1
|
Chaudhari P, Chau LK, Ngo LT, Chang TC, Chen YL, Huang KT. Competitive Assay for the Ultrasensitive Detection of Organophosphate Pesticides Based on a Fiber-Optic Particle Plasmon Resonance Biosensor and an Acetylcholinesterase Binding Peptide. Anal Chem 2023; 95:14600-14607. [PMID: 37726976 DOI: 10.1021/acs.analchem.3c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
An acetylcholinesterase (AChE) binding-based biosensor was developed for the ultrasensitive detection of organophosphate (OP) pesticides. The biosensor integrates the technique based on fiber-optic particle plasmon resonance detection and a synthetic AChE binding peptide conjugated with gold nanoparticles on the optical fiber surface via an AChE competitive binding assay. The OP pesticides present in the solution hinder the binding of AChE to the peptide on the biosensor by competing for the binding sites present in AChE. The limit of detection obtained for parathion using this method was observed to be 0.66 ppt (2.3 pM). This method shows a wide linear dynamic range of 6 orders. Furthermore, the use of the AChE binding peptide in the biosensor can better discriminate OPs against carbamates by using only a single biosensor. The practical application of this method was tested using spiked samples, which yielded good recovery and reproducibility. The spiked sample required minimal pretreatment before analysis; hence, this biosensor may also be used in the field.
Collapse
Affiliation(s)
- Pallavi Chaudhari
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621301, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Loan Thi Ngo
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Ting-Chou Chang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Yi-Ling Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Kuang-Tse Huang
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301, Taiwan
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 621301, Taiwan
| |
Collapse
|
2
|
Chaudhry M, Lim DK, Kang JW, Yaqoob Z, So P, Bhopal MF, Wang M, Qamar R, Bhatti AS. Electrochemically driven optical and SERS immunosensor for the detection of a therapeutic cardiac drug. RSC Adv 2022; 12:2901-2913. [PMID: 35425323 PMCID: PMC8979105 DOI: 10.1039/d1ra07680a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases pose a serious health risk and have a high mortality rate of 31% worldwide. Digoxin is the most commonly prescribed pharmaceutical preparation to cardiovascular patients particularly in developing countries. The effectiveness of the drug critically depends on its presence in the therapeutic range (0.8–2.0 ng mL−1) in the patient's serum. We fabricated immunoassay chips based on QD photoluminescence (QDs-ELISA) and AuNP Surface Enhanced Raman Scattering (SERS-ELISA) phenomena to detect digoxin in the therapeutic range. Digoxin levels were monitored using digoxin antibodies conjugated to QDs and AuNPs employing the sandwich immunoassay format in both the chips. The limit of detection (LOD) achieved through QDs-ELISA and SERS-ELISA was 0.5 ng mL−1 and 0.4 ng mL−1, respectively. It is demonstrated that the sensitivity of QDs-ELISA was dependent on the charge transfer mechanism from the QDs to the antibody through ionic media, which was further explored using electrochemical impedance spectroscopy. We demonstrate that QDs-ELISA was relatively easy to fabricate compared to SERS-ELISA. The current study envisages replacement of conventional methodologies with small immunoassay chips using QDs and/or SERS-based tags with fast turnaround detection time as compared to conventional ELISA. Cardiovascular diseases pose a serious health risk and have a high mortality rate of 31% worldwide.![]()
Collapse
Affiliation(s)
- Madeeha Chaudhry
- Centre for Micro and Nano Devices, Department of Physics, COMSATS University Islamabad, Tarlai Kalan, Islamabad 45550, Pakistan
- Department of Biosciences, International Islamic University, H-10, Islamabad Capital Territory, 44000 Islamabad, Pakistan
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Muhammad Fahad Bhopal
- Centre for Micro and Nano Devices, Department of Physics, COMSATS University Islamabad, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Minqiang Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Raheel Qamar
- Science &Technology Sector, ICESCO, Rabat, Morocco
| | - Arshad Saleem Bhatti
- Centre for Micro and Nano Devices, Department of Physics, COMSATS University Islamabad, Tarlai Kalan, Islamabad 45550, Pakistan
- Virtual University of Pakistan, M.A Jinnah Campus, Lahore, Pakistan
| |
Collapse
|
3
|
Kırali K, Brimo N, Serdaroğlu DÇ. Antibody immobilization techniques in mass sensitive immunosensor: enhanced sensitivity through limited mass load. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411016999201120090551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Biosensors are analytical devices that include a sample-delivery approach between a
biological recognition element and a transducer required to convert the physicochemical change produced from the
interaction of biological molecules-receptor interaction into signal. The immunosensor is a special type of biosensors that
includes an antibody as a biorecognition element to detect analyte as antigens. In mass-sensitive sensors, antigen-antibody
interactions can be specified by measuring the frequency change and most commonly knowns are surface acoustic wave,
bulk acoustic wave, quartz crystal microbalance and microcantilevers.
Methods:
Different methods for antibody immobilization including functionalization of the transducer surface with
specific groups have been reported for antibody immobilization. This stage affects the limit of detection and overall
performance. In this review, perspectives on immobilization strategies of mass sensitive immunosensors according to
transducer types will be presented. The choice of immobilization methods and their impact on performance in terms of
capture molecule loading, orientation and signal improvement is will also be discussed.
Results:
One of the most critical point during configuration of the biorecognition layer is to improve the sensitivity.
Therefore, we initially focused on comparisons of the antibody immobilization strategies in the biorecognition layer in
terms of mass load level and high sensitivity.
Conclusion:
The lack of significant data on the mass accumulations up to the functionalization and antibody
immobilization steps, which are the basis of immusensor production, has been identified. However, mass sensitive
immunosensors have the potential to become more common and effective analytical devices for many application areas.
