1
|
Chiu KY, Ai Y, Tanim-Ai Hassan M, Li X, Gunawardena HP, Chen H. Standards-Free Absolute Quantitation of Oxidizable Glycopeptides by Coulometric Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1441-1450. [PMID: 38815255 DOI: 10.1021/jasms.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Currently, glycopeptide quantitation is mainly based on relative quantitation due to absolute quantitation requiring isotope-labeled or standard glycopeptides which may not be commercially available or are very costly and time consuming to synthesize. To address this grand challenge, coulometric mass spectrometry (CMS), based on the combination of electrochemistry (EC) and mass spectrometry (MS), was utilized to quantify electrochemically active glycopeptides without the need of using standard materials. In this study, we studied tyrosine-containing glycopeptides, NYIVGQPSS(β-GlcNAc)TGNL-OH and NYSVPSS(β-GlcNAc)TGNL-OH, and successfully quantified them directly with CMS with a discrepancy of less than 5% between the CMS measured amount and the theoretical amount. Taking one step further, we applied this approach to quantify glycopeptides generated from the digestion of NIST mAb, a monoclonal antibody reference material. Through HILIC column separation, five N297 glycopeptides resulting from NIST mAb tryptic digestion were successfully separated and quantified by CMS for an absolute amount without the use of any standard materials. This study indicates the potential utility of CMS for quantitative proteomics research.
Collapse
Affiliation(s)
- Kai-Yuan Chiu
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yongling Ai
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Md Tanim-Ai Hassan
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Xuanwen Li
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Harsha P Gunawardena
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Springhouse, Pennsylvania 19002, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
He K, Baniasad M, Kwon H, Caval T, Xu G, Lebrilla C, Hommes DW, Bertozzi C. Decoding the glycoproteome: a new frontier for biomarker discovery in cancer. J Hematol Oncol 2024; 17:12. [PMID: 38515194 PMCID: PMC10958865 DOI: 10.1186/s13045-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Cancer early detection and treatment response prediction continue to pose significant challenges. Cancer liquid biopsies focusing on detecting circulating tumor cells (CTCs) and DNA (ctDNA) have shown enormous potential due to their non-invasive nature and the implications in precision cancer management. Recently, liquid biopsy has been further expanded to profile glycoproteins, which are the products of post-translational modifications of proteins and play key roles in both normal and pathological processes, including cancers. The advancements in chemical and mass spectrometry-based technologies and artificial intelligence-based platforms have enabled extensive studies of cancer and organ-specific changes in glycans and glycoproteins through glycomics and glycoproteomics. Glycoproteomic analysis has emerged as a promising tool for biomarker discovery and development in early detection of cancers and prediction of treatment efficacy including response to immunotherapies. These biomarkers could play a crucial role in aiding in early intervention and personalized therapy decisions. In this review, we summarize the significant advance in cancer glycoproteomic biomarker studies and the promise and challenges in integration into clinical practice to improve cancer patient care.
Collapse
Affiliation(s)
- Kai He
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA.
| | | | - Hyunwoo Kwon
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | | | - Gege Xu
- InterVenn Biosciences, South San Francisco, USA
| | - Carlito Lebrilla
- Department of Biochemistry and Molecular Medicine, UC Davis Health, Sacramento, USA
| | | | | |
Collapse
|
3
|
Zhao Y, Raidas S, Mao Y, Li N. High-Throughput Glycan Profiling of Human Serum IgG Subclasses Using Parallel Reaction Monitoring Peptide Bond Fragmentation of Glycopeptides and Microflow LC-MS. J Proteome Res 2024; 23:585-595. [PMID: 38231888 DOI: 10.1021/acs.jproteome.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
LC-MS-based N-glycosylation profiling in four human serum IgG subclasses (IgG1, IgG2, IgG3, and IgG4) often requires additional affinity-based enrichment of specific IgG subclasses, owing to the high amino acid sequence similarity of Fc glycopeptides among subclasses. Notably, for IgG4 and the major allotype of IgG3, the glycopeptide precursors share identical retention time and mass and therefore cannot be distinguished based on precursor or glycan fragmentation. Here, we developed a parallel reaction monitoring (PRM)-based method for quantifying Fc glycopeptides through combined transitions generated from both glycosidic and peptide bond fragmentation. The latter enables the subpopulation of IgG3 and IgG4 to be directly distinguished according to mass differences without requiring further enrichment of specific IgG subclasses. In addition, a multinozzle electrospray emitter coupled to a capillary flow liquid chromatograph was used to increase the robustness and detection sensitivity of the method for low-yield peptide backbone fragment ions. The gradient was optimized to decrease the overall run time and make the method compatible with high-throughput analysis. We demonstrated that this method can be used to effectively monitor the relative levels of 13 representative glycoforms, with a good limit of detection for individual IgG subclasses.
Collapse
Affiliation(s)
- Yunlong Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Shivkumar Raidas
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Yuan Mao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| |
Collapse
|
4
|
Li X. Recent applications of quantitative mass spectrometry in biopharmaceutical process development and manufacturing. J Pharm Biomed Anal 2023; 234:115581. [PMID: 37494866 DOI: 10.1016/j.jpba.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Biopharmaceutical products have seen rapid growth over the past few decades and continue to dominate the global pharmaceutical market. Aligning with the quality by design (QbD) framework and realization, recent advances in liquid chromatography-mass spectrometry (LC-MS) instrumentation and related techniques have enhanced biopharmaceutical characterization capabilities and have supported an increased development of biopharmaceutical products. Beyond its routine qualitative characterization, the quantitative feature of LC-MS has unique applications in biopharmaceutical process development and manufacturing. This review describes the recent applications and implications of the advancement of quantitative MS methods in biopharmaceutical process development, and characterization of biopharmaceutical product, product-related variants, and process-related impurities. We also provide insights on the emerging applications of quantitative MS in the lifecycle of biopharmaceutical product development including quality control in the Good Manufacturing Practice (GMP) environment and process analytical technology (PAT) practices during process development and manufacturing. Through collaboration with instrument and software vendors and regulatory agencies, we envision broader adoption of phase-appropriate quantitative MS-based methods for the analysis of biopharmaceutical products, which in turn has the potential to enable manufacture of higher quality products for patients.
