1
|
Su Y, Xia C, Zhang H, Gan W, Zhang GQ, Yang Z, Li D. Emerging biosensor probes for glycated hemoglobin (HbA1c) detection. Mikrochim Acta 2024; 191:300. [PMID: 38709399 DOI: 10.1007/s00604-024-06380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Glycated hemoglobin (HbA1c), originating from the non-enzymatic glycosylation of βVal1 residues in hemoglobin (Hb), is an essential biomarker indicating average blood glucose levels over a period of 2 to 3 months without external environmental disturbances, thereby serving as the gold standard in the management of diabetes instead of blood glucose testing. The emergence of HbA1c biosensors presents affordable, readily available options for glycemic monitoring, offering significant benefits to small-scale laboratories and clinics. Utilizing nanomaterials coupled with high-specificity probes as integral components for recognition, labeling, and signal transduction, these sensors demonstrate exceptional sensitivity and selectivity in HbA1c detection. This review mainly focuses on the emerging probes and strategies integral to HbA1c sensor development. We discussed the advantages and limitations of various probes in sensor construction as well as recent advances in diverse sensing strategies for HbA1c measurement and their potential clinical applications, highlighting the critical gaps in current technologies and future needs in this evolving field.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengen Xia
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo-Qi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Zi Yang
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dapeng Li
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Guo Z, Cao Y, Fan L, Liu W, Wei L, Ma Y, Ren J, Zhang Q, Cao C. A temperature-independent model of dual calibration standards for onsite and point-of-care quantification analyses via electrophoresis titration chip. Anal Chim Acta 2024; 1289:342207. [PMID: 38245206 DOI: 10.1016/j.aca.2024.342207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
Electrophoresis titration chip (ETC) is a versatile tool for onsite and point-of-care quantification analyses because it affords naked-eye detection and a straightforward quantification format. However, it is vulnerable to changes in environmental temperature, which regulates the electrophoretic migration by affecting the ion mobility and the target recognition by influencing the enzyme activity. Therefore, the quantification accuracy of the ETC tests was severely compromised. Rather than using the dry bath or heating/cooling units, we proposed a facile model of dual calibration standards (DCS) to mathematically eliminate the effects of temperature on quantification accuracy. To verify our model, we deployed the ETC device at different temperatures ranging from 5 to 40 °C. We further utilized the DCS-ETC to determine the protein content and uric acid concentration in real samples outside the laboratory. All the experimental results showed that our model significantly stabilized the quantification recovery from 35.31-153.44 % to 99.38-103.44 % for protein titration; the recovery of uric acid titration is also stable at 96.25-106.42 %, suggesting the enhanced robustness of the ETC tests. Therefore, DCS-ETC is a field-deployable test that can offer reliable quantification performance without extra equipment for temperature control. We envision that it is promising to be used for onsite applications, including food safety control and disease diagnostics.
Collapse
Affiliation(s)
- Zehua Guo
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Wei
- Shanghai 6th People's Hospital, Shanghai Jiao Tong University, Shanghai, 200235, China
| | - Yixin Ma
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information & Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Liu L, Ma X, Chang Y, Guo H, Wang W. Biosensors with Boronic Acid-Based Materials as the Recognition Elements and Signal Labels. BIOSENSORS 2023; 13:785. [PMID: 37622871 PMCID: PMC10452607 DOI: 10.3390/bios13080785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
It is of great importance to have sensitive and accurate detection of cis-diol-containing biologically related substances because of their important functions in the research fields of metabolomics, glycomics, and proteomics. Boronic acids can specifically and reversibly interact with 1,2- or 1,3-diols to form five or six cyclic esters. Based on this unique property, boronic acid-based materials have been used as synthetic receptors for the specific recognition and detection of cis-diol-containing species. This review critically summarizes the recent advances with boronic acid-based materials as recognition elements and signal labels for the detection of cis-diol-containing biological species, including ribonucleic acids, glycans, glycoproteins, bacteria, exosomes, and tumor cells. We also address the challenges and future perspectives for developing versatile boronic acid-based materials with various promising applications.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Hang Guo
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenqing Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
4
|
Chen X, Yang Z, Chen Q, Zhang Y. Glucose determination in human serum by applying inner filter effect quenching mechanism of upconversion nanoparticles. Front Bioeng Biotechnol 2023; 11:1168086. [PMID: 37101750 PMCID: PMC10123268 DOI: 10.3389/fbioe.2023.1168086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023] Open
Abstract
Accurate blood glucose determination is essential to the clinical diagnosis and management of diabetes. This work establishes an inner filter effect (IFE) strategy between upconversion nanoparticles (UCNPs) and quinone-imine complex for glucose monitoring in human serum simply and efficiently. In this system, the enzyme glucose oxidase (GOx) catalyzes the reaction of glucose into hydrogen peroxide (H2O2) and gluconic acid when compulsion by oxygen. In the presence of horseradish peroxidase (HRP), the produced H2O2 can catalytically oxidize phenol and 4-amino antipyrine (4-AAP) to generate quinone-imine products. The purple-colored quinone-imine complex effectively absorbed the fluorescence of NaYF4:Yb3+, Er3+ UCNPs, leading to the strong fluorescence quenching of UCNPs through IFE. Thus, a new approach was established for glucose monitoring by determining the fluorescence intensity. Under the optimal condition, this approach shows better linearity to glucose from 2-240 μmol/L with a low detection limit at 1.0 μmol/L. Owing to the excellent fluorescence property and background-free interference of the UCNPs, the biosensor was applied for glucose measurements in human serum and got a satisfactory result. Furthermore, this sensitive and selective biosensor revealed great potential for the quantitative analysis of blood glucose or different kinds of H2O2-involved biomolecules for the application of clinical diagnosis.