Collapse
Affiliation(s)
- Kübra Kırali
- Biomedical Engineering Department, Başkent University, Ankara, Turkey
| | - Nura Brimo
- Biomedical Engineering Department, Başkent University, Ankara, Turkey
| | | |
Collapse
|
4
|
Prakash J, Parveen A, Mishra YK, Kaushik A. Nanotechnology-assisted liquid crystals-based biosensors: Towards fundamental to advanced applications. Biosens Bioelectron 2020; 168:112562. [DOI: 10.1016/j.bios.2020.112562] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
|
5
|
Ventura BD, Cennamo M, Minopoli A, Campanile R, Censi SB, Terracciano D, Portella G, Velotta R. Colorimetric Test for Fast Detection of SARS-CoV-2 in Nasal and Throat Swabs. ACS Sens 2020; 5:3043-3048. [PMID: 32989986 PMCID: PMC7534800 DOI: 10.1021/acssensors.0c01742] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mass testing is fundamental to face the pandemic caused by the coronavirus SARS-CoV-2 discovered at the end of 2019. To this aim, it is necessary to establish reliable, fast, and cheap tools to detect viral particles in biological material so to identify the people capable of spreading the infection. We demonstrate that a colorimetric biosensor based on gold nanoparticle (AuNP) interaction induced by SARS-CoV-2 lends itself as an outstanding tool for detecting viral particles in nasal and throat swabs. The extinction spectrum of a colloidal solution of multiple viral-target gold nanoparticles-AuNPs functionalized with antibodies targeting three surface proteins of SARS-CoV-2 (spike, envelope, and membrane)-is red-shifted in few minutes when mixed with a solution containing the viral particle. The optical density of the mixed solution measured at 560 nm was compared to the threshold cycle (Ct) of a real-time PCR (gold standard for detecting the presence of viruses) finding that the colorimetric method is able to detect very low viral load with a detection limit approaching that of the real-time PCR. Since the method is sensitive to the infecting viral particle rather than to its RNA, the achievements reported here open a new perspective not only in the context of the current and possible future pandemics, but also in microbiology, as the biosensor proves itself to be a powerful though simple tool for measuring the viral particle concentration.
Collapse
Affiliation(s)
- Bartolomeo Della Ventura
- Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Via Cintia, 26 Ed. 6, 80126 Napoli, Italy
| | - Michele Cennamo
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, Via Pansini, 5, 80131 Napoli, Italy
| | - Antonio Minopoli
- Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Via Cintia, 26 Ed. 6, 80126 Napoli, Italy
| | - Raffaele Campanile
- Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Via Cintia, 26 Ed. 6, 80126 Napoli, Italy
| | | | - Daniela Terracciano
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, Via Pansini, 5, 80131 Napoli, Italy
| | - Giuseppe Portella
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, Via Pansini, 5, 80131 Napoli, Italy
| | - Raffaele Velotta
- Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Via Cintia, 26 Ed. 6, 80126 Napoli, Italy
| |
Collapse
|
6
|
Ventura BD, Cennamo M, Minopoli A, Campanile R, Censi SB, Terracciano D, Portella G, Velotta R. Colorimetric Test for Fast Detection of SARS-CoV-2 in Nasal and Throat Swabs. ACS Sens 2020. [PMID: 32989986 DOI: 10.1021/acssensors.0c0174210.1021/acssensors.0c01742.s001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Mass testing is fundamental to face the pandemic caused by the coronavirus SARS-CoV-2 discovered at the end of 2019. To this aim, it is necessary to establish reliable, fast, and cheap tools to detect viral particles in biological material so to identify the people capable of spreading the infection. We demonstrate that a colorimetric biosensor based on gold nanoparticle (AuNP) interaction induced by SARS-CoV-2 lends itself as an outstanding tool for detecting viral particles in nasal and throat swabs. The extinction spectrum of a colloidal solution of multiple viral-target gold nanoparticles-AuNPs functionalized with antibodies targeting three surface proteins of SARS-CoV-2 (spike, envelope, and membrane)-is red-shifted in few minutes when mixed with a solution containing the viral particle. The optical density of the mixed solution measured at 560 nm was compared to the threshold cycle (Ct) of a real-time PCR (gold standard for detecting the presence of viruses) finding that the colorimetric method is able to detect very low viral load with a detection limit approaching that of the real-time PCR. Since the method is sensitive to the infecting viral particle rather than to its RNA, the achievements reported here open a new perspective not only in the context of the current and possible future pandemics, but also in microbiology, as the biosensor proves itself to be a powerful though simple tool for measuring the viral particle concentration.
