1
|
Qiao Z, Teng X, Liu A, Yang W. Novel Isolating Approaches to Circulating Tumor Cell Enrichment Based on Microfluidics: A Review. MICROMACHINES 2024; 15:706. [PMID: 38930676 PMCID: PMC11206030 DOI: 10.3390/mi15060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Circulating tumor cells (CTCs), derived from the primary tumor and carrying genetic information, contribute significantly to the process of tumor metastasis. The analysis and detection of CTCs can be used to assess the prognosis and treatment response in patients with tumors, as well as to help study the metastatic mechanisms of tumors and the development of new drugs. Since CTCs are very rare in the blood, it is a challenging problem to enrich CTCs efficiently. In this paper, we provide a comprehensive overview of microfluidics-based enrichment devices for CTCs in recent years. We explore in detail the methods of enrichment based on the physical or biological properties of CTCs; among them, physical properties cover factors such as size, density, and dielectric properties, while biological properties are mainly related to tumor-specific markers on the surface of CTCs. In addition, we provide an in-depth description of the methods for enrichment of single CTCs and illustrate the importance of single CTCs for performing tumor analyses. Future research will focus on aspects such as improving the separation efficiency, reducing costs, and increasing the detection sensitivity and accuracy.
Collapse
Affiliation(s)
- Zezheng Qiao
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Q.); (X.T.)
| | - Xiangyu Teng
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Q.); (X.T.)
| | - Anqin Liu
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Q.); (X.T.)
| |
Collapse
|
2
|
Aslan MK, Meng Y, Zhang Y, Weiss T, Stavrakis S, deMello AJ. Ultrahigh-Throughput, Real-Time Flow Cytometry for Rare Cell Quantification from Whole Blood. ACS Sens 2024; 9:474-482. [PMID: 38171016 DOI: 10.1021/acssensors.3c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We present an ultrahigh-throughput, real-time fluorescence cytometer comprising a viscoelastic microfluidic system and a complementary metal-oxide-semiconductor (CMOS) linear image sensor-based detection system. The flow cytometer allows for real-time quantification of a variety of fluorescence species, including micrometer-sized particles and cells, at analytical throughputs in excess of 400,000 species per second. The platform integrates a custom C++ control program and graphical user interface (GUI) to allow for the processing of raw signals, adjustment of processing parameters, and display of fluorescence intensity histograms in real time. To demonstrate the efficacy of the platform for rare event detection and its utility as a basic clinical tool, we measure and quantify patient-derived circulating tumor cells (CTCs) in peripheral blood, realizing that detection has a sensitivity of 6 CTCs per million blood cells (0.000006%) with a volumetric throughput of over 3 mL/min.
Collapse
Affiliation(s)
- Mahmut Kamil Aslan
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Yingchao Meng
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Yanan Zhang
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| |
Collapse
|
3
|
Nishida K, Wang G, Kobatake E, Mie M. Sensitive Detection of Tumor Cells Using Protein Nanoparticles with Multiple Displays of DNA Aptamers and Bioluminescent Reporters. ACS Biomater Sci Eng 2023; 9:5260-5269. [PMID: 37642536 DOI: 10.1021/acsbiomaterials.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Simple and effective detection methods for circulating tumor cells are essential for early detection and progression monitoring of tumors. The use of DNA aptamer and bioluminescence is expected to be a key tool for the simple, effective, and sensitive detection of tumor cells. Herein, we designed multifunctional protein nanoparticles for the detection of tumor cells using DNA aptamer and bioluminescence. Fusion proteins (ELP-poly(d)-POIs), composed of elastin-like polypeptide (ELP) fused with protein of interests (POIs) via poly(aspartic acid) (poly(d)), formed the protein nanoparticles based on the temperature responsivity of ELP sequences, leading to multiply displayed POIs on the protein nanoparticles. In the present study, we focused on porcine circovirus type 2 replication initiation protein (Rep), which covalently conjugated with DNA aptamers, and NanoLuc luciferase (Nluc), which emitted a strong bioluminescence, as POIs. ELP-poly(d)-Rep and ELP-poly(d)-Nluc were constructed and formed the protein nanoparticles with multiply displayed Nluc and Rep (DNA aptamer) that amplified the bioluminescence signal and tumor recognition ability. Mucin-1 (MUC1)-overexpressing human breast tumor MCF7 cells and MUC1-recognizing aptamer (MUC1 aptamer) were selected as models. The MUC1 aptamer-conjugated protein nanoparticles exhibited a 13.7-fold higher bioluminescence signal to MCF-7 cells than to human embryonic kidney 293 (HEK293) cells, which express low levels of MUC1. Furthermore, the protein nanoparticles could detect up to 70.7 cells/mL of MCF-7 cells from a cell suspension containing HEK-293. The protein nanoparticles with multiple Rep and Nluc show a great potential as a material for detecting CTCs.
Collapse
Affiliation(s)
- Kei Nishida
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Gaoyang Wang
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Masayasu Mie
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
4
|
Pei H, Li L, Han Z, Wang Y, Tang B. Recent advances in microfluidic technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid biopsy for clinical applications. LAB ON A CHIP 2020; 20:3854-3875. [PMID: 33107879 DOI: 10.1039/d0lc00577k] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Circulating tumor cells (CTCs) detach from primary or metastatic lesions and circulate in the peripheral blood, which is considered to be the cause of distant metastases. CTC analysis in the form of liquid biopsy, enumeration and molecular analysis provide significant clinical information for cancer diagnosis, prognosis and therapeutic strategies. Despite the great clinical value, CTC analysis has not yet entered routine clinical practice due to lack of efficient technologies to perform CTC isolation and single-cell analysis. Taking the rarity and inherent heterogeneity of CTCs into account, reliable methods for CTC isolation and detection are in urgent demand for obtaining valuable information on cancer metastasis and progression from CTCs. Microfluidic technology, featuring microfabricated structures, can precisely control fluids and cells at the micrometer scale, thus making itself a particularly suitable method for rare CTC manipulation. Besides the enrichment function, microfluidic chips can also realize the analysis function by integrating multiple detection technologies. In this review, we have summarized the recent progress in CTC isolation and detection using microfluidic technologies, with special attention to emerging direct enrichment and enumeration in vivo. Further, few insights into single CTC molecular analysis are also demonstrated. We have provided a review of potential clinical applications of CTCs, ranging from early screening and diagnosis, tumor progression and prognosis, treatment and resistance monitoring, to therapeutic evaluation. Through this review, we conclude that the clinical utility of CTCs will be expanded as the isolation and analysis techniques are constantly improving.
Collapse
Affiliation(s)
- Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | |
Collapse
|
5
|
Kedarisetti P, Bouvet VR, Shi W, Bergman CN, Dufour J, Kashani Ilkhechi A, Bell KL, Paproski RJ, Lewis JD, Wuest FR, Zemp RJ. Enrichment and ratiometric detection of circulating tumor cells using PSMA- and folate receptor-targeted magnetic and surface-enhanced Raman scattering nanoparticles. BIOMEDICAL OPTICS EXPRESS 2020; 11:6211-6230. [PMID: 33282485 PMCID: PMC7687927 DOI: 10.1364/boe.410527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 06/12/2023]
Abstract
The presence of circulating tumor cells (CTCs) in a patient's bloodstream is a hallmark of metastatic cancer. The detection and analysis of CTCs is a promising diagnostic and prognostic strategy as they may carry useful genetic information from their derived primary tumor, and the enumeration of CTCs in the bloodstream has been known to scale with disease progression. However, the detection of CTCs is a highly challenging task owing to their sparse numbers in a background of billions of background blood cells. To effectively utilize CTCs, there is a need for an assay that can detect CTCs with high specificity and can locally enrich CTCs from a liquid biopsy. We demonstrate a versatile methodology that addresses these needs by utilizing a combination of nanoparticles. Enrichment is achieved using targeted magnetic nanoparticles and high specificity detection is achieved using a ratiometric detection approach utilizing multiplexed targeted and non-targeted surface-enhanced Raman Scattering Nanoparticles (SERS-NPs). We demonstrate this approach with model prostate and cervical circulating tumor cells and show the ex vivo utility of our methodology for the detection of PSMA or folate receptor over-expressing CTCs. Our approach allows for the mitigation of interference caused by the non-specific uptake of nanoparticles by other cells present in the bloodstream and our results from magnetically trapped CTCs reveal over a 2000% increase in targeted SERS-NP signal over non-specifically bound SERS-NPs.