Collapse
Affiliation(s)
| | - Zhiying Yang
- Changsha Health Vocational College, Changsha, China
| | - Qiong Chen
- Changsha Health Vocational College, Changsha, China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China
- *Correspondence: Youyu Zhang,
| |
Collapse
|
5
|
GUO Z, LUO F, LI S, FAN L, WU Y, CAO C. [Speculation of hemoglobin A 3 peak position in clinical cation exchange high performance liquid chromatogram of the diabetic blood sample with microarray isoelectric focusing]. Se Pu 2021; 39:1273-1278. [PMID: 34677023 PMCID: PMC9404208 DOI: 10.3724/sp.j.1123.2020.12033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Hemoglobin A1c (HbA1c) is a major component of glycated hemoglobin in human red blood cells. It has been proven to be a significant biomarker for the diagnosis of diabetes; its content in fresh red cells in diabetes blood reflects the average level of blood glucose over the previous three months. Thus, HbA1c level has been used for the assessment of long-term glycemic control in diabetes; the level of 6.5% HbA1c has been certified as a critical cut-off for the diabetes diagnosis. The current commonly used method for HbA1c quantification is based on cation-exchange high performance liquid chromatography (CX-HPLC). The method has advantages such as high stability, rapidity, and automation, but there are still some unidentified peaks of Hb species in CX-HPLC (VARIANT Ⅱ system); in particular, the presence of HbA3 (a glutathiolated Hb) affects the accurate determination of HbA1c. HbA3 is usually present in healthy adult blood samples at 2%-4%, but the concentration of HbA3 increases due to the protection of erythrocytes from oxidation, resulting in decreased HbA1c. However, the relative location of the HbA3 peak in the CX-HPLC clinical chromatogram has not been established. To address this issue, we extracted Hb species from fresh blood samples obtained from a hospital in an anaerobic environment to avoid possible redox reactions of Hb and glutathione. After the extraction, the Hb samples were analyzed using two methods: a low-resolution CX-HPLC (5/50 mm column) currently used for diabetes diagnosis and a high-resolution cationic exchange HPLC (Mono-S 5/50 mm column), to identify the peak corresponding to HbA3. The CX-HPLC analysis of fresh blood samples indicated that the unknown peak P3 located between HbA1c and HbA0 peaks corresponded to the HbA3 peak between HbA1c and HbA0 in the Mono-S-HPLC. Microarray isoelectric focusing (IEF) was used for the micro-preparation of HbA3, HbA1c, and HbA0 in healthy blood samples; then, the micro-prepared species of HbA3, HbA1c, and HbA0 were individually identified via Mono-S-HPLC. The results of the CX-HPLC, Mono-S-HPLC, and microarray IEF experiments indicated that the P3 peak might correspond to HbA3. To confirm this, glutathiolated Hb samples were synthesized via acetylphenylhydrazine and analyzed using both the Mono-S- and CX-HPLC systems. The results showed that the content of both glutaminated hemoglobin of HbA3 in Mono-S-HPLC and P3 in CX-HPLC increased, implying the peak of P3 with the retention time of 1.50 min in CX-HPLC was the peak corresponding to HbA3 in Mono-S-HPLC and microarray IEF. Based on the above experiments and our previous results, the influence of HbA3 on both the analysis of HbA1c in blood samples and the diabetes diagnosis needs to be considered and discussed. The study results are significant for the tentative assignment of peak P3 and for offering more information on diabetes diagnosis using CX-HPLC in the clinical setting.
