S, 51st St. Suite B-113 , Phoenix AZ 85044 , USA , Phone: +1-602-295-4874
| | | |
Collapse
|
18
|
Adiels M, Taskinen MR, Björnson E, Andersson L, Matikainen N, Söderlund S, Kahri J, Hakkarainen A, Lundbom N, Sihlbom C, Thorsell A, Zhou H, Pietiläinen KH, Packard C, Borén J. Role of apolipoprotein C-III overproduction in diabetic dyslipidaemia. Diabetes Obes Metab 2019; 21:1861-1870. [PMID: 30972934 DOI: 10.1111/dom.13744] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
AIMS To investigate how apolipoprotein C-III (apoC-III) metabolism is altered in subjects with type 2 diabetes, whether the perturbed plasma triglyceride concentrations in this condition are determined primarily by the secretion rate or the removal rate of apoC-III, and whether improvement of glycaemic control using the glucagon-like peptide-1 analogue liraglutide for 16 weeks modifies apoC-III dynamics. MATERIALS AND METHODS Postprandial apoC-III kinetics were assessed after a bolus injection of [5,5,5-2 H3 ]leucine using ultrasensitive mass spectrometry techniques. We compared apoC-III kinetics in two situations: in subjects with type 2 diabetes before and after liraglutide therapy, and in type 2 diabetic subjects with matched body mass index (BMI) non-diabetic subjects. Liver fat content, subcutaneous abdominal and intra-abdominal fat were determined using proton magnetic resonance spectroscopy. RESULTS Improved glycaemic control by liraglutide therapy for 16 weeks significantly reduced apoC-III secretion rate (561 ± 198 vs. 652 ± 196 mg/d, P = 0.03) and apoC-III levels (10.0 ± 3.8 vs. 11.7 ± 4.3 mg/dL, P = 0.035) in subjects with type 2 diabetes. Change in apoC-III secretion rate was significantly associated with the improvement in indices of glucose control (r = 0.67; P = 0.009) and change in triglyceride area under the curve (r = 0.59; P = 0.025). In line with this, the apoC-III secretion rate was higher in subjects with type 2 diabetes compared with BMI-matched non-diabetic subjects (676 ± 208 vs. 505 ± 174 mg/d, P = 0.042). CONCLUSIONS The results reveal that the secretion rate of apoC-III is associated with elevation of triglyceride-rich lipoproteins in subjects with type 2 diabetes, potentially through the influence of glucose homeostasis on the production of apoC-III.
Collapse
Affiliation(s)
- Martin Adiels
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linda Andersson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niina Matikainen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sanni Söderlund
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Juhani Kahri
- Department of Internal Medicine and Rehabilitation, Helsinki University Hospital, Helsinki, Finland
| | - Antti Hakkarainen
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Nina Lundbom
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Thorsell
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Haihong Zhou
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, New Jersey
| | - Kirsi H Pietiläinen
- Endocrinology, Abdominal Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Chris Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
19
|
Li F, Weng Y, Zhang G, Han X, Li D, Neubert H. Characterization and Quantification of an Fc-FGF21 Fusion Protein in Rat Serum Using Immunoaffinity LC-MS. AAPS JOURNAL 2019; 21:84. [DOI: 10.1208/s12248-019-0356-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/17/2019] [Indexed: 01/16/2023]
|
20
|
Olivieri O, Chiariello C, Martinelli N, Castagna A, Speziali G, Girelli D, Pizzolo F, Bassi A, Cecconi D, Robotti E, Manfredi M, Conte E, Marengo E. Sialylated isoforms of apolipoprotein C-III and plasma lipids in subjects with coronary artery disease. Clin Chem Lab Med 2019; 56:1542-1550. [PMID: 29652662 DOI: 10.1515/cclm-2017-1099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Apolipoprotein C-III (ApoC-III), a key regulator of plasma triglyceride (TG), is present in three isoforms, i.e. non-sialylated (ApoC-III0), monosialylated (ApoC-III1) and disialylated (ApoC-III2). We aimed at quantifying the distribution of the ApoC-III glycoforms in patients with angiographically demonstrated coronary artery disease (CAD) according to levels of total ApoC-III plasma concentration. METHODS ApoC-III glycoforms were quantified by a specifically developed, high-resolution, mass spectrometry method in unrelated CAD patients. Lipoprotein lipase (LPL) activity was estimated by a fluorescence-based method. RESULTS In 101 statin-treated CAD patients, the absolute concentrations of the three glycoforms similarly increased across ApoC-III