Collapse
Affiliation(s)
- Pradyumna Kedarisetti
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Vincent R. Bouvet
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Wei Shi
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Cody N. Bergman
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Jennifer Dufour
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Afshin Kashani Ilkhechi
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Kevan L. Bell
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Robert J. Paproski
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Frank R. Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Roger J. Zemp
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
6
|
Wu Z, Gong Z, Ao Z, Xu J, Cai H, Muhsen M, Heaps S, Bondesson M, Guo S, Guo F. Rapid Microfluidic Formation of Uniform Patient-Derived Breast Tumor Spheroids. ACS APPLIED BIO MATERIALS 2020; 3:6273-6283. [DOI: 10.1021/acsabm.0c00768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhuhao Wu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Zhiyi Gong
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Junhua Xu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Maram Muhsen
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Samuel Heaps
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Shishang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Wang S, Zhou Y, Qin X, Nair S, Huang X, Liu Y. Label-free detection of rare circulating tumor cells by image analysis and machine learning. Sci Rep 2020; 10:12226. [PMID: 32699281 PMCID: PMC7376046 DOI: 10.1038/s41598-020-69056-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Detection and characterization of rare circulating tumor cells (CTCs) in patients' blood is important for the diagnosis and monitoring of cancer. The traditional way of counting CTCs via fluorescent images requires a series of tedious experimental procedures and often impacts the viability of cells. Here we present a method for label-free detection of CTCs from patient blood samples, by taking advantage of data analysis of bright field microscopy images. The approach uses the convolutional neural network, a powerful image classification and machine learning algorithm to perform label-free classification of cells detected in microscopic images of patient blood samples containing white blood cells and CTCs. It requires minimal data pre-processing and has an easy experimental setup. Through our experiments, we show that our method can achieve high accuracy on the identification of rare CTCs without the need for advanced devices or expert users, thus providing a faster and simpler way for counting and identifying CTCs. With more data becoming available in the future, the machine learning model can be further improved and can serve as an accurate and easy-to-use tool for CTC analysis.
Collapse
Affiliation(s)
- Shen Wang
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, 18015, USA
| | - Yuyuan Zhou
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Xiaochen Qin
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Suresh Nair
- Lehigh Valley Health Network, Lehigh Valley Cancer Institute, Allentown, PA, 18103, USA
| | - Xiaolei Huang
- College of Information Sciences and Technology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, 18015, USA. .,Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA.
| |
Collapse
|
8
|
Harigopal M, Kowalski D, Vosoughi A. Enumeration and molecular characterization of circulating tumor cells as an innovative tool for companion diagnostics in breast cancer. Expert Rev Mol Diagn 2020; 20:815-828. [PMID: 32546017 DOI: 10.1080/14737159.2020.1784009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Circulating tumor cells (CTC) and more recently, CTC clusters are implicated as a fundamental mechanism by which tumor cells break away from the primary site and travel to distant sites. Enumeration of CTC and CTC clusters represents a new approach to prognosis, prediction, and response to therapy in patients with early and metastatic breast cancer. Several recent studies have shown the predictive importance of monitoring CTCs levels in progression-free and overall survival in breast cancer patients. This review will focus on CTC enumeration and characterization in breast cancers. AREAS COVERED We will provide a historical perspective and clinical background of CTC detection in peripheral blood. The current methodologies for studying CTCs and newer technologies for CTC detection will be reviewed together with the current state of the art of CTCs as a biomarker in risk stratification and prognostication in breast cancers. EXPERT OPINION Currently, there is an FDA approved CTC assessment method for clinical use. While CTC enumeration, is a marker for prognostication and survival, molecular characterization of CTC, may be more accurate in monitoring response to treatment due to tumor heterogeneity rather than the tumor phenotype at the primary or metastatic sites.
Collapse
Affiliation(s)
- Malini Harigopal
- Department of Pathology, Yale School of Medicine New Haven, Connecticut ., 06520-8023, New Haven, CT, United States
| | - Diane Kowalski
- Department of Pathology, Yale School of Medicine New Haven, Connecticut ., 06520-8023, New Haven, CT, United States
| | - Aram Vosoughi
- Department of Pathology, Yale School of Medicine New Haven, Connecticut ., 06520-8023, New Haven, CT, United States
| |
Collapse
|
9
|
Xu X, Jiang Z, Wang J, Ren Y, Wu A. Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis. Electrophoresis 2020; 41:933-951. [PMID: 32144938 DOI: 10.1002/elps.201900402] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 02/02/2023]
Abstract
The prognosis of malignant tumors is challenged by insufficient means to effectively detect tumors at early stage. Liquid biopsy using circulating tumor cells (CTCs) as biomarkers demonstrates a promising solution to tackle the challenge, because CTCs play a critical role in cancer metastatic process via intravasation, circulation, extravasation, and formation of secondary tumor. However, the effectiveness of the solution is compromised by rarity, heterogeneity, and vulnerability associated with CTCs. Among a plethora of novel approaches for CTC isolation and enrichment, microfluidics leads to isolation and detection of CTCs in a cost-effective and operation-friendly way. Development of microfluidics also makes it feasible to model the cancer metastasis in vitro using a microfluidic system to mimick the in vivo microenvironment, thereby enabling analysis and monitor of tumor metastasis. This paper aims to review the latest advances for exploring the dual-roles microfluidics has played in early cancer diagnosis via CTC isolation and investigating the role of CTCs in cancer metastasis; the merits and drawbacks for dominating microfluidics-based CTC isolation methods are discussed; biomimicking cancer metastasis using microfluidics are presented with example applications on modelling of tumor microenvironment, tumor cell dissemination, tumor migration, and tumor angiogenesis. The future perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Xiawei Xu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China.,Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China.,Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China
| | - Jing Wang
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Yong Ren
- Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China.,Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China
| |
Collapse
|
10
|
Zhang Y, Ouyang M, Ray A, Liu T, Kong J, Bai B, Kim D, Guziak A, Luo Y, Feizi A, Tsai K, Duan Z, Liu X, Kim D, Cheung C, Yalcin S, Ceylan Koydemir H, Garner OB, Di Carlo D, Ozcan A. Computational cytometer based on magnetically modulated coherent imaging and deep learning. LIGHT, SCIENCE & APPLICATIONS 2019; 8:91. [PMID: 31645935 PMCID: PMC6804677 DOI: 10.1038/s41377-019-0203-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 05/08/2023]
Abstract
Detecting rare cells within blood has numerous applications in disease diagnostics. Existing rare cell detection techniques are typically hindered by their high cost and low throughput. Here, we present a computational cytometer based on magnetically modulated lensless speckle imaging, which introduces oscillatory motion to the magnetic-bead-conjugated rare cells of interest through a periodic magnetic force and uses lensless time-resolved holographic speckle imaging to rapidly detect the target cells in three dimensions (3D). In addition to using cell-specific antibodies to magnetically label target cells, detection specificity is further enhanced through a deep-learning-based classifier that is based on a densely connected pseudo-3D convolutional neural network (P3D CNN), which automatically detects rare cells of interest based on their spatio-temporal features under a controlled magnetic force. To demonstrate the performance of this technique, we built a high-throughput, compact and cost-effective prototype for detecting MCF7 cancer cells spiked in whole blood samples. Through serial dilution experiments, we quantified the limit of detection (LoD) as 10 cells per millilitre of whole blood, which could be further improved through multiplexing parallel imaging channels within the same instrument. This compact, cost-effective and high-throughput computational cytometer can potentially be used for rare cell detection and quantification in bodily fluids for a variety of biomedical applications.
Collapse
Affiliation(s)
- Yibo Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Mengxing Ouyang
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
| | - Aniruddha Ray
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 USA
| | - Tairan Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Janay Kong
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
| | - Bijie Bai
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Donghyuk Kim
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
| | - Alexander Guziak
- Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 USA
| | - Yi Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Alborz Feizi
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Yale School of Medicine, New Haven, CT 06510 USA
| | - Katherine Tsai
- Department of Biochemistry, University of California, Los Angeles, CA 90095 USA
| | - Zhuoran Duan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Xuewei Liu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Danny Kim
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
| | - Chloe Cheung
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
| | - Sener Yalcin
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Hatice Ceylan Koydemir
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Omai B. Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095 USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095 USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095 USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
11
|
Li W, Li R, Huang B, Wang Z, Sun Y, Wei X, Heng C, Liu W, Yu M, Guo SS, Zhao XZ. TiO 2 nanopillar arrays coated with gelatin film for efficient capture and undamaged release of circulating tumor cells. NANOTECHNOLOGY 2019; 30:335101. [PMID: 30965310 DOI: 10.1088/1361-6528/ab176c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Circulating tumor cells (CTCs) are important for the detection and treatment of cancer. Nevertheless, a low density of circulating tumor cells makes the capture and release of CTCs an obstacle. In this work, TiO2 nanopillar arrays coated with gelatin film were synthesized for efficient capture and undamaged release of circulating tumor cells. The scanning electron microscope and atomic force microscope images demonstrate that the substrate has a certain roughness. The interaction between the cell membrane and the nanostructure substrate contributes to the efficient capture of CTC (capture efficiency up to 94.98%). The gelatin layer has excellent biocompatibility and can be rapidly digested by matrix metalloproteinase (MMP9), which realizes the non-destructive release of CTCs (0.1 mg ml-1, 5 min, nearly 100% release efficiency, activity 100%). Therefore, by our strategy, the CTCs can be efficiently captured and released undamaged, which is important for subsequent analysis.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Integrated Microfluidic Device for Enrichment and Identification of Circulating Tumor Cells from the Blood of Patients with Colorectal Cancer. DISEASE MARKERS 2019; 2019:8945974. [PMID: 31354892 PMCID: PMC6636595 DOI: 10.1155/2019/8945974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 01/02/2023]
Abstract
Integrated device with high purity for circulating tumor cell (CTC) identification has been regarded as a key goal to make CTC analysis a “bench-to-bedside” technology. Here, we have developed a novel integrated microfluidic device that can enrich and identify the CTCs from the blood of patients with colorectal cancer. To enrich CTCs from whole blood, microfabricated trapping chambers were included in the miniaturized device, allowing for the isolation of tumor cells based on differences in size and deformability between tumor and normal blood cells. Microvalves were also introduced sequentially in the device, enabling automatic CTC enrichment as well as immunostaining reagent delivery. Under optimized conditions, the whole blood spiked with caco-2 cells passing through the microfluidic device after leukocyte depletion and approximately 73% of caco-2 cells were identified by epithelial cell adhesion molecule (EpCAM) staining. In clinical samples, CTCs were detectable from all patients with advanced colorectal cancer within 3 h. In contrast, the number of CTCs captured on the device from the blood of healthy donors was significantly lower than that from the patients, suggesting the utilization of the integrated device for further molecular analyses of CTCs.