Collapse
Affiliation(s)
- Bartolomeo Della Ventura
- Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Via Cintia, 26 Ed. 6, 80126 Napoli, Italy
| | - Michele Cennamo
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, Via Pansini, 5, 80131 Napoli, Italy
| | - Antonio Minopoli
- Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Via Cintia, 26 Ed. 6, 80126 Napoli, Italy
| | - Raffaele Campanile
- Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Via Cintia, 26 Ed. 6, 80126 Napoli, Italy
| | | | - Daniela Terracciano
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, Via Pansini, 5, 80131 Napoli, Italy
| | - Giuseppe Portella
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, Via Pansini, 5, 80131 Napoli, Italy
| | - Raffaele Velotta
- Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Via Cintia, 26 Ed. 6, 80126 Napoli, Italy
| |
Collapse
|
7
|
Funari R, Matsumoto A, de Bruyn JR, Shen AQ. Rheology of the Electric Double Layer in Electrolyte Solutions. Anal Chem 2020; 92:8244-8253. [DOI: 10.1021/acs.analchem.0c00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Riccardo Funari
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Atsushi Matsumoto
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - John R. de Bruyn
- Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
8
|
Rizzato S, Leo A, Monteduro AG, Chiriacò MS, Primiceri E, Sirsi F, Milone A, Maruccio G. Advances in the Development of Innovative Sensor Platforms for Field Analysis. MICROMACHINES 2020; 11:E491. [PMID: 32403362 PMCID: PMC7281440 DOI: 10.3390/mi11050491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
Abstract
Sustainable growth, environmental preservation, and improvement of life quality are strategic fields of worldwide interest and cornerstones of international policies. Humanity health and prosperity are closely related to our present choices on sustainable development. The main sources of pollution concern industry, including mining, chemical companies, and refineries, wastewater treatment; and consumers themselves. In order to guide and evaluate the effects of environmental policies, diffuse monitoring campaigns and detailed (big) data analyses are needed. In this respect, the development and availability of innovative sensor platforms for field analysis and remote sensing are of crucial relevance. In this review, we provide an overview of the area, analyzing the major needs, available technologies, novel approaches, and perspectives. Among environmental pollutants that threaten the biosphere, we focus on inorganic and organic contaminants, which affect air and water quality. We describe the technologies for their assessment in the environment and then draw some conclusions and mention future perspectives opened by the integration of sensing technologies with robotics and the Internet of Things. Without the ambition to be exhaustive in such a rapidly growing field, this review is intended as a support for researchers and stakeholders looking for current, state-of-the-art, and key enabling technologies for environmental monitoring.
Collapse
Affiliation(s)
- Silvia Rizzato
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (A.G.M.); (F.S.); (A.M.); (G.M.)
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Angelo Leo
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (A.G.M.); (F.S.); (A.M.); (G.M.)
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Anna Grazia Monteduro
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (A.G.M.); (F.S.); (A.M.); (G.M.)
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Maria Serena Chiriacò
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Elisabetta Primiceri
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Fausto Sirsi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (A.G.M.); (F.S.); (A.M.); (G.M.)
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Angelo Milone
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (A.G.M.); (F.S.); (A.M.); (G.M.)
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Giuseppe Maruccio
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (A.G.M.); (F.S.); (A.M.); (G.M.)
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| |
Collapse
|
9
|
Della Ventura B, Banchelli M, Funari R, Illiano A, De Angelis M, Taroni P, Amoresano A, Matteini P, Velotta R. Biosensor surface functionalization by a simple photochemical immobilization of antibodies: experimental characterization by mass spectrometry and surface enhanced Raman spectroscopy. Analyst 2020; 144:6871-6880. [PMID: 31686068 DOI: 10.1039/c9an00443b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Surface functionalization is a key step in biosensing since it is the basis of an effective analyte recognition. Among all the bioreceptors, antibodies (Abs) play a key role thanks to their superior specificity, although the available immobilization strategies suffer from several drawbacks. When gold is the interacting surface, the recently introduced Photochemical Immobilization Technique (PIT) has been shown to be a quick, easy-to-use and very effective method to tether Abs oriented upright by means of thiols produced via tryptophan mediated disulphide bridge reduction. Although the molecular mechanism of this process is quite well identified, the detailed morphology of the immobilized antibodies is still elusive due to inherent difficulties related to the microscopy imaging of Abs. The combination of Mass Spectrometry, Surface-Enhanced Raman Spectroscopy and Ellman's assay demonstrates that Abs irradiated under the conditions in which PIT is realized show only two effective disulphide bridges available for binding. They are located in the constant region of the immunoglobulin light chain so that the most likely position Ab assumes is side-on, i.e. with one Fab (i.e. the antigen binding portion of the antibody) exposed to the solution. This is not a limitation of the recognition efficiency in view of the intrinsic flexibility of the Ab structure, which makes the free Fab able to sway in the solution, a feature of great importance in many biosensing applications.
Collapse
Affiliation(s)
- Bartolomeo Della Ventura
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 - Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ripa R, Shen AQ, Funari R. Detecting Escherichia coli Biofilm Development Stages on Gold and Titanium by Quartz Crystal Microbalance. ACS OMEGA 2020; 5:2295-2302. [PMID: 32064391 PMCID: PMC7017401 DOI: 10.1021/acsomega.9b03540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/26/2019] [Indexed: 05/03/2023]
Abstract
Bacterial biofilms are responsible for persistent infections and biofouling, raising serious concerns in both medical and industrial processes. These motivations underpin the need to develop methodologies to study the complex biological structures of biofilms and prevent their formation on medical implants, tools, and industrial apparatuses. Here, we report the detailed comparison of Escherichia coli biofilm development stages (adhesion, maturation, and dispersion) on gold and titanium surfaces by monitoring the changes in both frequency and dissipation of a quartz crystal microbalance (QCM) device, a cheap and reliable microgravimetric sensor which allows the real-time and label-free characterization of various stages of biofilm development. Although gold is the most common electrode material used for QCM sensors, the titanium electrode is also readily available for QCM sensors; thus, QCM sensors with different metal electrodes serve as a simple platform to probe how pathogens interact with different metal substrates. The QCM outcomes are further confirmed by atomic force microscopy and crystal violet staining, thus validating the effectiveness of this surface sensitive sensor for microbial biofilm research. Moreover, because QCM technology can easily modify the substrate types and coatings, QCM sensors also provide well-controlled experimental conditions to study antimicrobial surface treatments and eradication procedures, even on mature biofilms.
