1
|
Ferreira HB, Domingues MR. Oxidized phospholipid-protein adducts: The future targets of interest. Arch Biochem Biophys 2024; 754:109956. [PMID: 38458481 DOI: 10.1016/j.abb.2024.109956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
Phospholipids are key biomolecules with important roles as components of membranes, lipoproteins and as signalling molecules. However, phospholipids are quite prone to oxidation. Upon oxidation they generate several types of oxidation products including long chain oxidation products, as hydroperoxyl and hydroxy derivatives, and highly reactive oxidation products, like small aldehydes and truncated oxidized phospholipids. The formation of protein adducts with small electrophilic aldehydes (like malondialdehyde) is now well studied, however, the aggregation of proteins with truncated oxidized phospholipids lacks research. This paper provides a short overview of the formation of protein adducts with truncated oxidized phospholipids as well as a gathering of the research on this topic. The literature found reports the synthesis, detection and fragmentation of this type of adducts, mainly focusing on truncated oxidized phospholipid' products from phosphatidylcholine class and few peptides and proteins, as human serum albumin and Apo B100, leaving unattended the screening in vivo and in disease correlation, thus lacking possible association with their biological role. These adducts are a consequence of oxidative modifications to important biomolecules and their involvement in the organism is still unclear, revealing the urgent need for more investigation in this area.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - M Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Guad RM, Udupa K, Fuloria NK. A Comprehensive Review on Source, Types, Effects, Nanotechnology, Detection, and Therapeutic Management of Reactive Carbonyl Species Associated with Various Chronic Diseases. Antioxidants (Basel) 2020; 9:E1075. [PMID: 33147856 PMCID: PMC7692604 DOI: 10.3390/antiox9111075] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Continuous oxidation of carbohydrates, lipids, and amino acids generate extremely reactive carbonyl species (RCS). Human body comprises some important RCS namely hexanal, acrolein, 4-hydroxy-2-nonenal, methylglyoxal, malondialdehyde, isolevuglandins, and 4-oxo-2- nonenal etc. These RCS damage important cellular components including proteins, nucleic acids, and lipids, which manifests cytotoxicity, mutagenicity, multitude of adducts and crosslinks that are connected to ageing and various chronic diseases like inflammatory disease, atherosclerosis, cerebral ischemia, diabetes, cancer, neurodegenerative diseases and cardiovascular disease. The constant prevalence of RCS in living cells suggests their importance in signal transduction and gene expression. Extensive knowledge of RCS properties, metabolism and relation with metabolic diseases would assist in development of effective approach to prevent numerous chronic diseases. Treatment approaches for RCS associated diseases involve endogenous RCS metabolizers, carbonyl metabolizing enzyme inducers, and RCS scavengers. Limited bioavailability and bio efficacy of RCS sequesters suggest importance of nanoparticles and nanocarriers. Identification of RCS and screening of compounds ability to sequester RCS employ several bioassays and analytical techniques. Present review describes in-depth study of RCS sources, types, properties, identification techniques, therapeutic approaches, nanocarriers, and their role in various diseases. This study will give an idea for therapeutic development to combat the RCS associated chronic diseases.
Collapse
Affiliation(s)
- Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Sundram Karupiah
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah, Bedong 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Rhanye Mac Guad
- Faculty of Medicine and Health Science, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Kaviraja Udupa
- Department of Neurophysiology, NIMHANS, Bangalore 560029, India;
| | | |
Collapse
|
3
|
Afonso CB, Spickett CM. Lipoproteins as targets and markers of lipoxidation. Redox Biol 2018; 23:101066. [PMID: 30579928 PMCID: PMC6859580 DOI: 10.1016/j.redox.2018.101066] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
Abstract
Lipoproteins are essential systemic lipid transport particles, composed of apolipoproteins embedded in a phospholipid and cholesterol monolayer surrounding a cargo of diverse lipid species. Many of the lipids present are susceptible to oxidative damage by lipid peroxidation, giving rise to the formation of reactive lipid peroxidation products (rLPPs). In view of the close proximity of the protein and lipid moieties within lipoproteins, the probability of adduct formation between rLPPs and amino acid residues of the proteins, a process called lipoxidation, is high. There has been interest for many years in the biological effects of such modifications, but the field has been limited to some extent by the availability of methods to determine the sites and exact nature of such modification. More recently, the availability of a wide range of antibodies to lipoxidation products, as well as advances in analytical techniques such as liquid chromatography tandem mass spectrometry (LC-MSMS), have increased our knowledge substantially. While most work has focused on LDL, oxidation of which has long been associated with pro-inflammatory responses and atherosclerosis, some studies on HDL, VLDL and Lipoprotein(a) have also been reported. As the broader topic of LDL oxidation has been reviewed previously, this review focuses on lipoxidative modifications of lipoproteins, from the historical background through to recent advances in the field. We consider the main methods of analysis for detecting rLPP adducts on apolipoproteins, including their advantages and disadvantages, as well as the biological effects of lipoxidized lipoproteins and their potential roles in diseases. Lipoproteins can be modified by reactive Lipid Peroxidation Products (rLPPs). Lipoprotein lipoxidation is known to occur in several inflammatory diseases. Biochemical, immunochemical and mass spectrometry methods can detect rLPP adducts. Due to higher information output, MS can facilitate localization of modifications. Antibodies against some rLPPs have been used to identify lipoxidation in vivo.