Collapse
|
6
|
Hiller NDJ, do Amaral e Silva NA, Tavares TA, Faria RX, Eberlin MN, de Luna Martins D. Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Noemi de Jesus Hiller
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Nayane Abreu do Amaral e Silva
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Thais Apolinário Tavares
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose e outras Protozooses; Instituto Oswaldo Cruz, Fiocruz; Av. Brasil, 4365 Manguinhos Rio de Janeiro RJ 21040-360 Brasil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University; School of Engineering; Rua da Consolação, 930 SP 01302-907 São Paulo Brasil
| | - Daniela de Luna Martins
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| |
Collapse
|
7
|
Kong H, Liu WW, Zhang W, Zhang Q, Wang CH, Khan MI, Wang YX, Fan LY, Cao CX. Facile, Rapid, and Low-Cost Electrophoresis Titration of Thrombin by Aptamer-Linked Magnetic Nanoparticles and a Redox Boundary Chip. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29549-29556. [PMID: 31259516 DOI: 10.1021/acsami.9b09598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An aptamer-linked assay of a target biomarker (e.g., thrombin) is facing the challenges of long-term run, complex performance, and expensive instrument, unfitting clinical diagnosis in resource-limited areas. Herein, a facile chip electrophoresis titration (ET) model was proposed for rapid, portable, and low-cost assay of thrombin via aptamer-linked magnetic nanoparticles (MNPs), redox boundary (RB), and horseradish peroxidase (HRP). In the electrophoresis titration-redox boundary (ET-RB) model, thrombin was chosen as a model biomarker, which could be captured within 15 min by MNP-aptamer 1 and HRP-aptamer 2, forming a sandwich complex of (MNP-aptamer 1)-thrombin-(HRP-aptamer 2). After MNP separation and chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) within 10 min, an ET-RB run could be completed within 5 min based on the reaction between a 3,3',5,5'-tetramethylbenzidine radical cation (TMB•+) and l-ascorbic acid in the ET channel. The systemic experiments based on the ET-RB method revealed that the sandwich complex could be formed and the thrombin content could be assayed via an ET-RB chip, demonstrating the developed model and method. In particular, the ET-RB method had the evident merits of simplicity, rapidity (less than 30 min), and low cost as well as portability and visuality, in contrast to the currently used thrombin assay. In addition, the developed method had high selectivity, sensitivity (limit of detection of 0.04 nM), and stability (intraday: 3.26%, interday: 6.07%) as well as good recovery (urine: 97-102%, serum: 94-103%). The developed model and method have potential to the development of a point-of-care testing assay in resource-constrained conditions.
Collapse
Affiliation(s)
- Hao Kong
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
| | - Wei-Wen Liu
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering , §State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology , ∥School of Physics and Astronomy , and ⊥Student Innovation Center , Shanghai Jiao Tong University , Shanghai 200240 , China
| | | | - Qiang Zhang
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering , §State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology , ∥School of Physics and Astronomy , and ⊥Student Innovation Center , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Cun-Huai Wang
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
| | - Muhammad Idrees Khan
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
| | | | | | - Cheng-Xi Cao
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering , §State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology , ∥School of Physics and Astronomy , and ⊥Student Innovation Center , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
8
|
González‐Hernández A, Rivera‐Segura J, Lacroix PG, Barba V. Unexpected Bisboronic Dicationic Acid Obtained from One‐Pot Condensation Reaction of 3‐Aminophenylboronic Acid and 2,6‐Pyridincarboxyaldehyde. ChemistrySelect 2019. [DOI: 10.1002/slct.201900302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Arturo González‐Hernández
- Centro de Investigaciones Químicas-IICBA.Universidad Autónoma del Estado de Morelos. Av. Universidad 1001. Col. Chamilpa Cuernavaca Morelos C.P 62209
| | - Jacobo Rivera‐Segura
- Centro de Investigaciones Químicas-IICBA.Universidad Autónoma del Estado de Morelos. Av. Universidad 1001. Col. Chamilpa Cuernavaca Morelos C.P 62209
| | - Pascal G. Lacroix
- CNRSLCC (Laboratoire de Chimie de Coordination) 205, Route de Narbonne Toulouse F- 31077 France
| | - Victor Barba
- Centro de Investigaciones Químicas-IICBA.Universidad Autónoma del Estado de Morelos. Av. Universidad 1001. Col. Chamilpa Cuernavaca Morelos C.P 62209
| |
Collapse
|
9
|
Mozammal Hossain MD, Moon JM, Gurudatt NG, Park DS, Choi CS, Shim YB. Separation detection of hemoglobin and glycated hemoglobin fractions in blood using the electrochemical microfluidic channel with a conductive polymer composite sensor. Biosens Bioelectron 2019; 142:111515. [PMID: 31325673 DOI: 10.1016/j.bios.2019.111515] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/13/2019] [Indexed: 02/06/2023]
Abstract