Collapse
Affiliation(s)
- Rosa Ripa
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Riccardo Funari
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
11
|
Cimafonte M, Fulgione A, Gaglione R, Papaianni M, Capparelli R, Arciello A, Bolletti Censi S, Borriello G, Velotta R, Della Ventura B. Screen Printed Based Impedimetric Immunosensor for Rapid Detection of Escherichia coli in Drinking Water. SENSORS 2020; 20:s20010274. [PMID: 31947810 PMCID: PMC6982893 DOI: 10.3390/s20010274] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Abstract
The development of a simple and low cost electrochemical impedance immunosensor based on screen printed gold electrode for rapid detection of Escherichia coli in water is reported. The immunosensor is fabricated by immobilizing anti-E. coli antibodies onto a gold surface in a covalent way by the photochemical immobilization technique, a simple procedure able to bind antibodies upright onto gold surfaces. Impedance spectra are recorded in 0.01 M phosphate buffer solution (PBS) containing 10 mM Fe(CN)63−/Fe(CN)64− as redox probe. The Nyquist plots can be modelled with a modified Randles circuit, identifying the charge transfer resistance Rct as the relevant parameter after the immobilization of antibodies, the blocking with BSA and the binding of E. coli. The introduction of a standard amplification procedure leads to a significant enhancement of the impedance increase, which allows one to measure E. coli in drinking water with a limit of detection of 3 × 101 CFU mL−1 while preserving the rapidity of the method that requires only 1 h to provide a “yes/no” response. Additionally, by applying the Langmuir adsorption model, we are able to describe the change of Rct in terms of the “effective” electrode, which is modified by the detection of the analyte whose microscopic conducting properties can be quantified.
Collapse
Affiliation(s)
- Martina Cimafonte
- Department of Physics “Ettore Pancini”, University of Naples “Federico II”, Via Cinthia, 26, 80126 Naples, Italy; (M.C.); (R.V.)
| | - Andrea Fulgione
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055 Portici Naples, Italy; (A.F.); (G.B.)
- Department of Agriculture, University of Naples “Federico II”, Via Università, 133, 80055 Portici Naples, Italy; (M.P.); (R.C.)
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia, 26, 80126 Naples, Italy; (R.G.); (A.A.)
| | - Marina Papaianni
- Department of Agriculture, University of Naples “Federico II”, Via Università, 133, 80055 Portici Naples, Italy; (M.P.); (R.C.)
| | - Rosanna Capparelli
- Department of Agriculture, University of Naples “Federico II”, Via Università, 133, 80055 Portici Naples, Italy; (M.P.); (R.C.)
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia, 26, 80126 Naples, Italy; (R.G.); (A.A.)
| | | | - Giorgia Borriello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055 Portici Naples, Italy; (A.F.); (G.B.)
| | - Raffaele Velotta
- Department of Physics “Ettore Pancini”, University of Naples “Federico II”, Via Cinthia, 26, 80126 Naples, Italy; (M.C.); (R.V.)
| | - Bartolomeo Della Ventura
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
- Correspondence:
| |
Collapse
|
12
|
Funari R, Ripa R, Söderström B, Skoglund U, Shen AQ. Detecting Gold Biomineralization by Delftia acidovorans Biofilms on a Quartz Crystal Microbalance. ACS Sens 2019; 4:3023-3033. [PMID: 31631654 DOI: 10.1021/acssensors.9b01580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The extensive use of gold in sensing, diagnostics, and electronics has led to major concerns in solid waste management since gold and other heavy metals are nonbiodegradable and can easily accumulate in the environment. Moreover, gold ions are extremely reactive and potentially harmful for humans. Thus, there is an urgent need to develop reliable methodologies to detect and possibly neutralize ionic gold in aqueous solutions and industrial wastes. In this work, by using complementary measurement techniques such as quartz crystal microbalance (QCM), atomic force microscopy, crystal violet staining, and optical microscopy, we investigate a promising biologically induced gold biomineralization process accomplished by biofilms of bacterium Delftia acidovorans. When stressed by Au3+ ions, D. acidovorans is able to neutralize toxic soluble gold by excreting a nonribosomal peptide, which forms extracellular gold nanonuggets via complexation with metal ions. Specifically, QCM, a surface-sensitive transducer, is employed to quantify the production of these gold complexes directly on the D. acidovorans biofilm in real time. Detailed kinetics obtained by QCM captures the condition for maximized biomineralization yield and offers new insights underlying the biomineralization process. To the best of our knowledge, this is the first study providing an extensive characterization of the gold biomineralization process by a model bacterial biofilm. We also demonstrate QCM as a cheap, user-friendly sensing platform and alternative to standard analytical techniques for studies requiring high-resolution quantitative details, which offers promising opportunities in heavy-metal sensing, gold recovery, and industrial waste treatment.
Collapse
|
13
|
Possibilities and Prospects of Immunosensors for a Highly Sensitive Pesticide Detection in Vegetables and Fruits: a Review. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01630-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Pundir C, Malik A, Preety. Bio-sensing of organophosphorus pesticides: A review. Biosens Bioelectron 2019; 140:111348. [DOI: 10.1016/j.bios.2019.111348] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
|
15
|
What are the Main Sensor Methods for Quantifying Pesticides in Agricultural Activities? A Review. Molecules 2019; 24:molecules24142659. [PMID: 31340442 PMCID: PMC6680408 DOI: 10.3390/molecules24142659] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022] Open
Abstract
In recent years, there has been an increase in pesticide use to improve crop production due to the growth of agricultural activities. Consequently, various pesticides have been present in the environment for an extended period of time. This review presents a general description of recent advances in the development of methods for the quantification of pesticides used in agricultural activities. Current advances focus on improving sensitivity and selectivity through the use of nanomaterials in both sensor assemblies and new biosensors. In this study, we summarize the electrochemical, optical, nano-colorimetric, piezoelectric, chemo-luminescent and fluorescent techniques related to the determination of agricultural pesticides. A brief description of each method and its applications, detection limit, purpose—which is to efficiently determine pesticides—cost and precision are considered. The main crops that are assessed in this study are bananas, although other fruits and vegetables contaminated with pesticides are also mentioned. While many studies have assessed biosensors for the determination of pesticides, the research in this area needs to be expanded to allow for a balance between agricultural activities and environmental protection.