quartiles, but the proportion of ApoC-III1 rose whereas that of ApoC-III0 decreased progressively by increasing total ApoC-III concentrations. The proportion of ApoC-III2 was quite constant throughout the whole range of total ApoC-III. A higher proportion of ApoC-III1 reflected an unfavorable lipid profile characterized by high levels of TG, total and low density lipoprotein cholesterol, ApoE and reduced ApoA-I. The correlations between ApoC-III glycoforms and TG were confirmed in 50 statin-free CAD patients. High concentration of total ApoC-III was associated with low LPL activity, while no correlation was found for the relative proportion of glycoforms. CONCLUSIONS Specific patterns of ApoC-III glycoforms are present across different total ApoC-III concentrations in CAD patients. The inhibitory effect of ApoC-III on LPL appears related to total ApoC-III concentration, but not to the relative proportion of ApoC-III glycoforms.
Collapse
Affiliation(s)
- Oliviero Olivieri
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Carmela Chiariello
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Nicola Martinelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Annalisa Castagna
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Giulia Speziali
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Verona, Italy
| | - Domenico Girelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Francesca Pizzolo
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Antonella Bassi
- Laboratory of Clinical Chemistry and Hematology, University Hospital of Verona, Verona, Italy
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Verona, Italy
| | - Elisa Robotti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Marcello Manfredi
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy.,ISALIT S.r.l., Novara, Italy
| | | | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| |
Collapse
|
21
|
Selectivity for quantitation of biomarkers using liquid chromatography and mass spectrometry. Bioanalysis 2018; 10:1461-1465. [DOI: 10.4155/bio-2018-0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Kightlinger W, Lin L, Rosztoczy M, Li W, DeLisa MP, Mrksich M, Jewett MC. Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases. Nat Chem Biol 2018; 14:627-635. [PMID: 29736039 DOI: 10.1038/s41589-018-0051-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/07/2018] [Indexed: 01/17/2023]
Abstract
Glycosylation is an abundant post-translational modification that is important in disease and biotechnology. Current methods to understand and engineer glycosylation cannot sufficiently explore the vast experimental landscapes required to accurately predict and design glycosylation sites modified by glycosyltransferases. Here we describe a systematic platform for glycosylation sequence characterization and optimization by rapid expression and screening (GlycoSCORES), which combines cell-free protein synthesis and mass spectrometry of self-assembled monolayers. We produced six N- and O-linked polypeptide-modifying glycosyltransferases from bacteria and humans in vitro and rigorously determined their substrate specificities using 3,480 unique peptides and 13,903 unique reaction conditions. We then used GlycoSCORES to optimize and design small glycosylation sequence motifs that directed efficient N-linked glycosylation in vitro and in the Escherichia coli cytoplasm for three heterologous proteins, including the human immunoglobulin Fc domain. We find that GlycoSCORES is a broadly applicable method to facilitate fundamental understanding of glycosyltransferases and engineer synthetic glycoproteins.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Liang Lin
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Madisen Rosztoczy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Wenhao Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.,Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Milan Mrksich
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
23
|
A capillary zone electrophoresis method for detection of Apolipoprotein C-III glycoforms and other related artifactually modified species. J Chromatogr A 2018; 1532:238-245. [DOI: 10.1016/j.chroma.2017.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/22/2022]
|
24
|