Collapse
Affiliation(s)
- Xuanwen Li
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA.
| |
Collapse
|
5
|
Dong S, Chen L, Sauer A, Dittus L. LC/MS Assessment of Glycoform Clearance of A Biotherapeutic MAb in Rabbit Ocular Tissues. J Pharm Sci 2023; 112:2285-2291. [PMID: 37062414 DOI: 10.1016/j.xphs.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
Many biotherapeutics such as monoclonal antibodies (mAbs) consist of various glycoforms, which can have different PK properties upon administration to animals and human. As a result, it is necessary to monitor the abundance of glycoforms and limit lot-to-lot variability during the manufacturing process. However, limited information is known about the clearance of mAb glycoforms from ocular space upon intravitreal injection. We present here an assessment of glycoform clearance of a biotherapeutic mAb (IgG1) from rabbit vitreous humor, aqueous humor and retina tissue using LC/MS. The results show that G0, G0F and G1F have similar T1/2, while mannose-5 has a longer T1/2 and is cleared slower in rabbit ocular space, which contradicted with what has been reported in the literature in which Mann5 was cleared faster systematically.
Collapse
Affiliation(s)
- Shiyu Dong
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, CT, USA
| | - Linzhi Chen
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc. Ridgefield, CT, USA.
| | - Achim Sauer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG. Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| | - Lars Dittus
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG. Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| |
Collapse
|
6
|
Yin H, Zhu J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:887-917. [PMID: 35099083 PMCID: PMC9339036 DOI: 10.1002/mas.21771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 05/05/2023]
Abstract
Recent advances in analytical techniques provide the opportunity to quantify even low-abundance glycopeptides derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Herein, we discuss the sample preparation procedures and the mass spectrometry (MS) strategies that have facilitated glycopeptide quantification, as well as the standards used for glycopeptide quantification. For sample preparation, various glycopeptide enrichment methods are summarized including the columns used for glycopeptide separation in liquid chromatography separation. For MS analysis strategies, MS1 level-based quantification and MS2 level-based quantification are described, either with or without labeling, where we have covered isotope labeling, TMT/iTRAQ labeling, data dependent acquisition, data independent acquisition, multiple reaction monitoring, and parallel reaction monitoring. The strengths and weaknesses of these methods are compared, particularly those associated with the figures of merit that are important for clinical biomarker studies and the pathological and functional studies of glycoproteins in various diseases. Possible future developments for glycopeptide quantification are discussed.
Collapse
Affiliation(s)
- Haidi Yin
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| | - Jianhui Zhu
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| |
Collapse
|
7
|
Alvarez MS, Zhou Q, Tena J, Lebrilla CB, Completo GC, Heralde FM, Cabanatan M, Barzaga MT, Tan-Liu N, Ladrera GI, Danguilan JL, Rabajante J, Padolina I, Nacario RC. N-Glycan and Glycopeptide Serum Biomarkers in Philippine Lung Cancer Patients Identified Using Liquid Chromatography-Tandem Mass Spectrometry. ACS OMEGA 2022; 7:40230-40240. [PMID: 36385894 PMCID: PMC9647785 DOI: 10.1021/acsomega.2c05111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Aberrant glycosylation has been extensively reported in cancer, with fundamental changes in the glycosylation patterns of cell-surface and secreted proteins largely occurring during cancer progression. As such, serum glycan and glycopeptide biomarkers have been discovered using mass spectrometry and proposed for cancer detection. Here, we report for the first time potential serum N-glycan and glycopeptide biomarkers for Philippine lung cancer patients. The N-glycan and glycoprotein profiles of a cohort (n = 26 patients, n = 22 age- and gender-matched) of lung cancer patients were analyzed and compared to identify potential N-glycan and glycopeptide serum biomarkers using nano-QToF-MS/MS and ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry dynamic multiple monitoring methods, respectively. Statistical analyses identified differential N-glycan and glycopeptide abundances. The N-glycans were mostly sialylated and sialofucosylated branched structures. The glycopeptides involved proteins in complement and coagulation cascades (p adj = 6.418 × 10-4), innate immunity (p adj = 6.094 × 10-3), acute inflammatory response (p adj = 6.404 × 10-5), defense response (p adj = 2.082 × 10-4), complement activation pathways (p adj = 1.895 × 10-2), and immunoglobulin-mediated immune response pathways (p adj = 4.818 × 10-2). Biomarker models were constructed using serum N-glycans [area under the curve (AUC) = 0.775; 95% CI: 0.617-0.931] and glycopeptides (AUC = 0.959; 95% CI: 0.85-1.0), with glycopeptides having higher accuracies than N-glycans. The results suggest that in the Philippine lung cancer patient sera, specific N-glycans and site-specific glycans are differentially expressed between cases and controls. This report represents the first serum glycan and glycopeptide biomarkers of Philippine lung cancer patients, further demonstrating the utility of mass spectrometry-based glycomic and glycoproteomic methods.
