1
|
Martinez B, Leroux YR, Hapiot P, Henry CS. Surface Modification of Thermoplastic Electrodes for Biosensing Applications via Copper-Catalyzed Click Chemistry. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37874977 DOI: 10.1021/acsami.3c10013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Cu(I)-catalyzed 1,3-dipolar cycloaddition (CuAAC), also known as click chemistry, has been demonstrated to be highly robust while providing versatile surface chemistry. One specific application is biosensor fabrication. Recently, we developed thermoplastic electrodes (TPEs) as an alternative to traditional carbon composite electrodes in terms of cost, performance, and robustness. However, their applications in biosensing are currently limited due to a lack of facile methods for electrode modification. Here, we demonstrate the feasibility of using CuAAC following the diazonium grafting of TPEs to take advantage of two powerful technologies for developing a customizable and versatile biosensing platform. After a stepwise characterization of the electrode modification procedures was performed, electrodes were modified with model affinity reagents. Streptavidin and streptavidin-conjugated IgG antibodies were successfully immobilized on the TPE surface, as confirmed by electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Yann R Leroux
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
2
|
Wahab O, Kang M, Meloni GN, Daviddi E, Unwin PR. Nanoscale Visualization of Electrochemical Activity at Indium Tin Oxide Electrodes. Anal Chem 2022; 94:4729-4736. [PMID: 35255211 PMCID: PMC9007413 DOI: 10.1021/acs.analchem.1c05168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/11/2022] [Indexed: 01/08/2023]
Abstract
Indium tin oxide (ITO) is a popular electrode choice, with diverse applications in (photo)electrocatalysis, organic photovoltaics, spectroelectrochemistry and sensing, and as a support for cell biology studies. Although ITO surfaces exhibit heterogeneous local electrical conductivity, little is known as to how this translates to electrochemistry at the same scale. This work investigates nanoscale electrochemistry at ITO electrodes using high-resolution scanning electrochemical cell microscopy (SECCM). The nominally fast outer-sphere one-electron oxidation of 1,1'-ferrocenedimethanol (FcDM) is used as an electron transfer (ET) kinetic marker to reveal the charge transfer properties of the ITO/electrolyte interface. SECCM measures spatially resolved linear sweep voltammetry at an array of points across the ITO surface, with the topography measured synchronously. Presentation of SECCM data as current maps as a function of potential reveals that, while the entire surface of ITO is electroactive, the ET activity is highly spatially heterogeneous. Kinetic parameters (standard rate constant, k0, and transfer coefficient, α) for FcDM0/+ are assigned from 7200 measurements at sites across the ITO surface using finite element method modeling. Differences of 3 orders of magnitude in k0 are revealed, and the average k0 is about 20 times larger than that measured at the macroscale. This is attributed to macroscale ET being largely limited by lateral conductivity of the ITO electrode under electrochemical operation, rather than ET kinetics at the ITO/electrolyte interface, as measured by SECCM. This study further demonstrates the considerable power of SECCM for direct nanoscale characterization of electrochemical processes at complex electrode surfaces.
Collapse
Affiliation(s)
- Oluwasegun
J. Wahab
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute
for Frontier Materials Deakin University, Burwood, Victoria 3125, Australia
| | - Gabriel N. Meloni
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Enrico Daviddi
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
3
|
Towards Determining Kinetics of Annihilation Electrogenerated Chemiluminescence by Concentration-Dependent Luminescent Intensity. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00094-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Al-Kutubi H, Voci S, Rassaei L, Sojic N, Mathwig K. Enhanced annihilation electrochemiluminescence by nanofluidic confinement. Chem Sci 2018; 9:8946-8950. [PMID: 30647886 PMCID: PMC6301198 DOI: 10.1039/c8sc03209b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/30/2018] [Indexed: 12/30/2022] Open
Abstract
The generation of stable enhanced light emission by electrochemiluminescence in microfabricated nanofluidic electrochemical devices is demonstrated for the first time by exploiting nanogap amplification.
Microfabricated nanofluidic electrochemical devices offer a highly controlled nanochannel geometry; they confine the volume of chemical reactions to the nanoscale and enable greatly amplified electrochemical detection. Here, the generation of stable light emission by electrochemiluminescence (ECL) in transparent nanofluidic devices is demonstrated for the first time by exploiting nanogap amplification. Through continuous oxidation and reduction of [Ru(bpy)3]2+ luminophores at electrodes positioned at opposite walls of a 100 nm nanochannel, we compare classic redox cycling and ECL annihilation. Enhanced ECL light emission of attomole luminophore quantities is evidenced under ambient conditions due to the spatial confinement in a 10 femtoliter volume, resulting in a short diffusion timescale and highly efficient ECL reaction pathways at the nanoscale.