Collapse
|
16
|
Rapid quantification of two chemical nerve agent metabolites in serum. Biosens Bioelectron 2019; 131:119-127. [PMID: 30826646 DOI: 10.1016/j.bios.2019.01.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Organophosphorus compounds (OPs) continue to represent a significant chemical threat to humans due to exposures from their use as weapons, their potential storage hazards, and from their continued use agriculturally. Existing methods for detection include ELISA and mass spectrometry. The new approach presented here provides an innovative first step toward a portable OP quantification method that surmounts conventional limitations involving sensitivity, selectivity, complexity, and portability. DNA affinity probes, or aptamers, represent an emerging technology that, when combined with a mix-and-read, free-solution assay (FSA) and a compensated interferometer (CI) can provide a novel alternative to existing OP nerve agent (OPNA) quantification methods. Here it is shown that FSA can be used to rapidly screen prospective aptamers in the biological matrix of interest, allowing the identification of a 'best-in-class' probe. It is also shown that combining aptamers with FSA-CI enables quantification of the OPNA metabolites, Sarin (NATO designation "G-series, B", or GB) and Venomous Agent X (VX) acids, rapidly with high selectivity at detection limits of sub-10 pg/mL in 25% serum (by volume in PBS). These results suggest there is potential to directly impact diagnostic specificity and sensitivity of emergency response testing methods by both simplifying sample preparation procedures and making a benchtop reader available for OPNA metabolite quantification.
Collapse
|
17
|
Fulgione A, Cimafonte M, Della Ventura B, Iannaccone M, Ambrosino C, Capuano F, Proroga YTR, Velotta R, Capparelli R. QCM-based immunosensor for rapid detection of Salmonella Typhimurium in food. Sci Rep 2018; 8:16137. [PMID: 30382128 PMCID: PMC6208438 DOI: 10.1038/s41598-018-34285-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
Salmonella Typhimurium is one of the main causes of outbreaks and sporadic cases of human gastroenteritis. At present, the rapid detection of this pathogen is a major goal of biosensing technology applied to food safety. In fact, ISO standardized culture method takes up to ten days to provide a reliable response. In this paper, we describe a relatively simple protocol for detecting Salmonella Typhimurium in chicken meat based on a Quartz-Crystal Microbalance (QCM), which leads to a limit of detection (LOD) less than of 10° CFU/mL and requires a pre-enrichment step lasting only 2 h at 37 °C. The reliability of the proposed immunosensor has been demonstrated through the validation of the experimental results with ISO standardized culture method. The cost-effectiveness of the procedure and the rapidity of the QCM-based biosensor in providing the qualitative response make the analytical method described here suitable for applications in food inspection laboratory and throughout the chain production of food industry.
Collapse
Affiliation(s)
- Andrea Fulgione
- Department of Agriculture, University of Naples "Federico II", Portici (Naples), 80055, Italy
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Martina Cimafonte
- Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, 80126, Italy
| | - Bartolomeo Della Ventura
- Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, 80126, Italy.
| | - Marco Iannaccone
- Department of Agriculture, University of Naples "Federico II", Portici (Naples), 80055, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Federico Capuano
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici (Naples), 80055, Italy
| | - Yolande Thérèse Rose Proroga
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici (Naples), 80055, Italy
| | - Raffaele Velotta
- Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, 80126, Italy
| | - Rosanna Capparelli
- Department of Agriculture, University of Naples "Federico II", Portici (Naples), 80055, Italy.
| |
Collapse
|
18
|
Singha DK, Majee P, Mandal S, Mondal SK, Mahata P. Detection of Pesticides in Aqueous Medium and in Fruit Extracts Using a Three-Dimensional Metal–Organic Framework: Experimental and Computational Study. Inorg Chem 2018; 57:12155-12165. [PMID: 30221511 DOI: 10.1021/acs.inorgchem.8b01767] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Debal Kanti Singha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | - Prakash Majee
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | - Saurodeep Mandal
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | - Sudip Kumar Mondal
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | - Partha Mahata
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
19
|
Khatun MA, Hoque MA, Zhang Y, Lu T, Cui L, Zhou NY, Feng Y. Bacterial Consortium-Based Sensing System for Detecting Organophosphorus Pesticides. Anal Chem 2018; 90:10577-10584. [DOI: 10.1021/acs.analchem.8b02709] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Iarossi M, Schiattarella C, Rea I, De Stefano L, Fittipaldi R, Vecchione A, Velotta R, Ventura BD. Colorimetric Immunosensor by Aggregation of Photochemically Functionalized Gold Nanoparticles. ACS OMEGA 2018; 3:3805-3812. [PMID: 30023881 PMCID: PMC6044629 DOI: 10.1021/acsomega.8b00265] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/26/2018] [Indexed: 05/28/2023]
Abstract
A colorimetric immunosensor based on local surface plasmon resonance by gold nanoparticles is presented, and its application for the detection of human immunoglobulin G (IgG) is demonstrated. The color change of the colloidal solution is produced by nanoparticle aggregation, a process that can be tuned by the presence of the analyte once the nanoparticles are functionalized. In comparison to common functionalization techniques, the procedure described here is simpler, low-cost, and effective in binding antibodies upright on the gold surface. The dose-response curve is similar to that resulting in typical immunoassay platforms and is satisfactorily described by the proposed theoretical model. Human IgG at concentration levels of few hundreds of nanograms per milliliter can be detected by eyes within a few minutes, thereby making the colorimetric immunosensor proposed here a powerful tool in several areas, with urine test in medical diagnostics being the most immediate.