Separation and detection of hemoglobin (Hb) and glycated hemoglobin fractions (HbA1c, HbAld1+2, HbAle, HbAld3a, HbAla+b, HbA2, and HbAld3b) was performed using an electrochemical AC field modulated separation channel (EMSC) coupled with a sensor probe. The sensor was fabricated based on immobilization of a redox mediator on the poly(2,2':5',5″-terthiophene-3'-p-benzoic acid, pTTBA) and N,S-doped porous carbon (NSPC) nanocomposite. The different types of catalytic redox mediators such as Nile Blue (NB), toluidine blue O (TBO), and Neutral Red (NR) were evaluated to achieve the efficient detection. Of these, the NB-based sensor showed the best analytical signal for Hb and HbA1c, thus it was characterized using various electrochemical and surface analysis methods. After that, the sensor was coupled with the EMSC to achieve the separation detection of the Hb family. The frequency and amplitude of the AC electrical field applied onto the EMSC walls were the main driving forces for the separation and sensitive detection of the analytes. Under optimized conditions, linear dynamic ranges for Hb and HbA1c among their fractions were obtained between 1.0 × 10-6 to 3.5 mM and 3.0 × 10-6 to 0.6 mM with the detection limit of 8.1 × 10-7 ± 3.0 × 10-8 and 9.2 × 10-7 ± 5 × 10-8 mM, respectively. Interference effects of other biomolecules were also investigated and the clinical applicability of the device was evaluated by the determination of total Hb and % HbA1c in real human blood samples.
Collapse
Affiliation(s)
- M D Mozammal Hossain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea
| | - Jong-Min Moon
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea
| | - N G Gurudatt
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea; Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, and Internal Medicine, Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea
| | - Deog-Su Park
- Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, and Internal Medicine, Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea.
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea; Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
10
|
Shajaripour Jaberi SY, Ghaffarinejad A, Omidinia E. An electrochemical paper based nano-genosensor modified with reduced graphene oxide-gold nanostructure for determination of glycated hemoglobin in blood. Anal Chim Acta 2019; 1078:42-52. [PMID: 31358227 DOI: 10.1016/j.aca.2019.06.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 01/02/2023]
Abstract
Hemoglobin A1c (HbA1c) is a standard biomarker to measure long-term average glucose concentration for diagnosis and monitoring of diabetes. Various methods have been reported for measuring HbA1c, however, portable and precise determination is still challenging. Herein, a new highly sensitive electrochemical nanobiosensor is developed for the specific determination of HbA1c. A nanocomposite of reduced graphene oxide (rGO) and gold with hierarchical architecture structure was electrochemically deposited on a cheap and flexible graphite sheet (GS) electrode. The nanocomposite increased the surface area, improved the electron transfer on the electrode surface and augmented the signal. It also provided a suitable substrate for linkage of thiolated DNA aptamer as a bioreceptor on the electrode surface by strong covalent bonding. The quantitative label free detection was carried out by differential pulse voltammetry (DPV) in a phosphate-buffered saline (PBS) solution containing redox probe Fe(CN)63-/4-. The detection is based on insulating the surface in presence of HbA1c and decreasing the current, which is directly related to the HbA1c concentration. The nanobiosensor demonstrated high sensitivity of 269.2 μA. cm-2, wide linear range of 1 nM-13.83 μM with a low detection limit of 1 nM. The biosensor was successfully used for measuring HbA1c in blood real sample. Furthermore, it is promising to use it as a part of a point of care device for low-invasive screening and management of diabetes.
Collapse
Affiliation(s)
- Seyedeh Yasaman Shajaripour Jaberi
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.
| | - Eskandar Omidinia
- Department of Biochemistry, Genetic and Metabolism Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Crista DMA, Mello GPC, Shevchuk O, Sendão RMS, Simões EFC, Leitão JMM, da Silva LP, Esteves da Silva JCG. 3-Hydroxyphenylboronic Acid-Based Carbon Dot Sensors for Fructose Sensing. J Fluoresc 2019; 29:265-270. [PMID: 30612287 DOI: 10.1007/s10895-018-02336-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
The selective fluorescence sensing of fructose was achieved by fluorescence quenching of the emission of hydrothermal-synthesized carbon quantum dots prepared by 3-hydroxyphenylboronic acid. Quantification of fructose was possible in aqueous solutions with pH of 9 (Limit of Detection LOD and Limit of Quantification LOQ of 2.04 and 6.12 mM), by quenching of the emission at 376 nm and excitation ~380 nm with a linearity range of 0-150 mM. A Stern-Volmer constant (KSV) of 2.11 × 10-2 mM-1 was obtained, while a fluorescent quantum yield of 31% was calculated. The sensitivity of this assay towards fructose was confirmed by comparison with other sugars (such as glucose, sucrose and lactose). Finally, the validity of the proposed assays was further demonstrated by performing recovery assays in different matrixes. Graphical Abstract.