Collapse
|
13
|
Li X, Chen J, Liu H, Deng Z, Li J, Ren T, Huang L, Chen W, Yang Y, Zhong S. β-Cyclodextrin coated and folic acid conjugated magnetic halloysite nanotubes for targeting and isolating of cancer cells. Colloids Surf B Biointerfaces 2019; 181:379-388. [PMID: 31170644 DOI: 10.1016/j.colsurfb.2019.05.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/11/2019] [Accepted: 05/27/2019] [Indexed: 02/08/2023]
Abstract
The study developed a simple, effective and inexpensive strategy for capturing, enriching and detecting circulating tumor cells (CTCs) by using folic acid (FA) as the targeting molecule instead of antibodies. This work constructed magnetic halloysite nanotubes (MHNTs) coated with biocompatible β-cyclodextrin (CD), and conjugated to FA via a PEG-Ad linker, to specifically capture the FA receptor (FR)-overexpressing cancer cells. The capture efficiencies of MHNTs@β-CD@Ad-PEG-FA for the Skov3, Hela and A549 cancer cells were 96.3%, 97.0% and 95.6% respectively. In addition, the nanoparticles were able to capture very low numbers of the cancer cells (25-500 cells/mL) from PBS and whole blood, as well as selectively capture the cancer cells over normal HEK 293 T cells. Furthermore, the captured cells were viable and grew normally in vitro, indicating the future potential of downstream analyses. This approach can be adapted for different CTCs, once the tumor-specific surface markers are identified and the efficacy of targeting ligands is established. Taken together, FA-conjugated MHNTs nanoparticles are a highly promising tool for isolating CTCs for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Xiufang Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhiwei Deng
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jianbing Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tao Ren
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Ling Huang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wenqing Chen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yanjing Yang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Shian Zhong
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
14
|
Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst 2019; 143:2936-2970. [PMID: 29796523 DOI: 10.1039/c7an01979c] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metastasis is the main cause of tumor-related death, and the dispersal of tumor cells through the circulatory system is a critical step in the metastatic process. Early detection and analysis of circulating tumor cells (CTCs) is therefore important for early diagnosis, prognosis, and effective treatment of cancer, enabling favorable clinical outcomes in cancer patients. Accurate and reliable methods for isolating and detecting CTCs are necessary to obtain this clinical information. Over the past two decades, microfluidic technologies have demonstrated great potential for isolating and detecting CTCs from blood. The present paper reviews current advanced microfluidic technologies for isolating CTCs based on various biological and physical principles, and discusses their fundamental advantages and drawbacks for subsequent cellular and molecular assays. Owing to significant genetic heterogeneity among CTCs, microfluidic technologies for isolating individual CTCs have recently been developed. We discuss these single-cell isolation methods, as well as approaches to overcoming the limitations of current microfluidic CTC isolation technologies. Finally, we provide an overview of future innovative microfluidic platforms.
Collapse
Affiliation(s)
- Hyungseok Cho
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
15
|
Shen Z, Wu A, Chen X. Current detection technologies for circulating tumor cells. Chem Soc Rev 2018; 46:2038-2056. [PMID: 28393954 DOI: 10.1039/c6cs00803h] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Circulating tumor cells (CTCs) are cancer cells that circulate in the blood stream after being naturally shed from original or metastatic tumors, and can lead to a new fatal metastasis. CTCs have become a hotspot research field during the last decade. Detection of CTCs, as a liquid biopsy of tumors, can be used for early diagnosis of cancers, earlier evaluation of cancer recurrence and chemotherapeutic efficacy, and choice of individual sensitive anti-cancer drugs. Therefore, CTC detection is a crucial tool to fight against cancer. Herein, we classify the currently reported CTC detection technologies, introduce some representative samples for each technology, conclude the advantages and limitations, and give a future perspective including the challenges and opportunities of CTC detection.
Collapse
Affiliation(s)
- Zheyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, Zhejiang 315201, China.
| | | | | |
Collapse
|
16
|
Song Z, Li M, Li B, Yan Y, Song Y. Automatic detecting and counting magnetic beads-labeled target cells from a suspension in a microfluidic chip. Electrophoresis 2018; 40:897-905. [DOI: 10.1002/elps.201800345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Zhenyu Song
- Department of Radiotherapy; Jiaozhou Central Hospital; Qingdao P. R. China
| | - Mengqi Li
- Department of Mechanical and Mechatronics Engineering; University of Waterloo; Waterloo ON Canada
| | - Bao Li
- Department of Marine Engineering; Dalian Maritime University; Dalian P. R. China
| | - Yimo Yan
- Department of Biomedical Engineering; School of Medicine; Tsinghua University; Beijing P. R. China
- Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
| | - Yongxin Song
- Department of Marine Engineering; Dalian Maritime University; Dalian P. R. China
| |
Collapse
|
17
|
Jin X, Chen R, Zhao S, Li P, Xue B, Chen X, Zhu X. An efficient method for CTCs screening with excellent operability by integrating Parsortix™-like cell separation chip and selective size amplification. Biomed Microdevices 2018; 20:51. [PMID: 29926198 DOI: 10.1007/s10544-018-0293-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this article, an attempt for efficient screening of circulating tumor cells (CTCs) with excellent operability on microfluidic chips was reported. A Parsortix™-like cell separation chip was manufactured in our lab. This chip allowed lateral flow of fluid which increased the flow rate of blood. And, an air valve controlled injection pump was manufactured which allowed eight chips working simultaneously. This greatly facilitated the blood treatment process and saved time. As for the mechanism of screening circulating tumor cells, selective size amplification was utilized. By size amplification of cancer cells, both the hardness and the size of CTCs increased which differentiated them from blood cells. And the modification procedure of beads used for size amplification of cancer cells was optimized. Finally, by integrating the commercialized Parsortix™-like cell separation chip and selective size amplification, a practical method for screening circulating tumor cells was established.
Collapse
Affiliation(s)
- Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Rui Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| | - Shikun Zhao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peiyong Li
- Department of Nuclear Medicine, and Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Bai Xue
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiang Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
18
|
Kim B, Oh S, Shin S, Yim SG, Yang SY, Hahn YK, Choi S. Pumpless Microflow Cytometry Enabled by Viscosity Modulation and Immunobead Labeling. Anal Chem 2018; 90:8254-8260. [PMID: 29874050 DOI: 10.1021/acs.analchem.8b01804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Major challenges of miniaturizing flow cytometry include obviating the need for bulky, expensive, and complex pump-based fluidic and laser-based optical systems while retaining the ability to detect target cells based on their unique surface receptors. We addressed these critical challenges by (i) using a viscous liquid additive to control flow rate passively, without external pumping equipment, and (ii) adopting an immunobead assay that can be quantified with a portable fluorescence cell counter based on a blue light-emitting diode. Such novel features enable pumpless microflow cytometry (pFC) analysis by simply dropping a sample solution onto the inlet reservoir of a disposable cell-counting chamber. With our pFC platform, we achieved reliable cell counting over a dynamic range of 9-298 cells/μL. We demonstrated the practical utility of the platform by identifying a type of cancer cell based on CD326, the epithelial cell adhesion molecule. This portable microflow cytometry platform can be applied generally to a range of cell types using immunobeads labeled with specific antibodies, thus making it valuable for cell-based and point-of-care diagnostics.