Collapse
Affiliation(s)
- Marzia Iarossi
- Department
of Physics “E. Pancini”, Università
di Napoli “Federico II”, Via Cintia, 26 Ed. 6, 80126 Napoli, Italy
| | - Chiara Schiattarella
- Department
of Physics “E. Pancini”, Università
di Napoli “Federico II”, Via Cintia, 26 Ed. 6, 80126 Napoli, Italy
- National
Research Council, Institute for Microelectronics and Microsystems,
Unit of Naples, Via P.
Castellino 111, 80131 Napoli, Italy
| | - Ilaria Rea
- National
Research Council, Institute for Microelectronics and Microsystems,
Unit of Naples, Via P.
Castellino 111, 80131 Napoli, Italy
| | - Luca De Stefano
- National
Research Council, Institute for Microelectronics and Microsystems,
Unit of Naples, Via P.
Castellino 111, 80131 Napoli, Italy
| | - Rosalba Fittipaldi
- National
Research Council, SPIN Institute, Unit of Salerno and Department of
Physics “E. R. Caianiello”, Università di Salerno, Via Ponte don Mellillo, 84084 Fisciano, Salerno, Italy
| | - Antonio Vecchione
- National
Research Council, SPIN Institute, Unit of Salerno and Department of
Physics “E. R. Caianiello”, Università di Salerno, Via Ponte don Mellillo, 84084 Fisciano, Salerno, Italy
| | - Raffaele Velotta
- Department
of Physics “E. Pancini”, Università
di Napoli “Federico II”, Via Cintia, 26 Ed. 6, 80126 Napoli, Italy
| | - Bartolomeo Della Ventura
- Department
of Physics “E. Pancini”, Università
di Napoli “Federico II”, Via Cintia, 26 Ed. 6, 80126 Napoli, Italy
| |
Collapse
|
21
|
Talan A, Mishra A, Eremin SA, Narang J, Kumar A, Gandhi S. Ultrasensitive electrochemical immuno-sensing platform based on gold nanoparticles triggering chlorpyrifos detection in fruits and vegetables. Biosens Bioelectron 2018; 105:14-21. [PMID: 29346076 DOI: 10.1016/j.bios.2018.01.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
Abstract
Chlorpyrifos (chl) is an organophosphate pesticide extensively used in agriculture and highly toxic for human health. Fluorine doped tin-oxide (FTO) based electrochemical nanosensor was developed for chlorpyrifos detection with gold nanoparticles (AuNPs) and anti-chlorpyrifos antibodies (chl-Ab). AuNPs provides high electrical conductivity and specific resistivity, thus increases the sensitivity of immunoassay. High electrical conductivity of AuNPs reveals that it promotes the redox reaction for better cyclic voltammetry. Based on the intrinsic conductive properties of FTO-AuNPs complex, chl-Ab was immobilized onto AuNPs surface. Under optimized conditions, the proposed FTO based nanosensor exhibited high sensitivity and stable response for the detection of chlorpyrifos, ranging from 1fM to 1µM with limit of detection (LOD) up to 10fM. The FTO-AuNPs sensor was successfully employed for the detection of chlorpyrifos in standard as well in real samples up to 10nM for apple and cabbage, 50nM for pomegranate. The proposed FTO-AuNPs nanosensor can be used as a quantitative tool for rapid, on-site detection of chlorpyrifos traces in real samples when miniaturized due to its excellent stability, sensitivity, and simplicity.
Collapse
Affiliation(s)
- Anita Talan
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, 201313, India
| | - Annu Mishra
- Amity Institute of Nanotechnology, Amity University, Sector-125, Noida, 201313, India
| | - Sergei A Eremin
- M.V. Lomonosov Moscow State University, Faculty of Chemistry, Department of Chemical Enzymology, Leninsky Gory 1, 119991 Moscow, Russia; A.N. Bach Institute of Biochemistry of the Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia
| | - Jagriti Narang
- Amity Institute of Nanotechnology, Amity University, Sector-125, Noida, 201313, India
| | - Ashok Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Sonu Gandhi
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, 201313, India.
| |
Collapse
|
22
|
Liu A, Anfossi L, Shen L, Li C, Wang X. Non-competitive immunoassay for low-molecular-weight contaminant detection in food, feed and agricultural products: A mini-review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Qi F, Lan Y, Meng Z, Yan C, Li S, Xue M, Wang Y, Qiu L, He X, Liu X. Acetylcholinesterase-functionalized two-dimensional photonic crystals for the detection of organophosphates. RSC Adv 2018; 8:29385-29391. [PMID: 35548014 PMCID: PMC9084495 DOI: 10.1039/c8ra04953j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/05/2018] [Indexed: 01/28/2023] Open
Abstract
AChE-modified 2D-PC was developed for the easy and visual detection of organophosphates.
Collapse
Affiliation(s)
- Fenglian Qi
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Yunhe Lan
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | | | | | - Min Xue
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Yifei Wang
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Lili Qiu
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Xuan He
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- China
| | - Xueyong Liu
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- China
| |
Collapse
|
24
|
Transformation from gold nanoclusters to plasmonic nanoparticles: A general strategy towards selective detection of organophosphorothioate pesticides. Biosens Bioelectron 2018; 99:274-280. [DOI: 10.1016/j.bios.2017.07.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/10/2017] [Accepted: 07/28/2017] [Indexed: 02/06/2023]
|
25
|
Liu X, Jiang H. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2805. [PMID: 29207528 PMCID: PMC5750678 DOI: 10.3390/s17122805] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China.