Collapse
Affiliation(s)
- Michael
Russelle S. Alvarez
- Institute
of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Laguna 4031, Philippines
- Department
of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Qingwen Zhou
- Department
of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Jennyfer Tena
- Department
of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Carlito B. Lebrilla
- Department
of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Gladys C. Completo
- Institute
of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Francisco M. Heralde
- Molecular
Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1104, Philippines
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines−Manila, Manila, NCR 1159, Philippines
| | - Michelle Cabanatan
- Molecular
Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1104, Philippines
| | - Ma. Teresa Barzaga
- Molecular
Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1104, Philippines
- College
of Medicine, De La Salle Health Sciences
Institute, Cavite 4114, Philippines
| | - Nelia Tan-Liu
- Molecular
Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1104, Philippines
| | - Guia Imelda Ladrera
- Molecular
Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1104, Philippines
| | - Jose Luis Danguilan
- Department
of Thoracic Surgery and Anesthesia, Lung
Center of the Philippines, Quezon
City 1104, Philippines
| | - Jomar Rabajante
- Institute
of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Isagani Padolina
- Pascual
Pharma Corp, Core Research and Development Laboratory, UPLB Science and Technology Park, Los Baños, Laguna 4031, Philippines
| | - Ruel C. Nacario
- Institute
of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Laguna 4031, Philippines
| |
Collapse
|
8
|
Chang D, Zaia J. Methods to improve quantitative glycoprotein coverage from bottom-up LC-MS data. MASS SPECTROMETRY REVIEWS 2022; 41:922-937. [PMID: 33764573 DOI: 10.1002/mas.21692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 05/18/2023]
Abstract
Advances in mass spectrometry instrumentation, methods development, and bioinformatics have greatly improved the ease and accuracy of site-specific, quantitative glycoproteomics analysis. Data-dependent acquisition is the most popular method for identification and quantification of glycopeptides; however, complete coverage of glycosylation site glycoforms remains elusive with this method. Targeted acquisition methods improve the precision and accuracy of quantification, but at the cost of throughput and discoverability. Data-independent acquisition (DIA) holds great promise for more complete and highly quantitative site-specific glycoproteomics analysis, while maintaining the ability to discover novel glycopeptides without prior knowledge. We review additional features that can be used to increase selectivity and coverage to the DIA workflow: retention time modeling, which would simplify the interpretation of complex tandem mass spectra, and ion mobility separation, which would maximize the sampling of all precursors at a giving chromatographic retention time. The instrumentation and bioinformatics to incorporate these features into glycoproteomics analysis exist. These improvements in quantitative, site-specific analysis will enable researchers to assess glycosylation similarity in related biological systems, answering new questions about the interplay between glycosylation state and biological function.
Collapse
Affiliation(s)
- Deborah Chang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Patabandige MW, Pfeifer LD, Nguyen HT, Desaire H. Quantitative clinical glycomics strategies: A guide for selecting the best analysis approach. MASS SPECTROMETRY REVIEWS 2022; 41:901-921. [PMID: 33565652 PMCID: PMC8601598 DOI: 10.1002/mas.21688] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/13/2020] [Accepted: 01/24/2021] [Indexed: 05/05/2023]
Abstract
Glycans introduce complexity to the proteins to which they are attached. These modifications vary during the progression of many diseases; thus, they serve as potential biomarkers for disease diagnosis and prognosis. The immense structural diversity of glycans makes glycosylation analysis and quantitation difficult. Fortunately, recent advances in analytical techniques provide the opportunity to quantify even low-abundant glycopeptides and glycans derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Understanding the strengths and weaknesses of different quantitative glycomics analysis methods is important for selecting the best strategy to analyze glycosylation changes in any given set of clinical samples. To provide guidance towards selecting the proper approach, we discuss four widely used quantitative glycomics analysis platforms, including fluorescence-based analysis of released N-linked glycans and three different varieties of MS-based analysis: liquid chromatography (LC)-mass spectrometry (MS) analysis of glycopeptides, matrix-assisted laser desorption ionization-time of flight MS, and LC-ESI-MS analysis of released N-linked glycans. These methods' strengths and weaknesses are compared, particularly associated with the figures of merit that are important for clinical biomarker studies, including: the initial sample requirements, the methods' throughput, sample preparation time, the number of species identified, the methods' utility for isomer separation and structural characterization, method-related challenges associated with quantitation, repeatability, the expertise required, and the cost for each analysis. This review, therefore, provides unique guidance to researchers who endeavor to undertake a clinical glycomics analysis by offering insights on the available analysis technologies.