Collapse
Affiliation(s)
- Byeongyeon Kim
- Department of Biomedical Engineering , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| | - Sein Oh
- Department of Biomedical Engineering , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| | - Suyeon Shin
- Department of Biomedical Engineering , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| | - Sang-Gu Yim
- Department of Biomaterials Science, Life and Industry Convergence Institute , Pusan National University , 1268-50 Samrangjin-ro , Miryang 50463 , Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute , Pusan National University , 1268-50 Samrangjin-ro , Miryang 50463 , Republic of Korea
| | - Young Ki Hahn
- Department of New Biology , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Sungyoung Choi
- Department of Biomedical Engineering , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| |
Collapse
|
19
|
Lu S, Dugan CE, Kennedy RT. Microfluidic Chip with Integrated Electrophoretic Immunoassay for Investigating Cell-Cell Interactions. Anal Chem 2018; 90:5171-5178. [PMID: 29578696 PMCID: PMC6943824 DOI: 10.1021/acs.analchem.7b05304] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Microfluidics have been used to create "body-on-chip" systems to mimic in vivo cellular interactions with a high level of control. Most such systems rely on optical observation of cells as a readout. In this work we integrated a cell-cell interaction chip with online microchip electrophoresis immunoassay to monitor the effects of the interaction on protein secretion dynamics. The system was used to investigate the effects of adipocytes on insulin secretion. Chips were loaded with 190 000 3T3-L1 adipocytes and a single islet of Langerhans in separate chambers. The chambers were perfused at 300-600 nL/min so that adipocyte secretions flowed over the islets for 3 h. Adipocytes produced 80 μM of nonesterified fatty acids (NEFAs), a factor known to impact insulin secretion, at the islets. After perfusion, islets were challenged with a step change in glucose from 3 to 11 mM while monitoring insulin secretion at 8 s intervals by online immunoassay. Adipocyte treatment augmented insulin secretion by 6-fold compared to controls. The effect was far greater than comparable concentrations of NEFA applied to the islets demonstrating that adipocytes release multiple factors that can strongly potentiate insulin secretion. The experiments reveal that integration of chemical analysis with cell-cell interaction can provide valuable insights into cellular functions.
Collapse
Affiliation(s)
- Shusheng Lu
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Colleen E Dugan
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Robert T Kennedy
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
20
|
Burinaru TA, Avram M, Avram A, Mărculescu C, Ţîncu B, Ţucureanu V, Matei A, Militaru M. Detection of Circulating Tumor Cells Using Microfluidics. ACS COMBINATORIAL SCIENCE 2018; 20:107-126. [PMID: 29363937 DOI: 10.1021/acscombsci.7b00146] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Metastasis is the main cause of death in cancer patients worldwide. During metastasis, cancer cells detach from the primary tumor and invade distant tissue. The cells that undergo this process are called circulating tumor cells (CTCs). Studies show that the number of CTCs in the peripheral blood can predict progression-free survival and overall survival and can be informative concerning the efficacy of treatment. Research is now concentrated on developing devices that can detect CTCs in the blood of cancer patients with improved sensitivity and specificity that can lead to improved clinical evaluation. This review focuses on devices that detect and capture CTCs using different cell properties (surface markers, size, deformability, electrical properties, etc.). We also discuss the process of tumor cell dissemination, the biology of CTCs, epithelial-mesenchymal transition (EMT), and several challenges and clinical applications of CTC detection.
Collapse
Affiliation(s)
- Tiberiu A. Burinaru
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Marioara Avram
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Andrei Avram
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Cătălin Mărculescu
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Bianca Ţîncu
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Vasilica Ţucureanu
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Alina Matei
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Manuella Militaru
- University of Agronomic
Sciences and Veterinary Medicine, Bucharest, Romania, 050097
| |
Collapse
|
21
|
Sun W, Li G, Wan J, Zhu J, Shen W, Zhang Z. Circulating tumor cells: A promising marker of predicting tumor response in rectal cancer patients receiving neoadjuvant chemo-radiation therapy. Oncotarget 2018; 7:69507-69517. [PMID: 27486758 PMCID: PMC5342494 DOI: 10.18632/oncotarget.10875] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022] Open
Abstract
Purpose The aim of this study was to investigate the role of circulating tumor cells (CTCs) in assessing and predicting tumor response to neoadjuvant chemoradiotherapy (CRT) for patients with locally advanced rectal cancer (LARC). Methods A total of 115 patients with T3-4 and/or N+ rectal cancer were enrolled. All patients received neoadjuvant CRT followed by radical surgery after 6-8 weeks. The pathological results after surgery were evaluated according to tumor regression grade (TRG) classification. Results Based on TRG score, patients were classified as responders (TRG3-4) and non-responders (TRG0-2). The baseline CTC counts of responders were significantly higher than those of non-responders (44.50±11.94 vs. 37.67±15.45, P=0.012). By contrast, the post-CRT CTC counts of responders were significantly lower than those of non-responders (3.61±2.90 vs. 12.08±7.40, P<0.001). According to ROC analysis, Δ%CTC (percentage difference in CTC counts between baseline and post-CRT) was identified as the stronger predictor to discriminate responders from non-responders (AUC: 0.860). The results of multivariate analysis also indicated that post-CRT CTC counts and Δ%CTC were significantly and independently associated with tumor response to CRT. Conclusions The detection of CTCs is a powerful and promising tool for evaluating and predicting responses to neoadjuvant CRT in LARC patients.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guichao Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Juefeng Wan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ji Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weiqi Shen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Jan YJ, Chen JF, Zhu Y, Lu YT, Chen SH, Chung H, Smalley M, Huang YW, Dong J, Chen LC, Yu HH, Tomlinson JS, Hou S, Agopian VG, Posadas EM, Tseng HR. NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells. Adv Drug Deliv Rev 2018; 125:78-93. [PMID: 29551650 PMCID: PMC5993593 DOI: 10.1016/j.addr.2018.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs) are cancer cells shredded from either a primary tumor or a metastatic site and circulate in the blood as the potential cellular origin of metastasis. By detecting and analyzing CTCs, we will be able to noninvasively monitor disease progression in individual cancer patients and obtain insightful information for assessing disease status, thus realizing the concept of "tumor liquid biopsy". However, it is technically challenging to identify CTCs in patient blood samples because of the extremely low abundance of CTCs among a large number of hematologic cells. In order to address this challenge, our research team at UCLA pioneered a unique concept of "NanoVelcro" cell-affinity substrates, in which CTC capture agent-coated nanostructured substrates were utilized to immobilize CTCs with remarkable efficiency. Four generations of NanoVelcro CTC assays have been developed over the past decade for a variety of clinical utilities. The 1st-gen NanoVelcro Chips, composed of a silicon nanowire substrate (SiNS) and an overlaid microfluidic chaotic mixer, were created for CTC enumeration. The 2nd-gen NanoVelcro Chips (i.e., NanoVelcro-LMD), based on polymer nanosubstrates, were developed for single-CTC isolation in conjunction with the use of the laser microdissection (LMD) technique. By grafting thermoresponsive polymer brushes onto SiNS, the 3rd-gen Thermoresponsive NanoVelcro Chips have demonstrated the capture and release of CTCs at 37 and 4 °C respectively, thereby allowing for rapid CTC purification while maintaining cell viability and molecular integrity. Fabricated with boronic acid-grafted conducting polymer-based nanomaterial on chip surface, the 4th-gen NanoVelcro Chips (Sweet chip) were able to purify CTCs with well-preserved RNA transcripts, which could be used for downstream analysis of several cancer specific RNA biomarkers. In this review article, we will summarize the development of the four generations of NanoVelcro CTC assays, and the clinical applications of each generation of devices.