Kailemia MJ, Wei W, Nguyen K, Beals E, Sawrey-Kubicek L, Rhodes C, Zhu C, Sacchi R, Zivkovic AM, Lebrilla CB. Targeted Measurements of O- and N-Glycopeptides Show That Proteins in High Density Lipoprotein Particles Are Enriched with Specific Glycosylation Compared to Plasma. J Proteome Res 2017; 17:834-845. [PMID: 29212317 DOI: 10.1021/acs.jproteome.7b00604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High density lipoprotein (HDL) particles are believed to be protective due to their inverse correlation with the prevalence of cardiovascular diseases. However, recent studies show that in some conditions such as heart disease and diabetes, HDL particles can become dysfunctional. Great attention has been directed toward HDL particle composition because the relative abundances of HDL constituents determine HDL's functional properties. A key factor to consider when studying the structure and composition of plasma particles is the protein glycosylation. Here, we profile the O- and N-linked glycosylation of HDL associated-proteins including the truncated form of Apo CIII and their glycan heterogeneity in a site-specific manner. Apolipoprotein CIII, fetuin A, and alpha 1 antitrypsin are glycoproteins associated with lipoproteins and are implicated in many cardiovascular and other disease conditions. A targeted method (UHPLC-QQQ) was used to measure the glycoprotein concentrations and site-specific glycovariations of the proteins in human plasma and compared with HDL particles isolated from the same plasma samples. The proteins found in the plasma are differentially glycosylated compared to those isolated in HDL. The results of this study suggest that glycosylation may play a role in protein partitioning in the blood, with possible functional implications.
Collapse
Affiliation(s)
- Muchena J Kailemia
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Wanghui Wei
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Khoa Nguyen
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Elizabeth Beals
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Lisa Sawrey-Kubicek
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Christopher Rhodes
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Chenghao Zhu
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Romina Sacchi
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Angela M Zivkovic
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | - Carlito B Lebrilla
- Department of Chemistry, ‡Department of Nutrition, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| |
Collapse
|
25
|
Nedelkov D. Human proteoforms as new targets for clinical mass spectrometry protein tests. Expert Rev Proteomics 2017; 14:691-699. [DOI: 10.1080/14789450.2017.1362337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Lobo MDP, Moreno FBMB, Souza GHMF, Verde SMML, Moreira RDA, Monteiro-Moreira ACDO. Label-Free Proteome Analysis of Plasma from Patients with Breast Cancer: Stage-Specific Protein Expression. Front Oncol 2017; 7:14. [PMID: 28210565 PMCID: PMC5288737 DOI: 10.3389/fonc.2017.00014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/18/2017] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed types of cancer among women. Breast cancer mortality rates remain high probably because its diagnosis is hampered by inaccurate detection methods. Since changes in protein expression as well as modifications in protein glycosylation have been frequently reported in cancer development, the aim of this work was to study the differential expression as well as modifications of glycosylation of proteins from plasma of women with breast cancer at different stages of disease (n = 30) compared to healthy women (n = 10). A proteomics approach was used that depleted albumin and IgG from plasma followed by glycoprotein enrichment using immobilized Moraceae lectin (frutalin)-affinity chromatography and data-independent label-free mass spectrometric analysis. Data are available via ProteomeXchange with identifier PXD003106. As result, 57,016 peptides and 4,175 proteins among all samples were identified. From this, 40 proteins present in unbound (PI—proteins that did not interact with lectin) and bound (PII—proteins that interacted with lectin) fractions were differentially expressed. High levels of apolipoprotein A-II were detected here that were elevated significantly in the early and advanced stages of the disease. Apolipoprotein C-III was detected in both fractions, and its level was increased slightly in the PI fraction of patients with early-stage breast cancer and expressed at higher levels in the PII fraction of patients with early and intermediate stages. Clusterin was present at higher levels in both fractions of patients with early and intermediate stages of breast cancer. Our findings reveal a correlation between alterations in protein glycosylation, lipid metabolism, and the progression of breast cancer.