Collapse
Affiliation(s)
- Milani Wijeweera Patabandige
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Leah D. Pfeifer
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Hanna T. Nguyen
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Heather Desaire
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| |
Collapse
|
10
|
Li Y, Sun N, Ma S, Zhang X, Wang Y, Li X. Magnetic thermo-responsive branched polymer for fast extraction and enrichment of phenolic acids in olive oil with tunable and enhanced performance. Anal Chim Acta 2022; 1229:340359. [PMID: 36156232 DOI: 10.1016/j.aca.2022.340359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 11/01/2022]
Abstract
Magnetic thermo-responsive branched polymer (Fe3O4@poly(glycidyl methacrylate)@poly(N-isopropylacrylamide)) was fabricated for the first time and applied for microwave-assisted magnetic solid phase extraction of phenolic acids in olive oil samples followed by ultra-high performance liquid chromatography-tandem mass spectrometry analysis in multiple reaction monitoring mode. Owing to the controllable molecular weight of poly(glycidyl methacrylate) synthesized by atom transfer radical polymerization and the thermo-responsive characteristic of poly(N-isopropylacrylamide), extraction performance could be efficiently tuned and enhanced. The whole sample pretreatment process was accomplished within 1 min with the help of the microwave. The nanocomposites were characterized by transmission electron microscope, scanning electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis, vibrating sample magnetometer, water contact angles and dynamic light scattering. The adsorption experimental data fitted well with the Freundlich isotherm model and followed the pseudo-second-order kinetic model. The factors affecting the extraction process including adsorbent amount, adsorption time, sample volume, desorption conditions and interferents were investigated and optimized. Under the most favorable conditions, the developed method showed good linearity (R2 ≥ 97.98%) in the range of 0.2-30 μg L-1, low limits of detection (0.005-0.030 μg L-1) and limits of quantification (0.016-0.098 μg L-1) as well as satisfactory precision (RSDs≤4.85%). Our proposed method was successfully used for determination of phenolic acids in olive oil samples and satisfactory recoveries at three spiked concentration levels were in the range of 84.6-108.1% with RSDs less than 9.20%. Coupled with principal component analysis, our developed method proved promising for fast and convenient differentiation between extra virgin olive oils and refined olive oils.
Collapse
Affiliation(s)
- Yaping Li
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing, 100048, China.
| | - Ningning Sun
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing, 100048, China
| | - Songxin Ma
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing, 100048, China
| | - Xin Zhang
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing, 100048, China
| | - Yingfeng Wang
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing, 100048, China
| | - Xingru Li
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing, 100048, China
| |
Collapse
|
11
|
Molnarova K, Cokrtova K, Tomnikova A, Krizek T, Kozlik P. Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis. MONATSHEFTE FUR CHEMIE 2022; 153:659-686. [PMID: 35754790 PMCID: PMC9212196 DOI: 10.1007/s00706-022-02938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
Glycosylation is one of the most significant and abundant post-translational modifications in cells. Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycomic and glycoproteomic analysis is highly challenging because of the large diversity of structures, low abundance, site-specific heterogeneity, and poor ionization efficiency of glycans and glycopeptides in mass spectrometry (MS). MS is a key tool for characterization of glycans and glycopeptides. However, MS alone does not always provide full structural and quantitative information for many reasons, and thus MS is combined with some separation technique. This review focuses on the role of separation techniques used in glycomic and glycoproteomic analyses, liquid chromatography and capillary electrophoresis. The most important separation conditions and results are presented and discussed. Graphical abstract
Collapse
Affiliation(s)
- Katarina Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Cokrtova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alice Tomnikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Characterization and determination of bovine immunoglobulin G subtypes in milk and dairy products by UPLC-MS. Food Chem 2022; 390:133170. [PMID: 35597093 DOI: 10.1016/j.foodchem.2022.133170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
In this study, ultra-high performance liquid chromatography mass spectrometry (UPLC-MS) method was established for the characterization and quantitative determination of immunoglobulin G (IgG) subtypes (IgG1, IgG2, IgG3) in bovine dairy products. High-resolution mass spectrometry (HRMS) was applied to qualitatively confirm the theoretical peptides with specificity, enzymatic hydrolysis curve and stability among in heavy chain constant (CH1, CH2 and CH3) regions. The characteristic peptides VHNEGLPAPIVR, EPSVFIFPPKPK, GLPAPIVR, VVSALR were screened to quantitative analysis bovine IgG1, IgG2, IgG3 and the total amount of bovine IgG1 and IgG3, respectively. Isotope-labeled peptides were obtained by isotope dimethylation reaction, which aimed to correct the matrix effects. The results showed that the recovery was between 98.7% and 103.5%, and the precision of inter-day and intra-day was less than 6.8%. Moreover, this method had good linearity (R2 ≥ 0.999). Therefore, this research provided an effective method for quantitatively detecting bovine IgG subtypes in milk and dairy products.
Collapse
|
13
|
Tena J, Tang X, Zhou Q, Harvey D, Barajas‐Mendoza M, Jin L, Maezawa I, Zivkovic AM, Lebrilla CB. Glycosylation alterations in serum of Alzheimer's disease patients show widespread changes in N-glycosylation of proteins related to immune function, inflammation, and lipoprotein metabolism. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12309. [PMID: 35496372 PMCID: PMC9043904 DOI: 10.1002/dad2.12309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 04/09/2023]
Abstract
Introduction There is an increased need for the development of novel blood-based biomarkers for early detection, prevention, or intervention in Alzheimer's disease (AD). This study sought to determine whether serum glycopeptide analysis holds potential for identifying novel diagnostics and prognostics of AD. Methods The study involved 195 participants, including 96 patients with an AD diagnosis and 99 controls with no cognitive deficit. Utilizing a validated analytical mass spectrometry method, we monitored the site-specific glycosylation of 52 serum glycoproteins. Results Partial least-squares discriminant analysis revealed that changes in overall sialylation and fucosylation of serum glycoproteins may be indicators of an AD disease state. Loss of fucosylation of immunoglobulin G1 (IgG1) and IgG2 was indicative of AD diagnosis. Individual glycopeptide analysis found separation between the AD patients and controls on complement proteins and apolipoprotein B. Discussion The results of this study suggest that serum glycoprofiling may be a promising approach for biomarker discovery.