Collapse
Affiliation(s)
- Yu Jen Jan
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jie-Fu Chen
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yi-Tsung Lu
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Szu Hao Chen
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Howard Chung
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Smalley
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; CytoLumina Technologies Corp., Los Angeles, CA, USA
| | - Yen-Wen Huang
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; CytoLumina Technologies Corp., Los Angeles, CA, USA
| | - Jiantong Dong
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Li-Ching Chen
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
| | - Hsiao-Hua Yu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - James S Tomlinson
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA; Center for Pancreatic Disease, University of California, Los Angeles, Los Angeles, CA, USA; Department of Surgery, Greater Los Angeles Veteran's Affairs Administration, Los Angeles, CA, USA
| | - Shuang Hou
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vatche G Agopian
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA; Liver Transplantation and Hepatobiliary Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Edwin M Posadas
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Li W, Zhang Y, Reynolds CP, Pappas D. Microfluidic Separation of Lymphoblasts for the Isolation of Acute Lymphoblastic Leukemia Using the Human Transferrin Receptor as a Capture Target. Anal Chem 2017; 89:7340-7347. [DOI: 10.1021/acs.analchem.7b00377] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenjie Li
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Ye Zhang
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - C. Patrick Reynolds
- Cancer Center, Departments of Cell Biology & Biochemistry, Pediatrics, Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas 79430, United States
| | - Dimitri Pappas
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
24
|
Yang B, Zhang Y, Chen B, He M, Hu B. Elemental-tagged immunoassay combined with inductively coupled plasma mass spectrometry for the detection of tumor cells using a lead sulfide nanoparticle label. Talanta 2017; 167:499-505. [DOI: 10.1016/j.talanta.2017.02.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 12/22/2022]
|
25
|
Immunomagnetic separation of tumor initiating cells by screening two surface markers. Sci Rep 2017; 7:40632. [PMID: 28074882 PMCID: PMC5225414 DOI: 10.1038/srep40632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023] Open
Abstract
Isolating tumor initiating cells (TICs) often requires screening of multiple surface markers, sometimes with opposite preferences. This creates a challenge for using bead-based immunomagnetic separation (IMS) that typically enriches cells based on one abundant marker. Here, we propose a new strategy that allows isolation of CD44+/CD24− TICs by IMS involving both magnetic beads coated by anti-CD44 antibody and nonmagnetic beads coated by anti-CD24 antibody (referred to as two-bead IMS). Cells enriched with our approach showed significant enhancement in TIC marker expression (examined by flow cytometry) and improved tumorsphere formation efficiency. Our method will extend the application of IMS to cell subsets characterized by multiple markers.
Collapse
|
26
|
Dempsey PW. CTCs and ctDNA: Two Tales of a Complex Biology. LIQUID BIOPSIES IN SOLID TUMORS 2017. [DOI: 10.1007/978-3-319-50956-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Shields CW, Ohiri KA, Szott LM, López GP. Translating microfluidics: Cell separation technologies and their barriers to commercialization. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 92:115-125. [PMID: 27282966 DOI: 10.1002/cyto.b.21388] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 01/09/2023]
Abstract
Advances in microfluidic cell sorting have revolutionized the ways in which cell-containing fluids are processed, now providing performances comparable to, or exceeding, traditional systems, but in a vastly miniaturized format. These technologies exploit a wide variety of physical phenomena to manipulate cells and fluid flow, such as magnetic traps, sound waves and flow-altering micropatterns, and they can evaluate single cells by immobilizing them onto surfaces for chemotherapeutic assessment, encapsulate cells into picoliter droplets for toxicity screenings and examine the interactions between pairs of cells in response to new, experimental drugs. However, despite the massive surge of innovation in these high-performance lab-on-a-chip devices, few have undergone successful commercialization, and no device has been translated to a widely distributed clinical commodity to date. Persistent challenges such as an increasingly saturated patent landscape as well as complex user interfaces are among several factors that may contribute to their slowed progress. In this article, we identify several of the leading microfluidic technologies for sorting cells that are poised for clinical translation; we examine the principal barriers preventing their routine clinical use; finally, we provide a prospectus to elucidate the key criteria that must be met to overcome those barriers. Once established, these tools may soon transform how clinical labs study various ailments and diseases by separating cells for downstream sequencing and enabling other forms of advanced cellular or sub-cellular analysis. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- C Wyatt Shields
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina, 27708.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708
| | - Korine A Ohiri
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina, 27708.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, 27708
| | - Luisa M Szott
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina, 27708.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708
| | - Gabriel P López
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina, 27708.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, 27708.,Center for Biomedical Engineering, Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico, 87131
| |
Collapse
|
28
|
Chen JF, Zhu Y, Lu YT, Hodara E, Hou S, Agopian VG, Tomlinson JS, Posadas EM, Tseng HR. Clinical Applications of NanoVelcro Rare-Cell Assays for Detection and Characterization of Circulating Tumor Cells. Theranostics 2016; 6:1425-39. [PMID: 27375790 PMCID: PMC4924510 DOI: 10.7150/thno.15359] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
Liquid biopsy of tumor through isolation of circulating tumor cells (CTCs) allows non-invasive, repetitive, and systemic sampling of disease. Although detecting and enumerating CTCs is of prognostic significance in metastatic cancer, it is conceivable that performing molecular and functional characterization on CTCs will reveal unprecedented insight into the pathogenic mechanisms driving lethal disease. Nanomaterial-embedded cancer diagnostic platforms, i.e., NanoVelcro CTC Assays represent a unique rare-cell sorting method that enables detection isolation, and characterization of CTCs in peripheral blood, providing an opportunity to noninvasively monitor disease progression in individual cancer patients. Over the past decade, a series of NanoVelcro CTC Assays has been demonstrated for exploring the full potential of CTCs as a clinical biomarker, including CTC enumeration, phenotyping, genotyping and expression profiling. In this review article, the authors will briefly introduce the development of three generations of NanoVelcro CTC Assays, and highlight the clinical applications of each generation for various types of solid cancers, including prostate cancer, pancreatic cancer, lung cancer, and melanoma.
Collapse
Affiliation(s)
- Jie-Fu Chen
- 1. Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yazhen Zhu
- 2. Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, California, USA;; 3. Department of Pathology, Guangdong Provincial Hospital of TCM, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Tsung Lu
- 1. Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Elisabeth Hodara
- 1. Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shuang Hou
- 3. Department of Pathology, Guangdong Provincial Hospital of TCM, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Vatche G Agopian
- 4. Department of Surgery, University of California, Los Angeles, Los Angeles, California, USA;; 5. Liver Transplantation and Hepatobiliary Surgery, University of California, Los Angeles, Los Angeles, California, USA
| | - James S Tomlinson
- 4. Department of Surgery, University of California, Los Angeles, Los Angeles, California, USA;; 6. Center for Pancreatic Disease, University of California, Los Angeles, Los Angeles, California, USA;; 7. Department of Surgery Greater Los Angeles Veteran's Affairs Administration, Los Angeles, California, USA
| | - Edwin M Posadas
- 1. Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hsian-Rong Tseng
- 2. Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
29
|
Pappas D. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems. Analyst 2016; 141:525-35. [DOI: 10.1039/c5an01778e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Among the growing number of tools available for cancer studies, microfluidic systems have emerged as a promising analytical tool to elucidate cancer cell and tumor function.
Collapse
Affiliation(s)
- Dimitri Pappas
- Department of Chemistry and Biochemistry
- Texas Tech University
- USA
| |
Collapse
|
30
|
Wang J, Lu W, Tang C, Liu Y, Sun J, Mu X, Zhang L, Dai B, Li X, Zhuo H, Jiang X. Label-Free Isolation and mRNA Detection of Circulating Tumor Cells from Patients with Metastatic Lung Cancer for Disease Diagnosis and Monitoring Therapeutic Efficacy. Anal Chem 2015; 87:11893-900. [PMID: 26531886 DOI: 10.1021/acs.analchem.5b03484] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jidong Wang
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenjing Lu
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chuanhao Tang
- Affiliated Hospital of Academy of Military Medical Sciences (307 Hospital), No. 8 Dongdajie, Beijing, 100071, China
| | - Yi Liu
- Affiliated Hospital of Academy of Military Medical Sciences (307 Hospital), No. 8 Dongdajie, Beijing, 100071, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xuan Mu
- Peking
Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lin Zhang
- Peking
Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Bo Dai
- Department
of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaoyan Li
- Affiliated Hospital of Academy of Military Medical Sciences (307 Hospital), No. 8 Dongdajie, Beijing, 100071, China
| | - Hailong Zhuo
- Affiliated Hospital of Academy of Military Medical Sciences (307 Hospital), No. 8 Dongdajie, Beijing, 100071, China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
31
|
Ossowski P, Raiter-Smiljanic A, Szkulmowska A, Bukowska D, Wiese M, Derzsi L, Eljaszewicz A, Garstecki P, Wojtkowski M. Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup. OPTICS EXPRESS 2015; 23:27724-38. [PMID: 26480435 DOI: 10.1364/oe.23.027724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We demonstrate a novel optical method for the detection and differentiation between erythrocytes and leukocytes that uses amplitude and phase information provided by optical coherence tomography (OCT). Biological cells can introduce significant phase modulation with substantial scattering anisotropy and dominant forward-scattered light. Such physical properties may favor the use of a trans-illumination imaging technique. However, an epi-illumination mode may be more practical and robust in many applications. This study describes a new way of measuring the phase modulation introduced by flowing microobjects. The novel part of this invention is that it uses the backscattered signal from the substrate located below the flowing/moving objects. The identification of cells is based on phase-sensitive OCT signals. To differentiate single cells, a custom-designed microfluidic device with a highly scattering substrate is introduced. The microchannels are molded in polydimethylsiloxane (PDMS) mixed with titanium dioxide (TiO2) to ensure high scattering properties. The statistical parameters of the measured signal depend on the cells' features, such as their size, shape, and internal structure.