Collapse
Affiliation(s)
- Diana M A Crista
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007, Porto, Portugal
| | - Guilherme P C Mello
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007, Porto, Portugal
| | - Olena Shevchuk
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007, Porto, Portugal
| | - Ricardo M S Sendão
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007, Porto, Portugal
| | - Eliana F C Simões
- Chemistry Research Unit (CIQUP), Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - João M M Leitão
- Chemistry Research Unit (CIQUP), Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007, Porto, Portugal.,LACOMEPHI, GreenUPorto, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007, Porto, Portugal
| | - Joaquim C G Esteves da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007, Porto, Portugal. .,LACOMEPHI, GreenUPorto, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007, Porto, Portugal.
| |
Collapse
|
12
|
Cao XY, Kong FZ, Zhang Q, Liu WW, Liu XP, Li GQ, Zhong R, Fan LY, Xiao H, Cao CX. iPhone-imaged and cell-powered electrophoresis titration chip for the alkaline phosphatase assay in serum by the moving reaction boundary. LAB ON A CHIP 2018; 18:1758-1766. [PMID: 29780999 DOI: 10.1039/c8lc00163d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As a vital enzyme, alkaline phosphatase (ALP) has great clinical significance in diagnoses of bone or liver cancer, bone metastases, rickets, and extrahepatic biliary obstruction. However, there is still no really portable chip for the ALP assay in blood. Herein, a simple electrophoresis titration (ET) model was developed for ALP detection via a moving reaction boundary (MRB). In the model, ALP catalyzed the dephosphorylation of a 4-methylumbelliferyl phosphate disodium salt (4-MUP) substrate in the cathode well to 4-methylumbelliferone ([4-MU]-) with a negative charge and blue fluorescence under UV excitation. After the catalysis, an electric field was used between the cathode and the anode. Under the electric field, [4-MU]- moved into the channel and neutralized the acidic Tris-HCl buffer, resulting in the quenching of [4-MU]- and creating a MRB. The ET system just had an ET chip, a lithium cell, a UV LED and an iPhone used as a recorder, having no traditional expensive power supply and fluorescence detector. The relevant method was developed, and a series of experiments were conducted via the ET chip. The experiments showed: (i) a MRB could be formed between the [4-MU]- base and the acidic buffer, and the MRB motion had a linear relationship with the ALP activity, validating the ET model; (ii) the ET run was not impacted by many interferences, implying good selectivity; and (iii) the ET chip could be used for portable detection within 10 min, implying an on-site and rapid analysis. In addition, the ET method had a relatively good sensitivity (0.1 U L-1), linearity (V = 0.033A + 3.87, R2 = 0.9980), stability (RSD 2.4-6.8%) and recoveries (101-105%). Finally, the ET method was successfully used for ALP assays in real serum samples. All the results implied that the developed method was simple, rapid and low-cost, and had potential for POCT clinical ALP assays.
Collapse
Affiliation(s)
- Xin-Yu Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Baron D, Dolanská P, Medříková Z, Zbořil R, Petr J. Online stacking of carboxylated magnetite core-shell nanoparticles in capillary electrophoresis. J Sep Sci 2017; 40:2482-2487. [DOI: 10.1002/jssc.201601435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Baron
- Regional Centre of Advanced Technologies and Materials; Department of Analytical Chemistry; Faculty of Science, Palacký University in Olomouc; Olomouc Czech Republic
| | - Petra Dolanská
- Regional Centre of Advanced Technologies and Materials; Department of Analytical Chemistry; Faculty of Science, Palacký University in Olomouc; Olomouc Czech Republic
| | - Zdenka Medříková
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science, Palacký University in Olomouc; Olomouc Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science, Palacký University in Olomouc; Olomouc Czech Republic
| | - Jan Petr
- Regional Centre of Advanced Technologies and Materials; Department of Analytical Chemistry; Faculty of Science, Palacký University in Olomouc; Olomouc Czech Republic
| |
Collapse
|
14
|
Zhang F, Ma J, Watanabe J, Tang J, Liu H, Shen H. Dual Electrophoresis Detection System for Rapid and Sensitive Immunoassays with Nanoparticle Signal Amplification. Sci Rep 2017; 7:42562. [PMID: 28198385 PMCID: PMC5309740 DOI: 10.1038/srep42562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/08/2017] [Indexed: 12/19/2022] Open
Abstract
An electrophoretic technique was combined with an enzyme-linked immunosorbent assay (ELISA) system to achieve a rapid and sensitive immunoassay. A cellulose acetate filter modified with polyelectrolyte multilayer (PEM) was used as a solid substrate for three-dimensional antigen-antibody reactions. A dual electrophoresis process was used to induce directional migration and local condensation of antigens and antibodies at the solid substrate, avoiding the long diffusion times associated with antigen-antibody reactions in conventional ELISAs. The electrophoretic forces drove two steps in the ELISA process, namely the adsorption of antigen, and secondary antibody-labelled polystyrene nanoparticles (NP-Ab). The total time needed for dual electrophoresis-driven detection was just 4 min, nearly 2 h faster than a conventional ELISA system. Moreover, the rapid NP-Ab electrophoresis system simultaneously achieved amplification of the specific signal and a reduction in noise, leading to a more sensitive NP-Ab immunoassay with a limit of detection (LOD) of 130 fM, and wide range of detectable concentrations from 0.13 to 130 pM. These results suggest that the combination of dual electrophoresis detection and NP-Ab signal amplification has great potential for future immunoassay systems.