Collapse
Affiliation(s)
- Marina Duarte Pinto Lobo
- Department of Biochemistry and Molecular Biology, Federal University of Ceará (UFC), Fortaleza, Brazil; Center of Experimental Biology (Nubex), University of Fortaleza (UNIFOR), Fortaleza, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
Mesaros C, Blair IA. Mass spectrometry-based approaches to targeted quantitative proteomics in cardiovascular disease. Clin Proteomics 2016; 13:20. [PMID: 27713681 PMCID: PMC5050566 DOI: 10.1186/s12014-016-9121-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/19/2016] [Indexed: 01/11/2023] Open
Abstract
Mass spectrometry-based proteomics methodology has become an important tool in elucidating some of the underlying mechanisms involved in cardiovascular disease. The present review provides details on selected important protein targets where highly selective and specific mass spectrometry-based approaches have led to important new findings and provided new mechanistic information. The role of six proteins involved in the etiology of cardiovascular disease (acetylated platelet cyclooxygenase-1, serum apolipoprotein A1, apolipoprotein C-III, serum C-reactive protein, serum high mobility group box-1 protein, insulin-like growth factor I) and their quantification has been discussed. There are an increasing number of examples where highly selective mass spectrometry-based quantification has provided new important data that could not be obtained with less labor intensive and cheaper immunoassay-based procedures. It is anticipated that these findings will lead to significant advances in a number of important issues related to the role of specific proteins in cardiovascular disease. The availability of a new generation of high-resolution high-sensitivity mass spectrometers will greatly facilitate these studies so that in the future it will be possible to analyze serum proteins of relevance to cardiovascular disease with levels of specificity and/or sensitivity that cannot be attained by immunoassay-based procedures.
Collapse
Affiliation(s)
- Clementina Mesaros
- Penn SRP Center and Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104 USA ; BluePen Biomarkers, 3401 Grays Ferry Avenue, Philadelphia, PA 19146-2799 USA
| | - Ian A Blair
- Penn SRP Center and Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104 USA ; BluePen Biomarkers, 3401 Grays Ferry Avenue, Philadelphia, PA 19146-2799 USA
| |
Collapse
|
28
|
A workflow for absolute quantitation of large therapeutic proteins in biological samples at intact level using LC-HRMS. Bioanalysis 2016; 8:1679-91. [DOI: 10.4155/bio-2016-0096] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The commonly used LC–MS workflow to quantify protein therapeutics in biological samples is ‘bottom-up’ approach. In this study, the aim is to establish ‘top-down’ approach for absolute quantitation of therapeutic antibodies or proteins of similar sizes in biological samples at intact level. Materials & methods: Using a recombinant human monoclonal antibody as the model molecule, we present a workflow to measure large therapeutic proteins in plasma at intact level based on deconvoluted high-resolution MS (HRMS) peaks. A novel MultiQuant™ software function was developed to automatically deconvolute the peaks and process the data. Results & conclusion: The workflow showed satisfying performance. This is a proof of concept study demonstrating the feasibility of bioanalysis of large therapeutic proteins at intact level using LC-HRMS.
Collapse
|
29
|
Mass spectrometric immunoassays for discovery, screening and quantification of clinically relevant proteoforms. Bioanalysis 2016; 8:1623-1633. [PMID: 27396364 DOI: 10.4155/bio-2016-0060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human proteins can exist as multiple proteoforms with potential diagnostic or prognostic significance. MS top-down approaches are ideally suited for proteoforms identification because there is no prerequisite for a priori knowledge of the specific proteoform. One such top-down approach, termed mass spectrometric immunoassay utilizes antibody-derivatized microcolumns for rapid and contained proteoforms isolation and detection via MALDI-TOF MS. The mass spectrometric immunoassay can also provide quantitative measurement of the proteoforms through inclusion of an internal reference standard into the analytical sample, serving as normalizer for all sample processing and data acquisition steps. Reviewed here are recent developments and results from the application of mass spectrometric immunoassays for discovery of clinical correlations of specific proteoforms for the protein biomarkers RANTES, retinol binding protein, serum amyloid A and apolipoprotein C-III.