Collapse
Affiliation(s)
- Hanan Al-Kutubi
- University of Groningen , Groningen Research Institute of Pharmacy , Pharmaceutical Analysis , P.O. Box 196 , 9700 AD Groningen , The Netherlands .
| | - Silvia Voci
- University of Bordeaux , Bordeaux INP , Institut des Sciences Moléculaires , UMR CNRS 5255 , 33607 Pessac , France .
| | - Liza Rassaei
- Rotterdam School of Management , Erasmus University , Burgemeester Oudlaan 50 , 3062 PA Rotterdam , The Netherlands.,Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands
| | - Neso Sojic
- University of Bordeaux , Bordeaux INP , Institut des Sciences Moléculaires , UMR CNRS 5255 , 33607 Pessac , France .
| | - Klaus Mathwig
- University of Groningen , Groningen Research Institute of Pharmacy , Pharmaceutical Analysis , P.O. Box 196 , 9700 AD Groningen , The Netherlands .
| |
Collapse
|
5
|
Roa R, Siegl T, Kim WK, Dzubiella J. Product interactions and feedback in diffusion-controlled reactions. J Chem Phys 2018; 148:064705. [PMID: 29448770 DOI: 10.1063/1.5016608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Steric or attractive interactions among reactants or between reactants and inert crowders can substantially influence the total rate of a diffusion-influenced reaction in the liquid phase. However, the role of the product species, which has typically different physical properties than the reactant species, has been disregarded so far. Here we study the effects of reactant-product and product-product interactions as well as asymmetric diffusion properties on the rate of diffusion-controlled reactions in the classical Smoluchowski-setup for chemical transformations at a perfect catalytic sphere. For this, we solve the diffusion equation with appropriate boundary conditions coupled by a mean-field approach on the second virial level to account for the particle interactions. We find that all particle spatial distributions and the total rate can change significantly, depending on the diffusion and interaction properties of the accumulated products. Complex competing and self-regulating (homeostatic) or self-amplifying effects are observed for the system, leading to both decrease and increase in the rates, as the presence of interacting products feeds back to the reactant flux and thus the rate with which the products are generated.
Collapse
Affiliation(s)
- Rafael Roa
- Física Aplicada I, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Toni Siegl
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Won Kyu Kim
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Joachim Dzubiella
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| |
Collapse
|
6
|
Steentjes T, Jonkheijm P, Huskens J. Electron Transfer Processes in Ferrocene-Modified Poly(ethylene glycol) Monolayers on Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11878-11883. [PMID: 28977744 PMCID: PMC5677253 DOI: 10.1021/acs.langmuir.7b02160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Electrochemistry is a powerful tool to study self-assembled monolayers. Here, we modified cystamine-functionalized electrodes with different lengths of linear poly(ethylene glycol) (PEG) polymers end-functionalized with a redox-active ferrocene (Fc) group. The electron transport properties of the Fc probes were studied using cyclic voltammetry. The Fc moiety attached to the shortest PEG (Mn = 250 Da) behaved as a surface-confined species, and the homogeneous electron transfer rate constants were determined. The electron transfer of the ferrocene group on the longer PEGs (Mn = 3.4, 5, and 10 kDa) was shown to be driven by diffusion. For low surface densities, where the polymer exists in the mushroom conformation, the diffusion coefficients (D) and rate constants were increasing with polymer length. In the loose brush conformation, where the polymers are close enough to interact with each other, the thickness of the layers (e) was unknown and a parameter D1/2/e was determined. This parameter showed no dependence on surface density and an increase with polymer length.
Collapse
|
7
|
Kostiuchenko ZA, Glazer PJ, Mendes E, Lemay SG. Chemical physics of electroactive materials - the oft-overlooked faces of electrochemistry. Faraday Discuss 2017; 199:9-28. [PMID: 28654123 DOI: 10.1039/c7fd00117g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electroactive materials and their applications are enjoying renewed attention, in no small part motivated by the advent of nanoscale tools for their preparation and study. While the fundamentals of charge and mass transport in electrolytes on this scale are by and large well understood, their interplay can have subtle manifestations in the more complex situations typical of, for example, integrated microfluidics-based applications. In particular, the role of faradaic processes is often overlooked or, at best, purposefully suppressed via experimental design. In this introductory article we discuss, using simple illustrations from our laboratories, some of the manifestations of electrochemistry in electroactive materials.