Collapse
Affiliation(s)
- Jennyfer Tena
- Department of ChemistryUniversity of California, DavisDavisCaliforniaUSA
| | - Xinyu Tang
- Department of NutritionUniversity of California, DavisDavisCaliforniaUSA
| | - Qingwen Zhou
- Department of ChemistryUniversity of California, DavisDavisCaliforniaUSA
| | - Danielle Harvey
- Department of Pathology and Laboratory MedicineSchool of MedicineUniversity of California, DavisSacramentoCaliforniaUSA
| | | | - Lee‐Way Jin
- Department of Pathology and Laboratory MedicineSchool of MedicineUniversity of California, DavisSacramentoCaliforniaUSA
- UC Davis MIND InstituteSacramentoCaliforniaUSA
| | - Izumi Maezawa
- Department of Pathology and Laboratory MedicineSchool of MedicineUniversity of California, DavisSacramentoCaliforniaUSA
- UC Davis MIND InstituteSacramentoCaliforniaUSA
| | - Angela M. Zivkovic
- Department of NutritionUniversity of California, DavisDavisCaliforniaUSA
| | | |
Collapse
|
14
|
Han J, Zhou Z, Zhang R, You Y, Guo Z, Huang J, Wang F, Sun Y, Liu H, Cheng X, Su Y, Shi H, Hu Q, Teng J, Yang C, Ren S, Ye J. Fucosylation of anti-dsDNA IgG1 correlates with disease activity of treatment-naïve systemic lupus erythematosus patients. EBioMedicine 2022; 77:103883. [PMID: 35182998 PMCID: PMC8857559 DOI: 10.1016/j.ebiom.2022.103883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Background Systemic Lupus Erythematosus (SLE) is a complex and heterogeneous autoimmune disease mediated by quantities of autoantibodies in which anti-double-stranded DNA (anti-dsDNA) antibodies are important. Besides, glycosylation is one of the most commonly post-translational modifications of antibodies. The association of anti-dsDNA antibodies glycosylation and SLE disease activity is still unknown. Methods We enrolled 101 consecutive treatment-naïve SLE patients with positive anti-dsDNA antibodies from the Department of Rheumatology and Immunology at Ruijin Hospital, Shanghai, between 2017 and 2019. Serum samples were used in this study. We analysed the glycosylation of anti-dsDNA IgG and total IgG subclasses according to systemic lupus erythematosus disease activity index (SLEDAI) scores. Statistical analysis and machine learning were performed to assess the correlation between glycosylation of anti-dsDNA IgG and total IgG with disease activity. Findings Serum samples from 86 patients could be detected with anti-dsDNA IgG glycopeptide and subclass of IgG glycoform. Cluster analysis showed that glycosylation of anti-dsDNA IgG and total IgG subclasses were different in SLE patients. Fucosylation, galactosylation, and sialylation levels of anti-dsDNA IgG1 were increased with SLEDAI scores (all p<0.05). The results of machine learning showed that all the glycoforms of anti-dsDNA IgG1 had better performance with lower standardised square error (SSE) than that of total IgG1, with anti-dsDNA IgG1 fucosylation level having the lowest SSE (0.009). Interpretation Our study indicated that glycosylation of anti-dsDNA IgG was different from that of total IgG and fucosylation of anti-dsDNA IgG1 correlated best with SLE disease activity. Funding This work is supported by the National Key Research and Development Program of China (2018YFC0910303), National Natural Science Foundation of China (81801592, 82101876), Clinical Research Plan of SHDC (SHDC2020CR4011), Ruijin Hospital Youth Incubation Project (KY2021607) and Shanghai Pujiang Young Rheumatologists Training Program (SPROG202006).
Collapse
Affiliation(s)
- Jing Han
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhuochao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongrong Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yijun You
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyan Huang
- Biomedical Big Data Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shifang Ren
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Fang P, Ji Y, Oellerich T, Urlaub H, Pan KT. Strategies for Proteome-Wide Quantification of Glycosylation Macro- and Micro-Heterogeneity. Int J Mol Sci 2022; 23:ijms23031609. [PMID: 35163546 PMCID: PMC8835892 DOI: 10.3390/ijms23031609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
Protein glycosylation governs key physiological and pathological processes in human cells. Aberrant glycosylation is thus closely associated with disease progression. Mass spectrometry (MS)-based glycoproteomics has emerged as an indispensable tool for investigating glycosylation changes in biological samples with high sensitivity. Following rapid improvements in methodologies for reliable intact glycopeptide identification, site-specific quantification of glycopeptide macro- and micro-heterogeneity at the proteome scale has become an urgent need for exploring glycosylation regulations. Here, we summarize recent advances in N- and O-linked glycoproteomic quantification strategies and discuss their limitations. We further describe a strategy to propagate MS data for multilayered glycopeptide quantification, enabling a more comprehensive examination of global and site-specific glycosylation changes. Altogether, we show how quantitative glycoproteomics methods explore glycosylation regulation in human diseases and promote the discovery of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Pan Fang
- Department of Biochemistry and Molecular Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China;
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
| | - Thomas Oellerich
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
- Correspondence: (H.U.); (K.-T.P.)
| | - Kuan-Ting Pan
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
- Correspondence: (H.U.); (K.-T.P.)