Collapse
|
30
|
Norata GD, Tsimikas S, Pirillo A, Catapano AL. Apolipoprotein C-III: From Pathophysiology to Pharmacology. Trends Pharmacol Sci 2015; 36:675-687. [DOI: 10.1016/j.tips.2015.07.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 01/14/2023]
|
31
|
Defaus S, Gupta P, Andreu D, Gutiérrez-Gallego R. Mammalian protein glycosylation--structure versus function. Analyst 2015; 139:2944-67. [PMID: 24779027 DOI: 10.1039/c3an02245e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbohydrates fulfil many common as well as extremely important functions in nature. They show a variety of molecular displays--e.g., free mono-, oligo-, and polysaccharides, glycolipids, proteoglycans, glycoproteins, etc.--with particular roles and localizations in living organisms. Structure-specific peculiarities are so many and diverse that it becomes virtually impossible to cover them all from an analytical perspective. Hence this manuscript, focused on mammalian glycosylation, rather than a complete list of analytical descriptors or recognized functions for carbohydrate structures, comprehensively reviews three central issues in current glycoscience, namely (i) structural analysis of glycoprotein glycans, covering both classical and novel approaches for teasing out the structural puzzle as well as potential pitfalls of these processes; (ii) an overview of functions attributed to carbohydrates, covering from monosaccharide to complex, well-defined epitopes and full glycans, including post-glycosylational modifications, and (iii) recent technical advances allowing structural identification of glycoprotein glycans with simultaneous assignation of biological functions.
Collapse
Affiliation(s)
- S Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | | | | | | |
Collapse
|
32
|
LC–MS-based quantification of intact proteins: perspective for clinical and bioanalytical applications. Bioanalysis 2015; 7:1943-58. [DOI: 10.4155/bio.15.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bioanalytical LC–MS for protein quantification is traditionally based on enzymatic digestion of the target protein followed by absolute quantification of a specific signature peptide relative to a stable-isotope labeled analog. The enzymatic digestion, nonetheless, limits rapid method development, sample throughput and turnaround time, and, moreover, makes that essential information regarding the biological function of the intact protein is lost. The recent advancements in high-resolution MS instrumentation and improved sample preparation techniques dedicated to protein clean-up raise the question to what extent LC–MS can be applied for quantitative bioanalysis of intact proteins. This review provides an overview of current and potential applications of LC–MS for intact protein quantification as well as the main limitations and challenges for broad application.
Collapse
|
33
|
Faria M, Halquist MS, Yuan M, Mylott W, Jenkins RG, Karnes HT. Comparison of a stable isotope labeled (SIL) peptide and an extended SIL peptide as internal standards to track digestion variability of an unstable signature peptide during quantification of a cancer biomarker, human osteopontin, from plasma using capillary microflow LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1001:156-68. [PMID: 26279007 DOI: 10.1016/j.jchromb.2015.05.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 04/30/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Human osteopontin (hOPN) is a secreted plasma protein which is elevated in various cancers and is indicative of poor prognosis. Here we describe investigations involving an extended peptide internal standard to track an unstable signature peptide followed by further method development and validation for quantitative measurement of hOPN from plasma using microflow liquid chromatography and tandem mass spectrometry (MFLC-MS/MS). A biologically relevant tryptic peptide 'GDSVVYGLR' was used as a signature peptide for this method. The optimized method involved immunocapture of the analyte protein using hOPN specific antibodies followed by trypsin digestion to obtain the signature peptide. Analysis was carried out on a Waters IonKey/MS system using a flow rate of 2.5μL/min. Immunocapture buffer was used as a surrogate matrix for the validation studies. The method was validated over a range of 25-600ng/mL. Intra-assay and inter-assay accuracies were within ±13%. Intra-assay and inter-assay precision were within 17%. A stable isotope labeled (SIL) peptide GDSVVYGLR* and an extended SIL peptide TYDGRGDSVV*YGLRSKSKKF were evaluated as internal standards (IS) to account for signature peptide digestion instability and variability. Inherent digestion variability i.e., under controlled conditions, was within ±20% with both IS peptides. In digestion variability studies, where trypsin activity was varied (20-180%), the use of the extended SIL peptide as an internal standard limited the variability to within ±30% of the normalized response. Alternatively, when the SIL peptide was used as the internal standard, the variability ranged from -67.4% to 50.6% of the normalized response. The applicability of the validated method was demonstrated by quantification of OPN from plasma samples obtained from 10 healthy individuals and 10 breast cancer patients. The plasma OPN concentrations in healthy individuals ranged from 38 to 85ng/mL with a mean concentration of 55.4±15.3ng/mL. A 1.5-12 fold increase in OPN concentrations, ranging from 85 to 637ng/mL, was seen in breast cancer patient samples.