| | - Hui Jiang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
26
|
Flexible immunosensor for the detection of salivary α-amylase in body fluids. Talanta 2017; 174:52-58. [DOI: 10.1016/j.talanta.2017.05.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 02/03/2023]
|
27
|
Hashemi Goradel N, Mirzaei H, Sahebkar A, Poursadeghiyan M, Masoudifar A, Malekshahi ZV, Negahdari B. Biosensors for the Detection of Environmental and Urban Pollutions. J Cell Biochem 2017; 119:207-212. [PMID: 28383805 DOI: 10.1002/jcb.26030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 12/27/2022]
Abstract
Release of harmful pollutants such as heavy metals, pesticides, and pharmaceuticals to the environment is a global concern. Rapid and reproducible detection of these pollutants is thus necessary. Biosensors are the sensitive and high specific tools for detection of environmental pollutants. Broad range various types of biosensors have been fabricated for this purpose. This review focuses on the feature and application of biosensors developed for environmental and urban pollutants detection. J. Cell. Biochem. 119: 207-212, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Tehran Urban Planning and Research Center, Tehran, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Mashhad University of Medical Sciences, Biotechnology Research Center, Mashhad, Iran
| | - Mohsen Poursadeghiyan
- Research Center in Emergency and Disaster Health, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Funari R, Terracciano I, Della Ventura B, Ricci S, Cardi T, D'Agostino N, Velotta R. Label-Free Detection of Gliadin in Food by Quartz Crystal Microbalance-Based Immunosensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1281-1289. [PMID: 28121432 DOI: 10.1021/acs.jafc.6b04830] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gluten is a protein composite found in wheat and related grains including barley, rye, oat, and all their species and hybrids. Gluten matrix is a biomolecular network of gliadins and glutenins that contribute to the texture of pastries, breads, and pasta. Gliadins are mainly responsible for celiac disease, one of the most widespread food-related pathologies in Western world. In view of the importance of gliadin proteins, by combining the quartz crystal microbalance technology, a cheap and robust piezoelectric transducer, with the so-called photonic immobilization technique, an effective surface functionalization method that provides spatially oriented antibodies on gold substrates, we realized a sensitive and reliable biosensor for quantifying these analytes extracted from real samples in a very short time. The resulting immunosensor has a limit of detection of about 4 ppm and, more remarkably, shows excellent sensitivity in the range 7.5-15 ppm. This feature makes our device reliable and effective for practical applications since it is able to keep low the influence of false positives.
Collapse
Affiliation(s)
- Riccardo Funari
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| | - Irma Terracciano
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Orticoltura , via dei Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Bartolomeo Della Ventura
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| | - Sara Ricci
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Orticoltura , via dei Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Teodoro Cardi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Orticoltura , via dei Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Nunzio D'Agostino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Orticoltura , via dei Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Raffaele Velotta
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
29
|
Della Ventura B, Iannaccone M, Funari R, Pica Ciamarra M, Altucci C, Capparelli R, Roperto S, Velotta R. Effective antibodies immobilization and functionalized nanoparticles in a quartz-crystal microbalance-based immunosensor for the detection of parathion. PLoS One 2017; 12:e0171754. [PMID: 28182720 PMCID: PMC5300251 DOI: 10.1371/journal.pone.0171754] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/25/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Biosensor-based detection provides a rapid and low-cost alternative to conventional analytical methods for revealing the presence of the contaminants in water as well as solid matrices. Although important to be detected, small analytes (few hundreds of Daltons) are an issue in biosensing since the signal they induce in the transducer, and specifically in a Quartz-Crystal Microbalance, is undetectable. A pesticide like parathion (M = 292 Da) is a typical example of contaminant for which a signal amplification procedure is desirable. METHODS/FINDINGS The ballasting of the analyte by gold nanoparticles has been already applied to heavy target as proteins or bacteria to improve the limit of detection. In this paper, we extend the application of such a method to small analytes by showing that once the working surface of a Quartz-Crystal Microbalance (QCM) has been properly functionalized, a limit of detection lower than 1 ppb is reached for parathion. The effective surface functionalization is achieved by immobilizing antibodies upright oriented on the QCM gold surface by a simple photochemical technique (Photonic Immobilization Technique, PIT) based on the UV irradiation of the antibodies, whereas a simple protocol provided by the manufacturer is applied to functionalize the gold nanoparticles. Thus, in a non-competitive approach, the small analyte is made detectable by weighing it down through a "sandwich protocol" with a second antibody tethered to heavy gold nanoparticles. The immunosensor has been proved to be effective against the parathion while showing no cross reaction when a mixture of compounds very similar to parathion is analyzed. CONCLUSION/SIGNIFICANCE The immunosensor described in this paper can be easily applied to any small molecule for which polyclonal antibodies are available since both the functionalization procedure of the QCM probe surface and gold nanoparticle can be applied to any IgG, thereby making our device of general application in terms of target analyte.