Collapse
Affiliation(s)
- Catarina B Afonso
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
4
|
Sousa BC, Pitt AR, Spickett CM. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. Free Radic Biol Med 2017; 111:294-308. [PMID: 28192230 DOI: 10.1016/j.freeradbiomed.2017.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/02/2023]
Abstract
The process of lipid oxidation generates a diverse array of small aldehydes and carbonyl-containing compounds, which may occur in free form or esterified within phospholipids and cholesterol esters. These aldehydes mostly result from fragmentation of fatty acyl chains following radical oxidation, and the products can be subdivided into alkanals, alkenals (usually α,β-unsaturated), γ-substituted alkenals and bis-aldehydes. Isolevuglandins are non-fragmented di-carbonyl compounds derived from H2-isoprostanes, and oxidation of the ω-3-fatty acid docosahexenoic acid yield analogous 22 carbon neuroketals. Non-radical oxidation by hypochlorous acid can generate α-chlorofatty aldehydes from plasmenyl phospholipids. Most of these compounds are reactive and have generally been considered as toxic products of a deleterious process. The reactivity is especially high for the α,β-unsaturated alkenals, such as acrolein and crotonaldehyde, and for γ-substituted alkenals, of which 4-hydroxy-2-nonenal and 4-oxo-2-nonenal are best known. Nevertheless, in recent years several previously neglected aldehydes have been investigated and also found to have significant reactivity and biological effects; notable examples are 4-hydroxy-2-hexenal and 4-hydroxy-dodecadienal. This has led to substantial interest in the biological effects of all of these lipid oxidation products and their roles in disease, including proposals that HNE is a second messenger or signalling molecule. However, it is becoming clear that many of the effects elicited by these compounds relate to their propensity for forming adducts with nucleophilic groups on proteins, DNA and specific phospholipids. This emphasizes the need for good analytical methods, not just for free lipid oxidation products but also for the resulting adducts with biomolecules. The most informative methods are those utilizing HPLC separations and mass spectrometry, although analysis of the wide variety of possible adducts is very challenging. Nevertheless, evidence for the occurrence of lipid-derived aldehyde adducts in biological and clinical samples is building, and offers an exciting area of future research.
Collapse
Affiliation(s)
- Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
5
|
Reis A. Oxidative Phospholipidomics in health and disease: Achievements, challenges and hopes. Free Radic Biol Med 2017; 111:25-37. [PMID: 28088624 DOI: 10.1016/j.freeradbiomed.2017.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
Phospholipid peroxidation products are recognized as important bioactive lipid mediators playing an active role as modulators in signalling events in inflammation, immunity and infection. The biochemical responses are determined by the oxidation structural features present in oxPL modulating biophysical and biological properties in model membranes and lipoproteins. In spite of the extensive work conducted with model systems over the last 20 years, the study of oxPL in biological systems has virtually stagnated. In fact, very little is known concerning the predominant oxPL in fluids and tissues, their basal levels, and any variations introduced with age, gender and ethnicity in health and disease. In consequence, knowledge on oxPL has not yet translated into clinical diagnostic, in the early and timely diagnosis of "silent" diseases such as atherosclerosis and cardiovascular diseases, or as prognosis tools in disease stratification and particularly useful in the context of multimorbidities. Their use as therapeutic solutions or the development of innovative functional biomaterials remains to be explored. This review summarizes the achievements made in the identification of oxPL revealing an enormous structural diversity. A brief overview of the challenges associated with the analysis of such diverse array of products is given and a critical evaluation on key aspects in the analysis pipeline that need to be addressed. Once these issues are addressed, Oxidative Phospholipidomics will hopefully lead to major breakthrough discoveries in biochemistry, pharmaceutical, and clinical areas for the upcoming 20 years. This article is part of Special Issue entitled 4-Hydroxynonenal and Related Lipid Oxidation Products.