| |
Collapse
|
16
|
Seo N, Lee H, Oh MJ, Kim GH, Lee SG, Ahn JK, Cha HS, Kim KH, Kim J, An HJ. Isomer-Specific Monitoring of Sialylated N-Glycans Reveals Association of α2,3-Linked Sialic Acid Epitope With Behcet's Disease. Front Mol Biosci 2021; 8:778851. [PMID: 34888356 PMCID: PMC8650305 DOI: 10.3389/fmolb.2021.778851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 12/04/2022] Open
Abstract
Behcet’s disease (BD) is an immune disease characterized by chronic and relapsing systemic vasculitis of unknown etiology, which can lead to blindness and even death. Despite continuous efforts to discover biomarkers for accurate and rapid diagnosis and optimal treatment of BD, there is still no signature marker with high sensitivity and high specificity. As the link between glycosylation and the immune system has been revealed, research on the immunological function of glycans is being actively conducted. In particular, sialic acids at the terminus of glycoconjugates are directly implicated in immune responses, cell–cell/pathogen interactions, and tumor progression. Therefore, changes in sialic acid epitope in the human body are spotlighted as a new indicator to monitor the onset and progression of immune diseases. Here, we performed global profiling of N-glycan compositions derived from the sera of 47 healthy donors and 47 BD patients using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to preferentially determine BD target glycans. Then, three sialylated biantennary N-glycans were further subjected to the separation of linkage isomers and quantification using porous graphitized carbon-liquid chromatography (PGC-LC)/multiple reaction monitoring (MRM)-MS. We were able to successfully identify 11 isomers with sialic acid epitopes from the three glycan compositions consisting of Hex5HexNAc4NeuAc1, Hex5HexNAc4Fuc1NeuAc1, and Hex5HexNAc4NeuAc2. Among them, three isomers almost completely distinguished BD from control with high sensitivity and specificity with an area under the curve (AUC) of 0.945, suggesting the potential as novel BD biomarkers. In particular, it was confirmed that α2,3-sialic acid at the terminus of biantennary N-glycan was the epitope associated with BD. In this study, we present a novel approach to elucidating the association between BD and glycosylation by tracing isomeric structures containing sialic acid epitopes. Isomer-specific glycan profiling is suitable for analysis of large clinical cohorts and may facilitate the introduction of diagnostic assays for other immune diseases.
Collapse
Affiliation(s)
- Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.,Asia Glycomics Reference Site, Daejeon, South Korea
| | - Hyunjun Lee
- Department of Food and Nutrition, Chungnam National University, Daejeon, South Korea
| | - Myung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.,Asia Glycomics Reference Site, Daejeon, South Korea
| | - Ga Hyeon Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.,Asia Glycomics Reference Site, Daejeon, South Korea
| | - Sang Gil Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.,Asia Glycomics Reference Site, Daejeon, South Korea
| | - Joong Kyong Ahn
- Division of Rheumatology, Department of International Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hoon-Suk Cha
- Division of Rheumatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, South Korea
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, South Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.,Asia Glycomics Reference Site, Daejeon, South Korea
| |
Collapse
|
17
|
Maverakis E, Merleev AA, Park D, Kailemia MJ, Xu G, Ruhaak LR, Kim K, Hong Q, Li Q, Leung P, Liakos W, Wan YJY, Bowlus CL, Marusina AI, Lal NN, Xie Y, Luxardi G, Lebrilla CB. Glycan biomarkers of autoimmunity and bile acid-associated alterations of the human glycome: Primary biliary cirrhosis and primary sclerosing cholangitis-specific glycans. Clin Immunol 2021; 230:108825. [PMID: 34403816 DOI: 10.1016/j.clim.2021.108825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022]
Abstract
We have recently introduced multiple reaction monitoring (MRM) mass spectrometry as a novel tool for glycan biomarker research and discovery. Herein, we employ this technique to characterize the site-specific glycan alterations associated with primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Glycopeptides associated with disease severity were also identified. Multinomial regression modelling was employed to construct and validate multi-analyte diagnostic models capable of accurately distinguishing PBC, PSC, and healthy controls from one another (AUC = 0.93 ± 0.03). Finally, to investigate how disease-relevant environmental factors can influence glycosylation, we characterized the ability of bile acids known to be differentially expressed in PBC to alter glycosylation. We hypothesize that this could be a mechanism by which altered self-antigens are generated and become targets for immune attack. This work demonstrates the utility of the MRM method to identify diagnostic site-specific glycan classifiers capable of distinguishing even related autoimmune diseases from one another.
Collapse
Affiliation(s)
- Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA.
| | - Alexander A Merleev
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dayoung Park
- Department of Chemistry, University of California Davis, Davis, CA, USA; Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | | | - Gege Xu
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - L Renee Ruhaak
- Department of Chemistry, University of California Davis, Davis, CA, USA; Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, ZA, Leiden, the Netherlands
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Qiuting Hong
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Qiongyu Li
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Patrick Leung
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, USA
| | - William Liakos
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, UC Davis School of Medicine, CA, USA
| | - Alina I Marusina
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Nelvish N Lal
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Yixuan Xie
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Guillaume Luxardi
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| |
Collapse
|
18
|
Cao C, Yu L, Zhang X, Dong X, Yuan J, Liang X. Calibration for quantitative Fc-glycosylation analysis of therapeutic IgG1-type monoclonal antibodies by using glycopeptide standards. Anal Chim Acta 2021; 1154:338306. [PMID: 33736796 DOI: 10.1016/j.aca.2021.338306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 11/28/2022]
Abstract
Fc-glycosylation has crucial impact on the efficacy and safety of IgG-type therapeutic monoclonal antibodies (mAbs). In order to enhance the performance of MS-based bottom-up quantitation strategy, a library of glycopeptide standards containing 26 common IgG1-type Fc-glycoforms has been constructed via modified two-dimensional hydrophilic interaction liquid chromatography (HILIC) purification. Taking advantage of the acquired glycopeptide standards, calibrated quantitation strategy for Fc-glycosylation analysis of mAbs was established and evaluated on the basis of three LC-MS-based methods, including HILIC-MRM (multiple reaction monitoring), HILIC-SIM (selected ion monitor) and RPLC-SIM. Molar concentrations of eleven individual Fc-glycoforms (0.03 ± 0.001-13.77 ± 0.64 nmol mg-1) as well as degree of fucosylation (75.44-97.04%), galactosylation (3.39-49.47%) and mannosylation (1.12-21.22%) in six IgG1-type mAbs were achieved. In addition, Fc-glycosylation site occupancy was also determined from 98.05% to 99.83%. Compared with traditional MS-based quantitation via peak area normalization, the quantitation accuracy and precision of the calibrated strategy had been remarkably improved, especially when combining with HILIC separation. In addition, the transferability of calibrated quantitation as assessed by using MRM-based method had also been significantly enhanced on different instruments from different laboratories. This calibrated quantitation strategy using glycopeptide standards as calibrators will be useful for Fc-glycosylation analysis of IgG1-type mAbs with multiple glycosylation sites.