Collapse
|
32
|
Johnson ES, Anand RK, Chiu DT. Improved Detection by Ensemble-Decision Aliquot Ranking of Circulating Tumor Cells with Low Numbers of a Targeted Surface Antigen. Anal Chem 2015; 87:9389-95. [DOI: 10.1021/acs.analchem.5b02241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Qian W, Zhang Y, Chen W. Capturing Cancer: Emerging Microfluidic Technologies for the Capture and Characterization of Circulating Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3850-72. [PMID: 25993898 DOI: 10.1002/smll.201403658] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/13/2015] [Indexed: 05/04/2023]
Abstract
Circulating tumor cells (CTCs) escape from primary or metastatic lesions and enter into circulation, carrying significant information of cancer progression and metastasis. Capture of CTCs from the bloodstream and the characterization of these cells hold great significance for the detection, characterization, and monitoring of cancer. Despite the urgent need from clinics, it remains a major challenge to capture and retain these rare cells from human blood with high specificity and yield. Recent exciting advances in micro/nanotechnology, microfluidics, and materials science have enable versatile, robust, and efficient cell isolation and processing through the development of new micro/nanoengineered devices and biomaterials. This review provides a summary of recent progress along this direction, with a focus on emerging methods for CTC capture and processing, and their application in cancer research. Furthermore, classical as well as emerging cellular characterization methods are reviewed to reveal the role of CTCs in cancer progression and metastasis, and hypotheses are proposed in regard to the potential emerging research directions most desired in CTC-related cancer research.
Collapse
Affiliation(s)
- Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Yan Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| |
Collapse
|
34
|
Zhao M, Wei B, Nelson WC, Schiro PG, Chiu DT. Simultaneous and selective isolation of multiple subpopulations of rare cells from peripheral blood using ensemble-decision aliquot ranking (eDAR). LAB ON A CHIP 2015; 15:3391-3396. [PMID: 26160592 DOI: 10.1039/c5lc00384a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rare cells, such as circulating tumor cells (CTCs), can be heterogeneous. The isolation and identification of rare cells with different phenotypes is desirable, for clinical and biological applications. However, CTCs exist in a complex biological environment, which complicates the isolation and identification of particular subtypes. To address this need, we re-designed our ensemble-decision aliquot ranking (eDAR) system to detect, isolate, and study two subpopulations of rare cells in the same microchip. With this dual-capture eDAR device, we simultaneously and selectively isolated two subsets of CTCs from the same blood sample: One set expressed epithelial markers and the other had mesenchymal characteristics. We could apply other selection schemes with different sorting logics to isolate the two subpopulations on demand. The average recovery rate for each subpopulation was higher than 88% with a nearly 100% selectivity of the targeted cells; the throughput was 50 μL min(-1).
Collapse
Affiliation(s)
- Mengxia Zhao
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA.
| | | | | | | | | |
Collapse
|
35
|
Lv SW, Wang J, Xie M, Lu NN, Li Z, Yan XW, Cai SL, Zhang PA, Dong WG, Huang WH. Photoresponsive immunomagnetic nanocarrier for capture and release of rare circulating tumor cells. Chem Sci 2015; 6:6432-6438. [PMID: 28757959 PMCID: PMC5507187 DOI: 10.1039/c5sc01380a] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
7-Aminocoumarin compound was synthesized and used as phototrigger to cage EpCAM-antibody to construct a photocontrolled CTCs capture and release system.
Isolation, release and culture of rare circulating tumor cells (CTCs) may, if implemented, promote the progress of individualized anti-tumor therapies. To realize the release of CTCs without disruption of their viability for further culture and analysis, we designed an effective photocontrolled CTC capture/release system by combination of photochemistry and immunomagnetic separation. 7-Aminocoumarin was synthesized as the phototrigger to bridge the connection between the anti-EpCAM antibody and the magnetic beads. The coumarin moieties produced cleavage of a C–O bond under both ultraviolet (UV) and near-infrared (NIR) light illumination, breaking the bridge and releasing CTCs from the immunomagnetic beads. Compared with conventional immunomagnetic separation systems, the negative influence of absorbed immunomagnetic beads on further CTCs culture and analysis was effectively eliminated. The system can specifically recognize 102 MCF-7 cells in 1 mL of human whole blood samples with 90% efficiency and 85% purity. Under the irradiation of UV and NIR light, 73 ± 4% and 52 ± 6% of captured cells were released with a viability of 90% and 97%, respectively. Furthermore, this technique has been used to detect CTCs from whole blood of cancer patients with high purity. This study demonstrates that the photochemical-based immunomagnetic separation method for isolating, releasing and culturing CTCs from clinic patients may provide new opportunities for cancer diagnosis and personalized therapy.
Collapse
Affiliation(s)
- Song-Wei Lv
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China . ; ; Tel: +86-27-68752149
| | - Jing Wang
- Department of Gastroenterology , Renmin Hospital of Wuhan University , Wuhan 430060 , China .
| | - Min Xie
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China . ; ; Tel: +86-27-68752149
| | - Ning-Ning Lu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China . ; ; Tel: +86-27-68752149
| | - Zhen Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China . ; ; Tel: +86-27-68752149
| | - Xue-Wei Yan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China . ; ; Tel: +86-27-68752149
| | - Si-Liang Cai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China . ; ; Tel: +86-27-68752149
| | - Ping-An Zhang
- Department of Clinical Laboratory , Renmin Hospital of Wuhan University , Wuhan 430060 , China
| | - Wei-Guo Dong
- Department of Gastroenterology , Renmin Hospital of Wuhan University , Wuhan 430060 , China .
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China . ; ; Tel: +86-27-68752149
| |
Collapse
|
36
|
Mohamadi RM, Ivanov I, Stojcic J, Nam RK, Sargent EH, Kelley SO. Sample-to-Answer Isolation and mRNA Profiling of Circulating Tumor Cells. Anal Chem 2015; 87:6258-64. [DOI: 10.1021/acs.analchem.5b01019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Reza M. Mohamadi
- Department of Pharmaceutical Science, Leslie Dan
Faculty of Pharmacy, ‡Division of Urology,
Sunnybrook Research Institute, §Department of Electrical and Computer Engineering,
Faculty of Engineering, ∥Institute for Biomaterials and Biomedical Engineering, and ⊥Department of
Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Ivaylo Ivanov
- Department of Pharmaceutical Science, Leslie Dan
Faculty of Pharmacy, ‡Division of Urology,
Sunnybrook Research Institute, §Department of Electrical and Computer Engineering,
Faculty of Engineering, ∥Institute for Biomaterials and Biomedical Engineering, and ⊥Department of
Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Jessica Stojcic
- Department of Pharmaceutical Science, Leslie Dan
Faculty of Pharmacy, ‡Division of Urology,
Sunnybrook Research Institute, §Department of Electrical and Computer Engineering,
Faculty of Engineering, ∥Institute for Biomaterials and Biomedical Engineering, and ⊥Department of
Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Robert K. Nam
- Department of Pharmaceutical Science, Leslie Dan
Faculty of Pharmacy, ‡Division of Urology,
Sunnybrook Research Institute, §Department of Electrical and Computer Engineering,
Faculty of Engineering, ∥Institute for Biomaterials and Biomedical Engineering, and ⊥Department of
Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Edward H. Sargent
- Department of Pharmaceutical Science, Leslie Dan
Faculty of Pharmacy, ‡Division of Urology,
Sunnybrook Research Institute, §Department of Electrical and Computer Engineering,
Faculty of Engineering, ∥Institute for Biomaterials and Biomedical Engineering, and ⊥Department of
Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Shana O. Kelley
- Department of Pharmaceutical Science, Leslie Dan
Faculty of Pharmacy, ‡Division of Urology,
Sunnybrook Research Institute, §Department of Electrical and Computer Engineering,
Faculty of Engineering, ∥Institute for Biomaterials and Biomedical Engineering, and ⊥Department of
Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| |
Collapse
|
37
|
Zhang J, Sheng W, Fan ZH. An ensemble of aptamers and antibodies for multivalent capture of cancer cells. Chem Commun (Camb) 2015; 50:6722-5. [PMID: 24827472 DOI: 10.1039/c4cc02002b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We developed an optimized ensemble of aptamers and antibodies that functions as a multivalent adhesive domain for the capture and isolation of cancer cells. When incorporated into a microfluidic device, the ensemble showed not only high capture efficiency, but also superior capture selectivity at a high shear stress (or high flow rate).