Collapse
Affiliation(s)
- Morse Faria
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Matthew S Halquist
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Moucun Yuan
- Chromatographic Sciences, PPD, 2244 Dabney Road, Richmond, VA 23230, USA
| | - William Mylott
- Chromatographic Sciences, PPD, 2244 Dabney Road, Richmond, VA 23230, USA
| | - Rand G Jenkins
- Chromatographic Sciences, PPD, 2244 Dabney Road, Richmond, VA 23230, USA
| | - H Thomas Karnes
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
34
|
Trenchevska O, Schaab MR, Nelson RW, Nedelkov D. Development of multiplex mass spectrometric immunoassay for detection and quantification of apolipoproteins C-I, C-II, C-III and their proteoforms. Methods 2015; 81:86-92. [PMID: 25752847 PMCID: PMC4574700 DOI: 10.1016/j.ymeth.2015.02.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 01/11/2023] Open
Abstract
The impetus for discovery and evaluation of protein biomarkers has been accelerated by recent development of advanced technologies for rapid and broad proteome analyses. Mass spectrometry (MS)-based protein assays hold great potential for in vitro biomarker studies. Described here is the development of a multiplex mass spectrometric immunoassay (MSIA) for quantification of apolipoprotein C-I (apoC-I), apolipoprotein C-II (apoC-II), apolipoprotein C-III (apoC-III) and their proteoforms. The multiplex MSIA assay was fast (∼ 40 min) and high-throughput (96 samples at a time). The assay was applied to a small cohort of human plasma samples, revealing the existence of multiple proteoforms for each apolipoprotein C. The quantitative aspect of the assay enabled determination of the concentration for each proteoform individually. Low-abundance proteoforms, such as fucosylated apoC-III, were detected in less than 20% of the samples. The distribution of apoC-III proteoforms varied among samples with similar total apoC-III concentrations. The multiplex analysis of the three apolipoproteins C and their proteoforms using quantitative MSIA represents a significant step forward toward better understanding of their physiological roles in health and disease.
Collapse
Affiliation(s)
- Olgica Trenchevska
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Matthew R Schaab
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Randall W Nelson
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Dobrin Nedelkov
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
35
|
|
36
|
Kontush A, Lindahl M, Lhomme M, Calabresi L, Chapman MJ, Davidson WS. Structure of HDL: particle subclasses and molecular components. Handb Exp Pharmacol 2015; 224:3-51. [PMID: 25522985 DOI: 10.1007/978-3-319-09665-0_1] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A molecular understanding of high-density lipoprotein (HDL) will allow a more complete grasp of its interactions with key plasma remodelling factors and with cell-surface proteins that mediate HDL assembly and clearance. However, these particles are notoriously heterogeneous in terms of almost every physical, chemical and biological property. Furthermore, HDL particles have not lent themselves to high-resolution structural study through mainstream techniques like nuclear magnetic resonance and X-ray crystallography; investigators have therefore had to use a series of lower resolution methods to derive a general structural understanding of these enigmatic particles. This chapter reviews current knowledge of the composition, structure and heterogeneity of human plasma HDL. The multifaceted composition of the HDL proteome, the multiple major protein isoforms involving translational and posttranslational modifications, the rapidly expanding knowledge of the HDL lipidome, the highly complex world of HDL subclasses and putative models of HDL particle structure are extensively discussed. A brief history of structural studies of both plasma-derived and recombinant forms of HDL is presented with a focus on detailed structural models that have been derived from a range of techniques spanning mass spectrometry to molecular dynamics.