Collapse
Affiliation(s)
| | - Marco Iannaccone
- Department of Agriculture, University of Naples “Federico II”, Portici, Italy
| | - Riccardo Funari
- Department of Physics “Ettore Pancini”, University of Naples “Federico II”, Naples, Italy
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- CNR-SPIN, University of Naples “Federico II”, Naples, Italy
| | - Carlo Altucci
- Department of Physics “Ettore Pancini”, University of Naples “Federico II”, Naples, Italy
| | - Rosanna Capparelli
- Department of Agriculture, University of Naples “Federico II”, Portici, Italy
| | - Sante Roperto
- Department of Agriculture, University of Naples “Federico II”, Portici, Italy
| | - Raffaele Velotta
- Department of Physics “Ettore Pancini”, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
30
|
Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch Toxicol 2016; 91:109-130. [DOI: 10.1007/s00204-016-1875-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 01/08/2023]
|
31
|
Zhang Y, Qian L, Yin W, He B, Liu F, Hou C, Huo D, Fa H. A dual read-out molecularly imprinted composite membrane sensor based on zinc porphyrin for the detection of dimethyl methylphosphonate. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-6120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Kumar P, Kim KH, Bansal V, Paul AK, Deep A. Practical utilization of nanocrystal metal organic framework biosensor for parathion specific recognition. Microchem J 2016. [DOI: 10.1016/j.microc.2016.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Della Ventura B, Ambrosio A, Fierro A, Funari R, Gesuele F, Maddalena P, Mayer D, Pica Ciamarra M, Velotta R, Altucci C. Simple and Flexible Model for Laser-Driven Antibody-Gold Surface Interactions: Functionalization and Sensing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21762-21769. [PMID: 27456037 DOI: 10.1021/acsami.6b04449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interactions between biomolecules and between substrates and biomolecules is a crucial issue in physics and applications to topics such as biotechnology and organic electronics. The efficiency of bio- and mechanical sensors, of organic electronics systems, and of a number of other devices critically depends on how molecules are deposited on a surface so that these acquire specific functions. Here, we tackle this vast problem by developing a coarse grained model of biomolecules having a recognition function, such as antibodies, capable to quantitatively describe in a simple manner essential phenomena: antigen-antibody and antibody substrate interactions. The model is experimentally tested to reproduce the results of a benchmark case, such as (1) gold surface functionalization with antibodies and (2) antibody-antigen immune-recognition function. The agreement between experiments and model prediction is excellent, thus unveiling the mechanism for antibody immobilization onto metals at the nanoscale in various functionalization schemes. These results shed light on the geometrical packing properties of the deposited molecules, and may open the way to a novel coarse-grained based approach to describe other processes where molecular packing is a key issue with applications in a huge number of fields from nano- to biosciences.
Collapse
Affiliation(s)
| | - Antonio Ambrosio
- Harvard School of Engineering and Applied Sciences, Harvard University , 9 Oxford Street, Room 125, Cambridge, Massachussetts 02138, United States
| | | | | | | | | | - Dirk Mayer
- Peter Grünberg Institute (PGI-8) and Institute of Complex Systems (ICS-8), Forschungszentrum Jülich GmbH , 52428 Jülich, Germany
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371 Singapore
| | | | | |
Collapse
|
34
|
Funari R, Della Ventura B, Altucci C, Offenhäusser A, Mayer D, Velotta R. Single Molecule Characterization of UV-Activated Antibodies on Gold by Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8084-91. [PMID: 27444884 DOI: 10.1021/acs.langmuir.6b02218] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The interaction between proteins and solid surfaces can influence their conformation and therefore also their activity and affinity. These interactions are highly specific for the respective combination of proteins and solids. Consequently, it is desirable to investigate the conformation of proteins on technical surfaces, ideally at single molecule level, and to correlate the results with their activity. This is in particular true for biosensors where the conformation-dependent target affinity of an immobilized receptor determines the sensitivity of the sensor. Here, we investigate for the first time the immobilization and orientation of antibodies (Abs) photoactivated by a photonic immobilization technique (PIT), which has previously demonstrated to enhance binding capabilities of antibody receptors. The photoactivated immunoglobulins are immobilized on ultrasmooth template stripped gold films and investigated by atomic force microscopy (AFM) at the level of individual molecules. The observed protein orientations are compared with results of nonactivated antibodies adsorbed on similar gold films and mica reference samples. We find that the behavior of Abs is similar for mica and gold when the protein are not treated (physisorption), whereas smaller contact area and larger heights are measured when Abs are treated (PIT). This is explained by assuming that the activated antibodies tend to be more upright compared with nonirradiated ones, thereby providing a better exposure of the binding sites. This finding matches the observed enhancement of Abs binding efficiency when PIT is used to functionalize gold surface of QCM-based biosensors.
Collapse
Affiliation(s)
- R Funari
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| | - B Della Ventura
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| | - C Altucci
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| | - A Offenhäusser
- Peter Grünberg Institute (PGI-8) and Institute of Complex Systems (ICS-8), Forschungszentrum Jülich GmbH , 52428 Jülich, Germany
| | - D Mayer
- Peter Grünberg Institute (PGI-8) and Institute of Complex Systems (ICS-8), Forschungszentrum Jülich GmbH , 52428 Jülich, Germany
| | - R Velotta
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
35
|
Detection of parathion and patulin by quartz-crystal microbalance functionalized by the photonics immobilization technique. Biosens Bioelectron 2015; 67:224-9. [DOI: 10.1016/j.bios.2014.08.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/28/2014] [Accepted: 08/08/2014] [Indexed: 11/24/2022]
|
36
|
Deep A, Bhardwaj SK, Paul A, Kim KH, Kumar P. Surface assembly of nano-metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. Biosens Bioelectron 2015; 65:226-31. [DOI: 10.1016/j.bios.2014.10.045] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 11/26/2022]
|
37
|
Liu W, Huang R, Qi W, Wang M, Su R, He Z. A gas-phase amplified quartz crystal microbalance immunosensor based on catalase modified immunoparticles. Analyst 2015; 140:1174-81. [DOI: 10.1039/c4an02061h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel signal amplification strategy based on catalytic gas generation was developed to construct an ultrasensitive QCM immunosensor.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Renliang Huang
- School of Environmental Science and Engineering
- Tianjin University
- Tianjin
- China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Mengfan Wang
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| |
Collapse
|
38
|
Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. BIOSENSORS-BASEL 2014; 4:301-17. [PMID: 25587424 PMCID: PMC4264360 DOI: 10.3390/bios4030301] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 11/17/2022]
Abstract
Due to the great amount of pesticides currently being used, there is an increased interest for developing biosensors for their detection. Among all the physical transducers, piezoelectric systems have emerged as the most attractive due to their simplicity, low instrumentation costs, possibility for real-time and label-free detection and generally high sensitivity. This paper presents an overview of biosensors based on the quartz crystal microbalance, which have been reported in the literature for organophosphate and carbamate pesticide analysis.
Collapse
|