Collapse
Affiliation(s)
- Fangfang Zhang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Junjie Ma
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Junji Watanabe
- Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501, Japan
| | - Jinlong Tang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huiyu Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Heyun Shen
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
15
|
Moon JM, Kim DM, Kim MH, Han JY, Jung DK, Shim YB. A disposable amperometric dual-sensor for the detection of hemoglobin and glycated hemoglobin in a finger prick blood sample. Biosens Bioelectron 2016; 91:128-135. [PMID: 28006679 DOI: 10.1016/j.bios.2016.12.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022]
Abstract
A disposable microfluidic amperometric dual-sensor was developed for the detection of glycated hemoglobin (HbA1C) and total hemoglobin (Hb), separately, in a finger prick blood sample. The accurate level of total Hb was determined through the measurements of the cathodic currents of total Hb catalyzed by a toluidine blue O (TBO)-modified working electrode. Subsequently, after washing unbound Hb in the fluidic channel of dual sensor with PBS, the cathodic current by only HbA1C captured on aptamer was monitored using another aptamer/TBO-modified working electrode in the channel. To modify the sensor probe, poly(2,2´:5´,5″-terthiophene-3´-p-benzoic acid) and a multi-wall carbon nanotube (MWCNT) composite layer (pTBA@MWCNT) was electropolymerized on a screen printed carbon electrode (SPCE), followed by immobilization of TBO for the total Hb probe and aptamer/TBO for the HbA1C probe, respectively. The characterization of each sensor surface was performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), quartz crystal microbalance (QCM), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The experimental conditions affecting the analytical signal were optimized in terms of the amount of TBO, pH, temperature, binding time, applied potential, and the content ratio of monomer and MWCNT. The dynamic ranges of Hb and HbA1C were from 0.1 to 10µM and from 0.006 to 0.74µM, with detection limits of 82(±4.2)nM and 3.7(±0.8)nM, respectively. The reliability of the proposed microfluidic dual-sensor for a finger prick blood sample (1µL) was evaluated in parallel with a conventional method (HPLC) for point-of-care analysis.
Collapse
Affiliation(s)
- Jong-Min Moon
- Department of Chemistry, Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea
| | - Dong-Min Kim
- Department of Chemistry, Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea
| | - Moo Hyun Kim
- Department of Biomedical Engineering, Dong-A University, College of Medicine, Busan 602-714, South Korea
| | - Jin-Yeong Han
- Department of Biomedical Engineering, Dong-A University, College of Medicine, Busan 602-714, South Korea
| | - Dong-Keun Jung
- Department of Biomedical Engineering, Dong-A University, College of Medicine, Busan 602-714, South Korea
| | - Yoon-Bo Shim
- Department of Chemistry, Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
16
|
Zhong R, Xie H, Kong F, Zhang Q, Jahan S, Xiao H, Fan L, Cao C. Enzyme catalysis-electrophoresis titration for multiplex enzymatic assay via moving reaction boundary chip. LAB ON A CHIP 2016; 16:3538-3547. [PMID: 27464600 DOI: 10.1039/c6lc00757k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, we developed the concept of enzyme catalysis-electrophoresis titration (EC-ET) under ideal conditions, the theory of EC-ET for multiplex enzymatic assay (MEA), and a related method based on a moving reaction boundary (MRB) chip with a collateral channel and cell phone imaging. As a proof of principle, the model enzymes horseradish peroxidase (HRP), laccase and myeloperoxidase (MPO) were chosen for the tests of the EC-ET model. The experiments revealed that the EC-ET model could be achieved via coupling EC with ET within a MRB chip; particularly the MEA analyses of catalysis rate, maximum rate, activity, Km and Kcat could be conducted via a single run of the EC-ET chip, systemically demonstrating the validity of the EC-ET theory. Moreover, the developed method had these merits: (i) two orders of magnitude higher sensitivity than a fluorescence microplate reader, (ii) simplicity and low cost, and (iii) fairly rapid (30 min incubation, 20 s imaging) analysis, fair stability (<5.0% RSD) and accuracy, thus validating the EC-ET method. Finally, the developed EC-ET method was used for the clinical assay of MPO activity in blood samples; the values of MPO activity detected via the EC-ET chip were in agreement with those obtained by a traditional fluorescence microplate reader, indicating the applicability of the EC-ET method. The work opens a window for the development of enzymatic research, enzyme assay, immunoassay, and point-of-care testing as well as titration, one of the oldest methods of analysis, based on a simple chip.