Collapse
Affiliation(s)
- Ana Reis
- Mass Spectrometry Centre, Department of Chemistry, Campus Santiago, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Lipid peroxidation has long been established as a key player in the pathophysiology of critical illness. Recent developments in oxidative lipidomics have aided in deciphering the molecular mechanisms of lipid oxidation in health and disease. This review discusses recent achievements and recent developments in oxidative lipidomics and its contribution to the understanding of critical illness. RECENT FINDINGS Most studies involving acute injury focus on identifying the end products of lipid peroxidation. This misses the early events and targets of peroxidation mechanisms. Recent developments in liquid chromatography tandem mass spectrometry-based oxidative lipidomics have enabled the identification of a wide variety of enzymatically generated lipid oxidation products. Such lipid mediators have been found to play an important role in injury, inflammation, and recovery in disease states such as sepsis or head trauma. SUMMARY Multiple lipid oxidation products are formed either through enzymatic pathways or through random chemical reactions. These products are often biologically active and can contribute to the regulation of cellular signaling. Oxidative lipidomics has contributed to the identification and quantification of lipid peroxidation products, the mechanism and time course of their production after injury, and synergistic functioning with other regulatory processes in the body. These advances in knowledge will help guide the future development of interventions in critical illness.
Collapse
Affiliation(s)
- Tamil S. Anthonymuthu
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Nahmah Kim-Campbell
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Hülya Bayır
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, 15213
| |
Collapse
|
7
|
Staniszewska-Slezak E, Fedorowicz A, Kramkowski K, Leszczynska A, Chlopicki S, Baranska M, Malek K. Plasma biomarkers of pulmonary hypertension identified by Fourier transform infrared spectroscopy and principal component analysis. Analyst 2015; 140:2273-9. [PMID: 25599976 DOI: 10.1039/c4an01864h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The main goal of this study was to find specific plasma spectral markers associated with pulmonary arterial hypertension (PAH) induced by monocrotaline injection in rats. FTIR was used to monitor biochemical changes in plasma caused by PAH as compared with the systemic hypertension induced by partial ligation on the left artery and with the control group. Both pathologies, systemic and pulmonary hypertension, induced a unique response in the biochemical content of plasma, mainly related to the composition and secondary structure of plasma proteins. For PAH, β-pleated sheet components of plasma proteins were identified whereas the protein composition in systemic hypertension was dominated by unordered structures. In addition, a higher concentration of tyrosine-rich proteins was found in plasma in PAH than in systemic hypertension. The differences between both pathologies were identified also in terms of lipid composition/metabolism as well as in the content of RNA and glucose, suggesting that lipid peroxidation appears upon pulmonary hypertension development. In summary, this work demonstrates that FTIR spectroscopy supported by principal component analysis (PCA) has the potential to become a fast and non-destructive method for biochemical characterization of plasma that consequently could have a diagnostic significance in pulmonary hypertension.