Collapse
Affiliation(s)
- Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, Paris, France,
| | | | | | | | | | | |
Collapse
|
37
|
Behnken HN, Ruthenbeck A, Schulz JM, Meyer B. Glycan analysis of Prostate Specific Antigen (PSA) directly from the intact glycoprotein by HR-ESI/TOF-MS. J Proteome Res 2014; 13:997-1001. [PMID: 24393138 DOI: 10.1021/pr400999y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glycans are important modulators of the biological function of proteins and are normally characterized from proteolytic glycopeptides or from (N-)glycans released enzymatically by glycosidase treatment or chemically by hydrazinolysis. We demonstrate that glycan compositions can easily be determined directly by LC-ESI/TOF-MS from intact glycoproteins even with a very complex glycosylation pattern. Interpretation of isotopically resolved mass spectra of prostate specific antigen (PSA) using bioinformatics tools gives within a few hours the glycan compositions of 38 glycoforms.
Collapse
Affiliation(s)
- Henning N Behnken
- Organic Chemistry, Department of Chemistry, University of Hamburg , Martin-Luther-King Platz 6, 20144 Hamburg, Germany
| | | | | | | |
Collapse
|
38
|
Liu S, Chen X, Yan Z, Qin S, Xu J, Lin J, Yang C, Shui W. Exploring skyline for both MSE-based label-free proteomics and HRMS quantitation of small molecules. Proteomics 2014; 14:169-80. [DOI: 10.1002/pmic.201300352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/26/2013] [Accepted: 11/19/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Shanshan Liu
- College of Life Sciences; Nankai University; Tianjin P. R. China
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Xin Chen
- College of Life Sciences; Nankai University; Tianjin P. R. China
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Zhihui Yan
- College of Life Sciences; Nankai University; Tianjin P. R. China
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Shanshan Qin
- College of Life Sciences; Nankai University; Tianjin P. R. China
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Jinhua Xu
- College of Life Sciences; Nankai University; Tianjin P. R. China
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Jianping Lin
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Nankai University; Tianjin P. R. China
| | - Cheng Yang
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Nankai University; Tianjin P. R. China
| | - Wenqing Shui
- College of Life Sciences; Nankai University; Tianjin P. R. China
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin P. R. China
| |
Collapse
|
39
|
Abstract
High-resolution MS (HRMS) in conjunction with LC (LC–HRMS) has become available to many laboratories in the pharmaceutical industry. Due to its enhanced, though sometime perceived, specificity using the high-resolution power and its capability of simultaneous quantitation and structural elucidation using the post-acquisition data mining feature, utilization of LC–HRMS for bioanalysis could lead to potential rapid and reliable method development as well as sample analysis, thus generating both cost and resource savings. Here, we would like to share our perspectives about several current and future applications of LC–HRMS in bioanalysis. We will also discuss the factors influencing the quality of method establishment and potential pitfalls that need to be considered for the utilization of LC–HRMS in the field of regulated bioanalysis. We believe when utilized appropriately, LC–HRMS will play a significant role in the future landscape of quantitative bioanalysis.
Collapse
|
40
|
Fu X, Huang R, Wang J, Chang B. Sensitive electrochemical immunoassay of a biomarker based on biotin-avidin conjugated DNAzyme concatamer with signal tagging. RSC Adv 2013. [DOI: 10.1039/c3ra41429a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|