Collapse
Affiliation(s)
- Jinling Zhang
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, Florida 32611, USA.
| | | | | |
Collapse
|
38
|
Frithiof H, Welinder C, Larsson AM, Rydén L, Aaltonen K. A novel method for downstream characterization of breast cancer circulating tumor cells following CellSearch isolation. J Transl Med 2015; 13:126. [PMID: 25896421 PMCID: PMC4409738 DOI: 10.1186/s12967-015-0493-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/15/2015] [Indexed: 01/05/2023] Open
Abstract
Background Enumeration of circulating tumor cells (CTCs) obtained from minimally invasive blood samples has been well established as a valuable monitoring tool in metastatic and early breast cancer, as well as in several other cancer types. The gold standard technology for detecting CTCs in blood against a backdrop of millions of leukocytes is the FDA-approved CellSearch system (Janssen Diagnostics), which relies on EpCAM-based immunomagnetic separation. Secondary characterization of these cells could enable treatment selection based on specific targets in these cells, as well as providing a real time window into the metastatic process and offering unique insights into tumor heterogeneity. The objective of this study was to develop a method for downstream characterization of CTCs following isolation with the CellSearch system. Methods An in vitro CTC model system focusing on clinically useful treatment predictive biomarkers in breast cancer, specifically the estrogen receptor α (ERα) and the human epidermal growth factor receptor 2 (HER2), was established using healthy donor blood spiked with breast cancer cell lines MCF7 (ERα+/HER2−) and SKBr3 (ERα−/HER2+). Following CTC isolation by CellSearch, the captured CTCs were further enriched and fixed on a microscope slide using the in-house-developed CTC-DropMount technique. Results The recovery rate of CTCs after CellSearch Profile analysis and CTC-DropMount was 87%. A selective and consistent triple-immunostaining protocol was optimized. Cells positive for DAPI, cytokeratin (CK) 8, 18 and 19, but negative for the leukocyte-specific marker CD45, were classified as CTCs and subsequently analyzed for ERα and HER2 expression. The method was verified in breast cancer patient samples, thus demonstrating its clinical relevance. Conclusions Our results show that it is possible to ascertain the status of important predictive biomarkers expressed in breast cancer CTCs using the newly developed CTC-DropMount technique. Downstream characterization of multiple biomarkers using a standard fluorescence microscope demonstrates that important clinical and biological information may be obtained from a single patient blood sample following either CellSearch epithelial or profile analyses. Trial registration Clinical Trials NCT01322893
Collapse
Affiliation(s)
- Henrik Frithiof
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Charlotte Welinder
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Anna-Maria Larsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden. .,Skåne Department of Oncology, Skåne University Hospital, Lund, Sweden.
| | - Lisa Rydén
- Division of Surgery, Department of Clinical Sciences, Lund University, Lund, Sweden. .,Department of Surgery, Skåne University Hospital, Lund, Sweden.
| | - Kristina Aaltonen
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
39
|
Shields CW, Reyes CD, López GP. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. LAB ON A CHIP 2015; 15:1230-49. [PMID: 25598308 PMCID: PMC4331226 DOI: 10.1039/c4lc01246a] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism.
Collapse
Affiliation(s)
- C Wyatt Shields
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
40
|
An electrochemical immunosensing method for detecting melanoma cells. Biosens Bioelectron 2015; 68:508-515. [PMID: 25636023 DOI: 10.1016/j.bios.2015.01.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/09/2015] [Indexed: 01/06/2023]
Abstract
An electrochemical immunosensing method was developed to detect melanoma cells based on the affinity between cell surface melanocortin 1 receptor (MC1R) antigen and anti-MC1R antibody (MC1R-Ab). The MC1R-Abs were immobilized in amino-functionalized silica nanoparticles (n-SiNPs)-polypyrrole (PPy) nanocomposite modified on working electrode surface of screen-printed electrode (SPE). Cyclic voltammetry was employed, with the help of redox mediator ([Fe(CN)6](3-)), to measure the change in anodic oxidation peak current arising due to the specific interaction between MC1R antigens and MC1R-Abs when the target melanoma cells are present in the sample. Various factors affecting the sensor performance, such as the amount of MC1R-Abs loaded, incubation time with the target melanoma cells, the presence of interfering non-melanoma cells, were tested and optimized over different expected melanoma cell loads in the range of 50-7500 cells/2.5 mL. The immunosensor is highly sensitive (20 cells/mL), specific, and reproducible, and the antibody-loaded electrode in ready-to-use stage is stable over two weeks. Thus, in conjunction with a microfluidic lab-on-a-chip device our electrochemical immunosensing approach may be suitable for highly sensitive, selective, and rapid detection of circulating tumor cells (CTCs) in blood samples.
Collapse
|
41
|
Kelley SO, Mirkin CA, Walt DR, Ismagilov RF, Toner M, Sargent EH. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. NATURE NANOTECHNOLOGY 2014; 9:969-80. [PMID: 25466541 PMCID: PMC4472305 DOI: 10.1038/nnano.2014.261] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 10/13/2014] [Indexed: 05/05/2023]
Abstract
Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.
Collapse
Affiliation(s)
- Shana O. Kelley
- Department of Pharmaceutical Sciences and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Correspondence should be addressed to S.O.K.,
| | - Chad A. Mirkin
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - David R. Walt
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | - Rustem F. Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Mehmet Toner
- Center for Bioengineering in Medicine, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Edward H. Sargent
- Department of Computer and Electrical Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
42
|
Mohamadi RM, Besant JD, Mepham A, Green B, Mahmoudian L, Gibbs T, Ivanov I, Malvea A, Stojcic J, Allan AL, Lowes LE, Sargent EH, Nam RK, Kelley SO. Nanoparticle‐Mediated Binning and Profiling of Heterogeneous Circulating Tumor Cell Subpopulations. Angew Chem Int Ed Engl 2014; 54:139-43. [DOI: 10.1002/anie.201409376] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/21/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Reza M. Mohamadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON (Canada)
| | - Justin D. Besant
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON (Canada)
| | - Adam Mepham
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON (Canada)
| | - Brenda Green
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON (Canada)
| | - Laili Mahmoudian
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON (Canada)
| | - Thaddeus Gibbs
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON (Canada)
| | - Ivaylo Ivanov
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON (Canada)
| | - Anahita Malvea
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON (Canada)
| | | | | | | | - Edward H. Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON (Canada)
| | | | - Shana O. Kelley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON (Canada)
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON (Canada)
- Department of Biochemistry, University of Toronto, Toronto, ON (Canada)
| |
Collapse
|
43
|
Mohamadi RM, Besant JD, Mepham A, Green B, Mahmoudian L, Gibbs T, Ivanov I, Malvea A, Stojcic J, Allan AL, Lowes LE, Sargent EH, Nam RK, Kelley SO. Nanoparticle‐Mediated Binning and Profiling of Heterogeneous Circulating Tumor Cell Subpopulations. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409376] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Reza M. Mohamadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON (Canada)
| | - Justin D. Besant
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON (Canada)
| | - Adam Mepham
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON (Canada)
| | - Brenda Green
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON (Canada)
| | - Laili Mahmoudian
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON (Canada)
| | - Thaddeus Gibbs
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON (Canada)
| | - Ivaylo Ivanov
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON (Canada)
| | - Anahita Malvea
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON (Canada)
| | | | | | | | - Edward H. Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON (Canada)
| | | | - Shana O. Kelley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON (Canada)
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON (Canada)
- Department of Biochemistry, University of Toronto, Toronto, ON (Canada)
| |
Collapse
|
44
|
Guo M, Li X, Zhang S, Song H, Zhang W, Shang X, Zheng Y, Jiang H, Lv Q, Jiang Y, Hao H. Real-time quantitative RT-PCR detection of circulating tumor cells from breast cancer patients. Int J Oncol 2014; 46:281-9. [PMID: 25353649 DOI: 10.3892/ijo.2014.2732] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/22/2014] [Indexed: 11/06/2022] Open
Abstract
Circulating tumor cells (CTCs) were recognized as novel tumor biomarker for prognostic and predictive purposes in various cancers. Various detection technologies and devices have been developed to enumerate and characterize CTCs. Most of those approaches are based on the positive enrichment strategy and immunocytological techniques. However, the sensitivity of these approaches proved to be limited in metastatic tumors and the detection of early tumor cell dissemination was problematic. In the present study, we developed a novel CTC detection method by real-time RT-PCR technique in combination of negative enrichment strategy. The developed enrichment approach could recover more than 75% of spiked breast cancer cells from peripheral blood. The detection limit of duplex real-time RT-PCR assay using KRT19 and ERBB2 as targeted genes was consistently one breast tumor cell. Moreover, CTC detection by duplex real-time RT-PCR assay had higher detection sensitivity than that by immunostaining, especially in early breast cancer. In summary, the results of the present study indicated the potential clinical utilities of CTCs identification on breast cancer by duplex real-time RT-PCR in combination with negative enrichment.