Collapse
Affiliation(s)
- Cuiyan Cao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Long Yu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xiuli Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Xuefang Dong
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
19
|
Wang S, Liu D, Qu J, Zhu H, Chen C, Gibbons C, Greenway H, Wang P, Bollag RJ, Liu K, Li L. Streamlined Subclass-Specific Absolute Quantification of Serum IgG Glycopeptides Using Synthetic Isotope-Labeled Standards. Anal Chem 2021; 93:4449-4455. [PMID: 33630567 PMCID: PMC8715724 DOI: 10.1021/acs.analchem.0c04462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Absolute glycoproteomics quantification has drawn tremendous attention owing to its prospects in biomarker discovery and clinical implementation but is impeded by a general lack of suitable heavy isotope-labeled glycopeptide standards. In this study, we devised a facile chemoenzymatic strategy to synthesize a total of 36 human IgG glycopeptides attached with well-defined glycoforms, including 15 isotope-labeled ones with a mass increment of 6 Da to their native counterparts. Spiking of these standards into human sera enabled simplified, robust, and precise absolute quantification of IgG glycopeptides in a subclass-specific fashion. Additionally, the implementation of the absolute quantification approach revealed subclass-dependent alteration of serum IgG galactosylation and sialylation in colon cancer samples.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jingyao Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - He Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Congcong Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Harmon Greenway
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Roni J Bollag
- Department of Pathology, Augusta University, Augusta, Georgia 30912, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia 30912, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
20
|
Delafield DG, Li L. Recent Advances in Analytical Approaches for Glycan and Glycopeptide Quantitation. Mol Cell Proteomics 2021; 20:100054. [PMID: 32576592 PMCID: PMC8724918 DOI: 10.1074/mcp.r120.002095] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing implications of glycosylation in physiological occurrences and human disease have prompted intensive focus on revealing glycomic perturbations through absolute and relative quantification. Empowered by seminal methodologies and increasing capacity for detection, identification, and characterization, the past decade has provided a significant increase in the number of suitable strategies for glycan and glycopeptide quantification. Mass-spectrometry-based strategies for glycomic quantitation have grown to include metabolic incorporation of stable isotopes, deposition of mass difference and mass defect isotopic labels, and isobaric chemical labeling, providing researchers with ample tools for accurate and robust quantitation. Beyond this, workflows have been designed to harness instrument capability for label-free quantification, and numerous software packages have been developed to facilitate reliable spectrum scoring. In this review, we present and highlight the most recent advances in chemical labeling and associated techniques for glycan and glycopeptide quantification.
Collapse
Affiliation(s)
- Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
21
|
de Haan N, Wuhrer M, Ruhaak L. Mass spectrometry in clinical glycomics: The path from biomarker identification to clinical implementation. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2020; 18:1-12. [PMID: 34820521 PMCID: PMC8600986 DOI: 10.1016/j.clinms.2020.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023]
Abstract
Over the past decades, the genome and proteome have been widely explored for biomarker discovery and personalized medicine. However, there is still a large need for improved diagnostics and stratification strategies for a wide range of diseases. Post-translational modification of proteins by glycosylation affects protein structure and function, and glycosylation has been implicated in many prevalent human diseases. Numerous proteins for which the plasma levels are nowadays evaluated in clinical practice are glycoproteins. While the glycosylation of these proteins often changes with disease, their glycosylation status is largely ignored in the clinical setting. Hence, the implementation of glycomic markers in the clinic is still in its infancy. This is for a large part caused by the high complexity of protein glycosylation itself and of the analytical techniques required for their robust quantification. Mass spectrometry-based workflows are particularly suitable for the quantification of glycans and glycoproteins, but still require advances for their transformation from a biomedical research setting to a clinical laboratory. In this review, we describe why and how glycomics is expected to find its role in clinical tests and the status of current mass spectrometry-based methods for clinical glycomics.