Collapse
|
8
|
Aldini G, Domingues MR, Spickett CM, Domingues P, Altomare A, Sánchez-Gómez FJ, Oeste CL, Pérez-Sala D. Protein lipoxidation: Detection strategies and challenges. Redox Biol 2015; 5:253-266. [PMID: 26072467 PMCID: PMC4477048 DOI: 10.1016/j.redox.2015.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022] Open
Abstract
Enzymatic and non-enzymatic lipid metabolism can give rise to reactive species that may covalently modify cellular or plasma proteins through a process known as lipoxidation. Under basal conditions, protein lipoxidation can contribute to normal cell homeostasis and participate in signaling or adaptive mechanisms, as exemplified by lipoxidation of Ras proteins or of the cytoskeletal protein vimentin, both of which behave as sensors of electrophilic species. Nevertheless, increased lipoxidation under pathological conditions may lead to deleterious effects on protein structure or aggregation. This can result in impaired degradation and accumulation of abnormally folded proteins contributing to pathophysiology, as may occur in neurodegenerative diseases. Identification of the protein targets of lipoxidation and its functional consequences under pathophysiological situations can unveil the modification patterns associated with the various outcomes, as well as preventive strategies or potential therapeutic targets. Given the wide structural variability of lipid moieties involved in lipoxidation, highly sensitive and specific methods for its detection are required. Derivatization of reactive carbonyl species is instrumental in the detection of adducts retaining carbonyl groups. In addition, use of tagged derivatives of electrophilic lipids enables enrichment of lipoxidized proteins or peptides. Ultimate confirmation of lipoxidation requires high resolution mass spectrometry approaches to unequivocally identify the adduct and the targeted residue. Moreover, rigorous validation of the targets identified and assessment of the functional consequences of these modifications are essential. Here we present an update on methods to approach the complex field of lipoxidation along with validation strategies and functional assays illustrated with well-studied lipoxidation targets.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - M Rosário Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Pedro Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Francisco J Sánchez-Gómez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain
| | - Clara L Oeste
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain
| | - Dolores Pérez-Sala
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain.
| |
Collapse
|
9
|
Verrastro I, Pasha S, Jensen KT, Pitt AR, Spickett CM. Mass spectrometry-based methods for identifying oxidized proteins in disease: advances and challenges. Biomolecules 2015; 5:378-411. [PMID: 25874603 PMCID: PMC4496678 DOI: 10.3390/biom5020378] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 01/02/2023] Open
Abstract
Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.
Collapse
Affiliation(s)
- Ivan Verrastro
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Sabah Pasha
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Karina Tveen Jensen
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
10
|
Haller E, Lindner W, Lämmerhofer M. Gold nanoparticle-antibody conjugates for specific extraction and subsequent analysis by liquid chromatography-tandem mass spectrometry of malondialdehyde-modified low density lipoprotein as biomarker for cardiovascular risk. Anal Chim Acta 2014; 857:53-63. [PMID: 25604820 DOI: 10.1016/j.aca.2014.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/06/2014] [Accepted: 12/13/2014] [Indexed: 01/05/2023]
Abstract
Oxidized low-density lipoproteins (OxLDLs) like malondialdehyde-modified low-density lipoprotein (MDA-LDL) play a major role in atherosclerosis and have been proposed as useful biomarkers for oxidative stress. In this study, gold-nanoparticles (GNPs) were functionalized via distinct chemistries with anti-MDA-LDL antibodies (Abs) for selective recognition and capture of MDA-LDL from biological matrices. The study focused on optimization of binding affinities and saturation capacities of the antiMDA-LDL-Ab-GNP bioconjugate by exploring distinct random and oriented immobilization approaches, such as (i) direct adsorptive attachment of Abs on the GNP surface, (ii) covalent bonding by amide coupling of Abs to carboxy-terminated-pegylated GNPs, (iii) oriented immobilization via oxidized carbohydrate moiety of the Ab on hydrazide-derivatized GNPs and (iv) cysteine-tagged protein A (cProtA)-bonded GNPs. Depending on immobilization chemistry, up to 3 antibodies per GNP could be immobilized as determined by ELISA. The highest binding capacity was achieved with the GNP-cProtA-Ab bioconjugate which yielded a saturation capacity of 2.24±0.04μgmL(-1) GNP suspension for MDA-LDL with an affinity Kd of 5.25±0.11×10(-10)M. The GNP-cProtA-antiMDA-LDL bioconjugate revealed high specificity for MDA-LDL over copper(II)-oxidized LDL as well as native human LDL. This clearly demonstrates the usefulness of the new GNP-Ab bioconjugates for specific extraction of MDA-LDL from plasma samples as biomarkers of oxidative stress. Their combination as specific immunoextraction nanomaterials with analysis by LC-MS/MS allows sensitive and selective detection of MDA-LDL in complex samples.