Collapse
Affiliation(s)
- Zinaida A Kostiuchenko
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Piotr J Glazer
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Eduardo Mendes
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Serge G Lemay
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
8
|
Tan SY, Lazenby RA, Bano K, Zhang J, Bond AM, Macpherson JV, Unwin PR. Comparison of fast electron transfer kinetics at platinum, gold, glassy carbon and diamond electrodes using Fourier-transformed AC voltammetry and scanning electrochemical microscopy. Phys Chem Chem Phys 2017; 19:8726-8734. [DOI: 10.1039/c7cp00968b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Complementary techniques reveal new insights on electron transfer rates at different electrode materials.
Collapse
Affiliation(s)
- Sze-yin Tan
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- School of Chemistry
| | | | - Kiran Bano
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Jie Zhang
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Alan M. Bond
- School of Chemistry
- Monash University
- Clayton
- Australia
| | | | | |
Collapse
|
9
|
Enright AML, Ferris FG. Fluctuation Analysis of Redox Potential to Distinguish Microbial Fe(II) Oxidation. ASTROBIOLOGY 2016; 16:846-852. [PMID: 27827533 DOI: 10.1089/ast.2016.1509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We developed a novel method for distinguishing abiotic and biological iron oxidation in liquid media using oxidation-reduction (redox) potential time series data. The instrument and processing algorithm were tested by immersing the tip of a Pt electrode with an Ag-AgCl reference electrode into an active iron-oxidizing biofilm in a groundwater discharge zone, as well as in two abiotic systems: a killed sample and a chemical control from the same site. We used detrended fluctuation analysis to characterize average root mean square fluctuation behavior, which was distinct in the live system. The calculated α value scaling exponents determined by detrended fluctuation analysis were significantly different at p < 0.001. This indicates that time series of electrode response data may be used to distinguish live and abiotic chemical reaction pathways. Due to the simplicity, portability, and small size, it may be suitable for characterization of extraterrestrial environments where water has been observed, such as Mars and Europa. Key Words: Oxidation-reduction potential-Detrended fluctuation analysis-Iron-oxidizing bacteria. Astrobiology 16, 846-852.
Collapse
Affiliation(s)
- A M L Enright
- Department of Earth Sciences, University of Toronto , Toronto, Canada
| | - F G Ferris
- Department of Earth Sciences, University of Toronto , Toronto, Canada
| |
Collapse
|
10
|
Wolfrum B, Kätelhön E, Yakushenko A, Krause KJ, Adly N, Hüske M, Rinklin P. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems. Acc Chem Res 2016; 49:2031-40. [PMID: 27602780 DOI: 10.1021/acs.accounts.6b00333] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Micro- and nanofabriation technologies have a tremendous potential for the development of powerful sensor array platforms for electrochemical detection. The ability to integrate electrochemical sensor arrays with microfluidic devices nowadays provides possibilities for advanced lab-on-a-chip technology for the detection or quantification of multiple targets in a high-throughput approach. In particular, this is interesting for applications outside of analytical laboratories, such as point-of-care (POC) or on-site water screening where cost, measurement time, and the size of individual sensor devices are important factors to be considered. In addition, electrochemical sensor arrays can monitor biological processes in emerging cell-analysis platforms. Here, recent progress in the design of disease model systems and organ-on-a-chip technologies still needs to be matched by appropriate functionalities for application of external stimuli and read-out of cellular activity in long-term experiments. Preferably, data can be gathered not only at a singular location but at different spatial scales across a whole cell network, calling for new sensor array technologies. In this Account, we describe the evolution of chip-based nanoscale electrochemical sensor arrays, which have been developed and investigated in our group. Focusing on design and fabrication strategies that facilitate applications for the investigation of cellular networks, we emphasize the sensing of redox-active neurotransmitters on a chip. To this end, we address the impact of the device architecture on sensitivity, selectivity as well as on spatial and temporal resolution. Specifically, we highlight recent work on redox-cycling concepts using nanocavity sensor arrays, which provide an efficient amplification strategy for spatiotemporal detection of redox-active molecules. As redox-cycling electrochemistry critically depends on the ability to miniaturize and integrate closely spaced electrode systems, the fabrication of suitable nanoscale devices is of utmost importance for the development of this advanced sensor technology. Here, we address current challenges and limitations, which are associated with different redox cycling sensor array concepts and fabrication approaches. State-of-the-art micro- and nanofabrication technologies based on optical and electron-beam lithography allow precise control of the device layout and have led to a new generation of electrochemical sensor architectures for highly sensitive detection. Yet, these approaches are often expensive and limited to clean-room compatible materials. In consequence, they lack possibilities for upscaling to high-throughput fabrication at moderate costs. In this respect, self-assembly techniques can open new routes for electrochemical sensor design. This is true in particular for nanoporous redox cycling sensor arrays that have been developed in recent years and provide interesting alternatives to clean-room fabricated nanofluidic redox cycling devices. We conclude this Account with a discussion of emerging fabrication technologies based on printed electronics that we believe have the potential of transforming current redox cycling concepts from laboratory tools for fundamental studies and proof-of-principle analytical demonstrations into high-throughput devices for rapid screening applications.