Collapse
Affiliation(s)
- Ran Zhong
- Laboratory of Bioseparation and Analytical Biochemistry, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. ,
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang LX, Cao YR, Xiao H, Liu XP, Liu SR, Meng QH, Fan LY, Cao CX. Leverage principle of retardation signal in titration of double protein via chip moving reaction boundary electrophoresis. Biosens Bioelectron 2015; 77:284-91. [PMID: 26414025 DOI: 10.1016/j.bios.2015.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 12/17/2022]
Abstract
In the present work we address a simple, rapid and quantitative analytical method for detection of different proteins present in biological samples. For this, we proposed the model of titration of double protein (TDP) and its relevant leverage theory relied on the retardation signal of chip moving reaction boundary electrophoresis (MRBE). The leverage principle showed that the product of the first protein content and its absolute retardation signal is equal to that of the second protein content and its absolute one. To manifest the model, we achieved theoretical self-evidence for the demonstration of the leverage principle at first. Then relevant experiments were conducted on the TDP-MRBE chip. The results revealed that (i) there was a leverage principle of retardation signal within the TDP of two pure proteins, and (ii) a lever also existed within these two complex protein samples, evidently demonstrating the validity of TDP model and leverage theory in MRBE chip. It was also showed that the proposed technique could provide a rapid and simple quantitative analysis of two protein samples in a mixture. Finally, we successfully applied the developed technique for the quantification of soymilk in adulterated infant formula. The TDP-MRBE opens up a new window for the detection of adulteration ratio of the poor food (milk) in blended high quality one.
Collapse
Affiliation(s)
- Liu-Xia Zhang
- Laboratory of Analytical Biochemistry and Bioseparation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Ren Cao
- Laboratory of Analytical Biochemistry and Bioseparation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Xiao
- Laboratory of Analytical Biochemistry and Bioseparation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Ping Liu
- Laboratory of Analytical Biochemistry and Bioseparation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shao-Rong Liu
- Department of Chemistry and Biochemistry, Oklahoma University, Norman, OK 73019, USA
| | - Qing-Hua Meng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liu-Yin Fan
- Laboratory of Analytical Biochemistry and Bioseparation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Chemistry and Biochemistry, Oklahoma University, Norman, OK 73019, USA.
| | - Cheng-Xi Cao
- Laboratory of Analytical Biochemistry and Bioseparation, State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Zhai W, Sun X, James TD, Fossey JS. Boronic Acid-Based Carbohydrate Sensing. Chem Asian J 2015; 10:1836-48. [DOI: 10.1002/asia.201500444] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Wenlei Zhai
- School of Chemistry; University of Birmingham; Birmingham, West Midlands B15 2TT UK
| | - Xiaolong Sun
- Department of Chemistry; University of Bath; Bath BA2 7AY UK
| | - Tony D. James
- Department of Chemistry; University of Bath; Bath BA2 7AY UK
| | - John S. Fossey
- School of Chemistry; University of Birmingham; Birmingham, West Midlands B15 2TT UK
| |
Collapse
|
19
|
Affiliation(s)
- Xiaolong Sun
- Department
of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
20
|
Guo CG, Shang Z, Yan J, Li S, Li GQ, Liu RZ, Qing Y, Fan LY, Xiao H, Cao CX. A tunable isoelectric focusing via moving reaction boundary for two-dimensional gel electrophoresis and proteomics. Talanta 2015; 137:197-203. [PMID: 25770625 DOI: 10.1016/j.talanta.2015.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 11/19/2022]
Abstract
Routine native immobilized pH gradient isoelectric focusing (IPG-IEF) and two-dimensional gel electrophoresis (2DE) are still suffering from unfortunate reproducibility, poor resolution (caused by protein precipitation) and instability in characterization of intact protein isoforms and posttranslational modifications. Based on the concept of moving reaction boundary (MRB), we firstly proposed a tunable non-IPG-IEF system to address these issues. By choosing proper pairs of catholyte and anolyte, we could achieve desired cathodic and anodic migrating pH gradients in non-IPG-IEF system, effectively eliminating protein precipitation and uncertainty of quantitation existing in routine IEF and 2DE, and enhancing the resolution and sensitivity of IEF. Then, an adjustable 2DE system was developed by combining non-IPG-IEF with polyacrylamide gel electrophoresis (PAGE). The improved 2DE was evaluated by testing model proteins and colon cancer cell lysates. The experiments revealed that (i) a tunable pH gradient could be designed via MRB; (ii) up to 1.65 fold improvement of resolution was achieved via non-IPG-IEF; (iii) the sensitivity of developed techniques was increased up to 2.7 folds; and (iv) up to about 16.4% more protein spots could be observed via the adjustable 2DE as compared with routine one. The developed techniques might contribute to complex proteome research, especially for screening of biological marker and analysis of extreme acidic/alkaline proteins.