Collapse
Affiliation(s)
- Elisabeth Haller
- Department of Analytical Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
11
|
Delporte C, Boudjeltia KZ, Noyon C, Furtmüller PG, Nuyens V, Slomianny MC, Madhoun P, Desmet JM, Raynal P, Dufour D, Koyani CN, Reyé F, Rousseau A, Vanhaeverbeek M, Ducobu J, Michalski JC, Nève J, Vanhamme L, Obinger C, Malle E, Van Antwerpen P. Impact of myeloperoxidase-LDL interactions on enzyme activity and subsequent posttranslational oxidative modifications of apoB-100. J Lipid Res 2014; 55:747-57. [PMID: 24534704 DOI: 10.1194/jlr.m047449] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxidation of LDL by the myeloperoxidase (MPO)-H2O2-chloride system is a key event in the development of atherosclerosis. The present study aimed at investigating the interaction of MPO with native and modified LDL and at revealing posttranslational modifications on apoB-100 (the unique apolipoprotein of LDL) in vitro and in vivo. Using amperometry, we demonstrate that MPO activity increases up to 90% when it is adsorbed at the surface of LDL. This phenomenon is apparently reflected by local structural changes in MPO observed by circular dichroism. Using MS, we further analyzed in vitro modifications of apoB-100 by hypochlorous acid (HOCl) generated by the MPO-H2O2-chloride system or added as a reagent. A total of 97 peptides containing modified residues could be identified. Furthermore, differences were observed between LDL oxidized by reagent HOCl or HOCl generated by the MPO-H2O2-chloride system. Finally, LDL was isolated from patients with high cardiovascular risk to confirm that our in vitro findings are also relevant in vivo. We show that several HOCl-mediated modifications of apoB-100 identified in vitro were also present on LDL isolated from patients who have increased levels of plasma MPO and MPO-modified LDL. In conclusion, these data emphasize the specificity of MPO to oxidize LDL.
Collapse
Affiliation(s)
- Cédric Delporte
- Laboratory of Pharmaceutical Chemistry Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Silva AMN, Vitorino R, Domingues MRM, Spickett CM, Domingues P. Post-translational modifications and mass spectrometry detection. Free Radic Biol Med 2013; 65:925-941. [PMID: 24002012 DOI: 10.1016/j.freeradbiomed.2013.08.184] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 12/14/2022]
Abstract
In this review, we provide a comprehensive bibliographic overview of the role of mass spectrometry and the recent technical developments in the detection of post-translational modifications (PTMs). We briefly describe the principles of mass spectrometry for detecting PTMs and the protein and peptide enrichment strategies for PTM analysis, including phosphorylation, acetylation and oxidation. This review presents a bibliographic overview of the scientific achievements and the recent technical development in the detection of PTMs is provided. In order to ascertain the state of the art in mass spectrometry and proteomics methodologies for the study of PTMs, we analyzed all the PTM data introduced in the Universal Protein Resource (UniProt) and the literature published in the last three years. The evolution of curated data in UniProt for proteins annotated as being post-translationally modified is also analyzed. Additionally, we have undertaken a careful analysis of the research articles published in the years 2010 to 2012 reporting the detection of PTMs in biological samples by mass spectrometry.
Collapse
Affiliation(s)
- André M N Silva
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Vitorino
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Rosário M Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7 ET, United Kingdom
| | - Pedro Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
13
|
Low-density lipoprotein modified by myeloperoxidase in inflammatory pathways and clinical studies. Mediators Inflamm 2013; 2013:971579. [PMID: 23983406 PMCID: PMC3742028 DOI: 10.1155/2013/971579] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/26/2013] [Indexed: 02/07/2023] Open
Abstract
Oxidation of low-density lipoprotein (LDL) has a key role in atherogenesis. Among the different models of oxidation that have been studied, the one using myeloperoxidase (MPO) is thought to be more physiopathologically relevant. Apolipoprotein B-100 is the unique protein of LDL and is the major target of MPO. Furthermore, MPO rapidly adsorbs at the surface of LDL, promoting oxidation of amino acid residues and formation of oxidized lipoproteins that are commonly named Mox-LDL. The latter is not recognized by the LDL receptor and is accumulated by macrophages. In the context of atherogenesis, Mox-LDL accumulates in macrophages leading to foam cell formation. Furthermore, Mox-LDL seems to have specific effects and triggers inflammation. Indeed, those oxidized lipoproteins activate endothelial cells and monocytes/macrophages and induce proinflammatory molecules such as TNFα and IL-8. Mox-LDL may also inhibit fibrinolysis mediated via endothelial cells and consecutively increase the risk of thrombus formation. Finally, Mox-LDL has been involved in the physiopathology of several diseases linked to atherosclerosis such as kidney failure and consequent hemodialysis therapy, erectile dysfunction, and sleep restriction. All these issues show that the investigations of MPO-dependent LDL oxidation are of importance to better understand the inflammatory context of atherosclerosis.
Collapse
|