Collapse
Affiliation(s)
- Bernhard Wolfrum
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
- Neuroelectronics,
IMETUM, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| | - Enno Kätelhön
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alexey Yakushenko
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kay J. Krause
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Nouran Adly
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Hüske
- Institute
of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Philipp Rinklin
- Neuroelectronics,
IMETUM, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching, Germany
| |
Collapse
|
11
|
Tan SY, Zhang J, Bond AM, Macpherson JV, Unwin PR. Impact of Adsorption on Scanning Electrochemical Microscopy Voltammetry and Implications for Nanogap Measurements. Anal Chem 2016; 88:3272-80. [PMID: 26877069 DOI: 10.1021/acs.analchem.5b04715] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sze-yin Tan
- Department
of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jie Zhang
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Alan M. Bond
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Julie V. Macpherson
- Department
of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom
| |
Collapse
|
12
|
Zafarani HR, Mathwig K, Sudhölter EJ, Rassaei L. Electrochemical redox cycling in a new nanogap sensor: Design and simulation. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.11.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Kanno Y, Ino K, Shiku H, Matsue T. A local redox cycling-based electrochemical chip device with nanocavities for multi-electrochemical evaluation of embryoid bodies. LAB ON A CHIP 2015; 15:4404-4414. [PMID: 26481771 DOI: 10.1039/c5lc01016k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An electrochemical device, which consists of electrode arrays, nanocavities, and microwells, was developed for multi-electrochemical detection with high sensitivity. A local redox cycling-based electrochemical (LRC-EC) system was used for multi-electrochemical detection and signal amplification. The LRC-EC system consists of n(2) sensors with only 2n bonding pads for external connection. The nanocavities fabricated in the sensor microwells enable significant improvement of the signal amplification compared with the previous devices we have developed. The present device was successfully applied for evaluation of embryoid bodies (EBs) from embryonic stem (ES) cells via electrochemical measurements of alkaline phosphatase (ALP) activity in the EBs. In addition, the EBs were successfully trapped in the sensor microwells of the device using dielectrophoresis (DEP) manipulation, which led to high-throughput cell analysis. This device is considered to be useful for multi-electrochemical detection and imaging for bioassays including cell analysis.
Collapse
Affiliation(s)
- Yusuke Kanno
- Graduate School of Environmental Studies, Tohoku University, Japan.
| | - Kosuke Ino
- Graduate School of Environmental Studies, Tohoku University, Japan.
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Japan.
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, Japan. and WPI-Advanced Institute for Materials Research, Tohoku University, Japan
| |
Collapse
|
14
|
Xiong J, Chen Q, Edwards MA, White HS. Ion Transport within High Electric Fields in Nanogap Electrochemical Cells. ACS NANO 2015; 9:8520-8529. [PMID: 26190513 DOI: 10.1021/acsnano.5b03522] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ion transport near an electrically charged electrolyte/electrode interface is a fundamental electrochemical phenomenon that is important in many electrochemical energy systems. We investigated this phenomenon using lithographically fabricated thin-layer electrochemical cells comprising two Pt planar electrodes separated by an electrolyte of nanometer thickness (50-200 nm). By exploiting redox cycling amplification, we observed the influence of the electric double layer on transport of a charged redox couple within the confined electrolyte. Nonclassical steady-state peak shaped voltammograms for redox cycling of the ferrocenylmethyltrimethylammonium redox couple (FcTMA(+/2+)) at low concentrations of supporting electrolyte (≤10 mM) results from electrostatic interactions between the redox ions and the charged Pt electrodes. This behavior contrasts to sigmoidal voltammograms with a diffusion-limited plateau observed in the same electrochemical cells in the presence of sufficient electrolyte to screen the electrode surface charge (200 mM). Moreover, steady-state redox cycling was depressed significantly within the confined electrolyte as the supporting electrolyte concentration was decreased or as the cell thickness was reduced. The experimental results are in excellent agreement with predictions from finite-element simulations coupling the governing equations for ion transport, electric fields, and the redox reactions. Double layer effects on ion transport are generally anticipated in highly confined electrolyte and may have implications for ion transport in thin layer and nanoporous energy storage materials.