Collapse
Affiliation(s)
- Maowen Guo
- School of Pharmacy, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaotian Li
- School of Pharmacy, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shaohua Zhang
- Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Hua Song
- Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Wenhui Zhang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Xueyi Shang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Huaijie Hao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| |
Collapse
|
45
|
Lin M, Chen JF, Lu YT, Zhang Y, Song J, Hou S, Ke Z, Tseng HR. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc Chem Res 2014; 47:2941-50. [PMID: 25111636 PMCID: PMC4204926 DOI: 10.1021/ar5001617] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Circulating
tumor cells (CTCs) are cancer cells that break away
from either a primary tumor or a metastatic site and circulate in
the peripheral blood as the cellular origin of metastasis. With their
role as a “tumor liquid biopsy”, CTCs provide convenient
access to all disease sites, including that of the primary tumor and
the site of fatal metastases. It is conceivable that detecting and
analyzing CTCs will provide insightful information in assessing the
disease status without the flaws and limitations encountered in performing
conventional tumor biopsies. However, identifying CTCs in patient
blood samples is technically challenging due to the extremely low
abundance of CTCs among a large number of hematologic cells. To address
this unmet need, there have been significant research endeavors, especially
in the fields of chemistry, materials science, and bioengineering,
devoted to developing CTC detection, isolation, and characterization
technologies. Inspired by the nanoscale interactions observed
in the tissue microenvironment,
our research team at UCLA pioneered a unique concept of “NanoVelcro”
cell-affinity substrates, in which CTC capture agent-coated nanostructured
substrates were utilized to immobilize CTCs with high efficiency.
The working mechanism of NanoVelcro cell-affinity substrates mimics
that of Velcro: when the two fabric strips of a Velcro fastener are
pressed together, tangling between the hairy surfaces on two strips
leads to strong binding. Through continuous evolution, three generations
(gens) of NanoVelcro CTC chips have been established to achieve different
clinical utilities. The first-gen NanoVelcro chip, composed of a silicon
nanowire substrate (SiNS) and an overlaid microfluidic chaotic mixer,
was created for CTC enumeration. Side-by-side analytical validation
studies using clinical blood samples suggested that the sensitivity
of first-gen NanoVelcro chip outperforms that of FDA-approved CellSearch.
In conjunction with the use of the laser microdissection (LMD) technique,
second-gen NanoVelcro chips (i.e., NanoVelcro-LMD), based on polymer
nanosubstrates, were developed for single-CTC isolation. The individually
isolated CTCs can be subjected to single-CTC genotyping (e.g., Sanger
sequencing and next-generation sequencing, NGS) to verify the CTC’s
role as tumor liquid biopsy. Created by grafting of thermoresponsive
polymer brushes onto SiNS, third-gen NanoVelcro chips (i.e., Thermoresponsive
NanoVelcro) have demonstrated the capture and release of CTCs at 37
and 4 °C, respectively. The temperature-dependent conformational
changes of polymer brushes can effectively alter the accessibility
of the capture agent on SiNS, allowing for rapid CTC purification
with desired viability and molecular integrity. This Account
summarizes the continuous evolution of NanoVelcro
CTC assays from the emergence of the original idea all the way to
their applications in cancer research. We envision that NanoVelcro
CTC assays will lead the way for powerful and cost-efficient diagnostic
platforms for researchers to better understand underlying disease
mechanisms and for physicians to monitor real-time disease progression.
Collapse
Affiliation(s)
- Millicent Lin
- Department
of Pathology, The First Affiliated hospital of Sun Yat-sen University, Guangzhou, 510080 Guangdong, People’s Republic of China
- Department
of Molecular and Medical Pharmacology, Crump Institute for Molecular
Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1770, United States
| | - Jie-Fu Chen
- Department
of Molecular and Medical Pharmacology, Crump Institute for Molecular
Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1770, United States
| | - Yi-Tsung Lu
- Department
of Molecular and Medical Pharmacology, Crump Institute for Molecular
Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1770, United States
| | - Yang Zhang
- Department
of Molecular and Medical Pharmacology, Crump Institute for Molecular
Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1770, United States
| | - Jinzhao Song
- Department
of Molecular and Medical Pharmacology, Crump Institute for Molecular
Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1770, United States
| | - Shuang Hou
- Department
of Molecular and Medical Pharmacology, Crump Institute for Molecular
Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1770, United States
| | - Zunfu Ke
- Department
of Pathology, The First Affiliated hospital of Sun Yat-sen University, Guangzhou, 510080 Guangdong, People’s Republic of China
| | - Hsian-Rong Tseng
- Department
of Molecular and Medical Pharmacology, Crump Institute for Molecular
Imaging (CIMI), California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1770, United States
| |
Collapse
|
46
|
Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E, Martel JM, Kojic N, Smith K, Chen PI, Yang J, Hwang H, Morgan B, Trautwein J, Barber TA, Stott SL, Maheswaran S, Kapur R, Haber DA, Toner M. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 2014; 9:694-710. [PMID: 24577360 DOI: 10.1038/nprot.2014.044] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to isolate and analyze rare circulating tumor cells (CTCs) has the potential to further our understanding of cancer metastasis and enhance the care of cancer patients. In this protocol, we describe the procedure for isolating rare CTCs from blood samples by using tumor antigen-independent microfluidic CTC-iChip technology. The CTC-iChip uses deterministic lateral displacement, inertial focusing and magnetophoresis to sort up to 10⁷ cells/s. By using two-stage magnetophoresis and depletion antibodies against leukocytes, we achieve 3.8-log depletion of white blood cells and a 97% yield of rare cells with a sample processing rate of 8 ml of whole blood/h. The CTC-iChip is compatible with standard cytopathological and RNA-based characterization methods. This protocol describes device production, assembly, blood sample preparation, system setup and the CTC isolation process. Sorting 8 ml of blood sample requires 2 h including setup time, and chip production requires 2-5 d.
Collapse
Affiliation(s)
- Nezihi Murat Karabacak
- 1] Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2]
| | - Philipp S Spuhler
- 1] Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2]
| | - Fabio Fachin
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eugene J Lim
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Vincent Pai
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emre Ozkumur
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joseph M Martel
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nikola Kojic
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kyle Smith
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pin-i Chen
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jennifer Yang
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Henry Hwang
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bailey Morgan
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Julie Trautwein
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas A Barber
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shannon L Stott
- 1] Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Ravi Kapur
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel A Haber
- 1] Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Mehmet Toner
- Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Culbertson CT, Mickleburgh TG, Stewart-James SA, Sellens KA, Pressnall M. Micro total analysis systems: fundamental advances and biological applications. Anal Chem 2014; 86:95-118. [PMID: 24274655 PMCID: PMC3951881 DOI: 10.1021/ac403688g] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Tom G. Mickleburgh
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | - Kathleen A. Sellens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Melissa Pressnall
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
48
|
Zhang H, Wang Y, Li Q, Zhang F, Tang B. A size amplified immune magnetic microbeads strategy in the rapid detection of circulating tumor cells. Chem Commun (Camb) 2014; 50:7024-7. [DOI: 10.1039/c4cc02342k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A size amplified immune magnetic microbeads strategy for the combined use of membrane filtration and immune-magnetic separation in CTC detection.
Collapse
Affiliation(s)
- Hongyan Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yanhong Wang
- College of Life Science
- Shandong Normal University
- Jinan, China
| | - Qingling Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Fumiao Zhang
- College of Life Science
- Shandong Normal University
- Jinan, China
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
49
|
Zhao M, Wei B, Chiu DT. Imaging multiple biomarkers in captured rare cells by sequential immunostaining and photobleaching. Methods 2013; 64:108-13. [DOI: 10.1016/j.ymeth.2013.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/30/2013] [Accepted: 08/08/2013] [Indexed: 01/01/2023] Open
|
50
|
Haselgrübler T, Haider M, Ji B, Juhasz K, Sonnleitner A, Balogi Z, Hesse J. High-throughput, multiparameter analysis of single cells. Anal Bioanal Chem 2013; 406:3279-96. [PMID: 24292433 DOI: 10.1007/s00216-013-7485-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 12/23/2022]
Abstract
Heterogeneity of cell populations in various biological systems has been widely recognized, and the highly heterogeneous nature of cancer cells has been emerging with clinical relevance. Single-cell analysis using a combination of high-throughput and multiparameter approaches is capable of reflecting cell-to-cell variability, and at the same time of unraveling the complexity and interdependence of cellular processes in the individual cells of a heterogeneous population. In this review, analytical methods and microfluidic tools commonly used for high-throughput, multiparameter single-cell analysis of DNA, RNA, and proteins are discussed. Applications and limitations of currently available technologies for cancer research and diagnostics are reviewed in the light of the ultimate goal to establish clinically applicable assays.
Collapse
Affiliation(s)
- Thomas Haselgrübler
- Center for Advanced Bioanalysis GmbH, Gruberstraße 40-42, 4020, Linz, Austria,
| | | | | | | | | | | | | |
Collapse
|