Collapse
Affiliation(s)
- Chen-Gang Guo
- Laboratory of Bioseparation and Analytical Biochemistry, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi Shang
- Laboratory of Bioseparation and Analytical Biochemistry, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Yan
- Laboratory of Bioseparation and Analytical Biochemistry, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Si Li
- Laboratory of Bioseparation and Analytical Biochemistry, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guo-Qing Li
- Laboratory of Bioseparation and Analytical Biochemistry, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong-Zhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liu-Yin Fan
- Laboratory of Bioseparation and Analytical Biochemistry, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Xiao
- Laboratory of Bioseparation and Analytical Biochemistry, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Cheng-Xi Cao
- Laboratory of Bioseparation and Analytical Biochemistry, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
21
|
Zhou Y, Dong H, Liu L, Hao Y, Chang Z, Xu M. Fabrication of electrochemical interface based on boronic acid-modified pyrroloquinoline quinine/reduced graphene oxide composites for voltammetric determination of glycated hemoglobin. Biosens Bioelectron 2015; 64:442-8. [DOI: 10.1016/j.bios.2014.09.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/09/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
|
22
|
Lacina K, Skládal P, James TD. Boronic acids for sensing and other applications - a mini-review of papers published in 2013. Chem Cent J 2014; 8:60. [PMID: 25371705 PMCID: PMC4218984 DOI: 10.1186/s13065-014-0060-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/06/2014] [Indexed: 12/20/2022] Open
Abstract
Boronic acids are increasingly utilised in diverse areas of research. Including the interactions of boronic acids with diols and strong Lewis bases as fluoride or cyanide anions, which leads to their utility in various sensing applications. The sensing applications can be homogeneous assays or heterogeneous detection. Detection can be at the interface of the sensing material or within the bulk sample. Furthermore, the key interaction of boronic acids with diols allows utilisation in various areas ranging from biological labelling, protein manipulation and modification, separation and the development of therapeutics. All the above uses and applications are covered by this mini-review of papers published during 2013.
Collapse
Affiliation(s)
- Karel Lacina
- />CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- />Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY UK
| | - Petr Skládal
- />CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- />Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Tony D James
- />Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY UK
| |
Collapse
|
23
|
Wang H, Shi Y, Yan J, Dong J, Li S, Xiao H, Xie H, Fan LY, Cao CX. Retardation Signal for Fluorescent Determination of Total Protein Content via Rapid and Sensitive Chip Moving Reaction Boundary Electrophoretic Titration. Anal Chem 2014; 86:2888-94. [DOI: 10.1021/ac403963f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Houyu Wang
- Laboratory of
Bioseparation and Analytical Biochemistry, State Key Laboratory of
Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongting Shi
- Laboratory of
Bioseparation and Analytical Biochemistry, State Key Laboratory of
Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Yan
- Institute of Refrigeration
and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingyu Dong
- School
of Chemistry and Molecule Engineering, East China University of Science and Technology, Shanghai 200234, China
| | - Si Li
- Laboratory of
Bioseparation and Analytical Biochemistry, State Key Laboratory of
Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Xiao
- Laboratory of
Bioseparation and Analytical Biochemistry, State Key Laboratory of
Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School
of Chemistry and Chemical Engieering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyang Xie
- Laboratory of
Bioseparation and Analytical Biochemistry, State Key Laboratory of
Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School
of Chemistry and Chemical Engieering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liu-Yin Fan
- Laboratory of
Bioseparation and Analytical Biochemistry, State Key Laboratory of
Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School
of Chemistry and Chemical Engieering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng-Xi Cao
- Laboratory of
Bioseparation and Analytical Biochemistry, State Key Laboratory of
Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School
of Chemistry and Chemical Engieering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|