Collapse
Affiliation(s)
- Jiewen Xiong
- Department of Chemistry, University of Utah , 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Qianjin Chen
- Department of Chemistry, University of Utah , 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Martin A Edwards
- Department of Chemistry, University of Utah , 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Henry S White
- Department of Chemistry, University of Utah , 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
15
|
Kätelhön E, Krause KJ, Mathwig K, Lemay SG, Wolfrum B. Noise phenomena caused by reversible adsorption in nanoscale electrochemical devices. ACS NANO 2014; 8:4924-4930. [PMID: 24694343 DOI: 10.1021/nn500941g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We theoretically investigate reversible adsorption in electrochemical devices on a molecular level. To this end, a computational framework is introduced, which is based on 3D random walks including probabilities for adsorption and desorption events at surfaces. We demonstrate that this approach can be used to investigate adsorption phenomena in electrochemical sensors by analyzing experimental noise spectra of a nanofluidic redox cycling device. The evaluation of simulated and experimental results reveals an upper limit for the average adsorption time of ferrocene dimethanol of ∼200 μs. We apply our model to predict current noise spectra of further electrochemical experiments based on interdigitated arrays and scanning electrochemical microscopy. Since the spectra strongly depend on the molecular adsorption characteristics of the detected analyte, we can suggest key indicators of adsorption phenomena in noise spectroscopy depending on the geometric aspect of the experimental setup.
Collapse
Affiliation(s)
- Enno Kätelhön
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich , 52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
16
|
Hüske M, Stockmann R, Offenhäusser A, Wolfrum B. Redox cycling in nanoporous electrochemical devices. NANOSCALE 2014; 6:589-598. [PMID: 24247480 DOI: 10.1039/c3nr03818a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanoscale redox cycling is a powerful technique for detecting electrochemically active molecules, based on fast repetitive oxidation and reduction reactions. An ideal implementation of redox cycling sensors can be realized by nanoporous dual-electrode systems in easily accessible and scalable geometries. Here, we introduce a multi-electrode array device with highly efficient nanoporous redox cycling sensors. Each of the sensors holds up to 209,000 well defined nanopores with minimal pore radii of less than 40 nm and an electrode separation of ~100 nm. We demonstrate the efficiency of the nanopore array by screening a large concentration range over three orders of magnitude with area-specific sensitivities of up to 81.0 mA (cm(-2) mM(-1)) for the redox-active probe ferrocene dimethanol. Furthermore, due to the specific geometry of the material, reaction kinetics has a unique potential-dependent impact on the signal characteristics. As a result, redox cycling experiments in the nanoporous structure allow studies on heterogeneous electron transfer reactions revealing a surprisingly asymmetric transfer coefficient.
Collapse
Affiliation(s)
- Martin Hüske
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | |
Collapse
|
17
|
Hüske M, Offenhäusser A, Wolfrum B. Nanoporous dual-electrodes with millimetre extensions: parallelized fabrication and area effects on redox cycling. Phys Chem Chem Phys 2014; 16:11609-16. [DOI: 10.1039/c4cp01027b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel fabrication techniques lead to highly sensitive electrochemical sensors (left). The large-area characteristics of redox-cycling within the sensor's nanopores further cause potential-dependent variations of the overall analyte concentration (right).
Collapse
Affiliation(s)
- Martin Hüske
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology
- For-schungszentrum Jülich
- D-52425 Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology
- For-schungszentrum Jülich
- D-52425 Jülich, Germany
- IV. Institute of Physics
- RWTH Aachen University
| | - Bernhard Wolfrum
- Institute of Bioelectronics (PGI-8/ICS-8) and JARA—Fundamentals of Future Information Technology
- For-schungszentrum Jülich
- D-52425 Jülich, Germany
- IV. Institute of Physics
- RWTH Aachen University
| |
Collapse
|
18
|
Kang S, Nieuwenhuis AF, Mathwig K, Mampallil D, Lemay SG. Electrochemical single-molecule detection in aqueous solution using self-aligned nanogap transducers. ACS NANO 2013; 7:10931-10937. [PMID: 24279688 DOI: 10.1021/nn404440v] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Electrochemical detection of individual molecular tags in nanochannels may enable cost-effective, massively parallel analysis and diagnostics platforms. Here we demonstrate single-molecule detection of prototypical analytes in aqueous solution based on redox cycling in 40 nm nanogap transducers. These nanofluidic devices are fabricated using standard microfabrication techniques combined with a self-aligned approach that minimizes gap size and dead volume. We demonstrate the detection of three common redox mediators at physiological salt concentrations.
Collapse
Affiliation(s)
- Shuo Kang
- MESA+ Institute for Nanotechnology, University of Twente , PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
|