Collapse
Affiliation(s)
- N. de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - M. Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - L.R. Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Merleev AA, Park D, Xie Y, Kailemia MJ, Xu G, Ruhaak LR, Kim K, Hong Q, Li Q, Patel F, Wan YJY, Marusina AI, Adamopoulos IE, Lal NN, Mitra A, Le ST, Shimoda M, Luxardi G, Lebrilla CB, Maverakis E. A site-specific map of the human plasma glycome and its age and gender-associated alterations. Sci Rep 2020; 10:17505. [PMID: 33060657 PMCID: PMC7567094 DOI: 10.1038/s41598-020-73588-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
Alterations in the human glycome have been associated with cancer and autoimmunity. Thus, constructing a site-specific map of the human glycome for biomarker research and discovery has been a highly sought-after objective. However, due to analytical barriers, comprehensive site-specific glycoprofiling is difficult to perform. To develop a platform to detect easily quantifiable, site-specific, disease-associated glycan alterations for clinical applications, we have adapted the multiple reaction monitoring mass spectrometry method for use in glycan biomarker research. The adaptations allow for highly precise site-specific glycan monitoring with minimum sample prep. Using this technique, we successfully mapped out the relative abundances of the most common 159 glycopeptides in the plasma of 97 healthy volunteers. This plasma glycome map revealed 796 significant (FDR < 0.05) site-specific inter-protein and intra-protein glycan associations, of which the vast majority were previously unknown. Since age and gender are relevant covariants in biomarker research, these variables were also characterized. 13 glycopeptides were found to be associated with gender and 41 to be associated with age. Using just five age-associated glycopeptides, a highly accurate age prediction model was constructed and validated (r2 = 0.62 ± 0.12). The human plasma site-specific glycan map described herein has utility in applications ranging from glycan biomarker research and discovery to the development of novel glycan-altering interventions.
Collapse
Affiliation(s)
- Alexander A Merleev
- Department of Dermatology, University of California Davis School of Medicine, 3301 C Street Suite 1400, Sacramento, CA, 95816, USA
| | - Dayoung Park
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, University of California Davis, One Shields Ave, 2465 Chemistry Annex, Davis, CA, 95616, USA
| | - Yixuan Xie
- Department of Chemistry, University of California Davis, One Shields Ave, 2465 Chemistry Annex, Davis, CA, 95616, USA
| | - Muchena J Kailemia
- Department of Chemistry, University of California Davis, One Shields Ave, 2465 Chemistry Annex, Davis, CA, 95616, USA
| | - Gege Xu
- Department of Chemistry, University of California Davis, One Shields Ave, 2465 Chemistry Annex, Davis, CA, 95616, USA
| | - L Renee Ruhaak
- Department of Chemistry, University of California Davis, One Shields Ave, 2465 Chemistry Annex, Davis, CA, 95616, USA
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, ZA, Leiden, The Netherlands
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Qiuting Hong
- Department of Chemistry, University of California Davis, One Shields Ave, 2465 Chemistry Annex, Davis, CA, 95616, USA
| | - Qiongyu Li
- Department of Chemistry, University of California Davis, One Shields Ave, 2465 Chemistry Annex, Davis, CA, 95616, USA
| | - Forum Patel
- Department of Dermatology, University of California Davis School of Medicine, 3301 C Street Suite 1400, Sacramento, CA, 95816, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Alina I Marusina
- Department of Dermatology, University of California Davis School of Medicine, 3301 C Street Suite 1400, Sacramento, CA, 95816, USA
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, USA
| | - Nelvish N Lal
- Department of Dermatology, University of California Davis School of Medicine, 3301 C Street Suite 1400, Sacramento, CA, 95816, USA
| | - Anupum Mitra
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Stephanie T Le
- Department of Dermatology, University of California Davis School of Medicine, 3301 C Street Suite 1400, Sacramento, CA, 95816, USA
| | - Michiko Shimoda
- Department of Dermatology, University of California Davis School of Medicine, 3301 C Street Suite 1400, Sacramento, CA, 95816, USA
| | - Guillaume Luxardi
- Department of Dermatology, University of California Davis School of Medicine, 3301 C Street Suite 1400, Sacramento, CA, 95816, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, One Shields Ave, 2465 Chemistry Annex, Davis, CA, 95616, USA.
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA.
- Foods for Health Institute, University of California Davis, Davis, CA, USA.
| | - Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, 3301 C Street Suite 1400, Sacramento, CA, 95816, USA.
| |
Collapse
|
23
|
N-glycosylation profiling of serum immunoglobulin in opisthorchiasis patients. J Proteomics 2020; 230:103980. [PMID: 32927111 DOI: 10.1016/j.jprot.2020.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022]
Abstract
Alteration of immunoglobulin glycosylation correlates with inflammatory diseases and infectious diseases including parasitic infections. Immunoglobulin glycosylation patterns may be implicated in disease development and have also been proposed as diagnostic tools for several diseases. Previous studies have reported the immunoglobulin profiles in experimental animals and in patients infected with the carcinogenic human liver fluke, Opisthorchis viverrini. However, the N-glycosylation profiles of immunoglobulins and their subclass-specific glycoforms in opisthorchiasis patients have never been elucidated. Here, N-glycosylation patterns of immunoglobulins and their subclass-specific glycoforms in sera of O. viverrini-infected patients were investigated using triple quadrupole mass spectrometry coupled with multiple reaction monitoring. Peptide fragmentation was utilized to quantify the immunoglobulin glycoforms normalized to the unique peptide of each subclass. Overall, serum levels of IgG and IgA in O. viverrini patients were significantly increased compared to uninfected controls. Twenty-seven glycoforms were detected based on analysis of detached glycans in all immunoglobulin subclasses. The abundance of immunoglobulin glycopeptides in serum of opisthorchiasis patients deviated significantly from controls. Immunoglobulin glycosylation patterns were associated with both pro- and anti-inflammatory properties. In conclusion, O. viverrini infection alters the serum immunoglobulin glycosylation profile and these changes could distinguish between O. viverrini-infected individuals and healthy controls. SIGNIFICANCE: We demonstrated that both quantities and glycoforms of serum immunoglobulin subclasses were altered in Opisthorchis viverrini-infected individuals as investigated by the QqQ-MS-MRM method. Patterns of immunoglobulin with a specific glycoform might contribute to immune responses to O. viverrini infection.
Collapse
|
24
|
Illiano A, Pinto G, Melchiorre C, Carpentieri A, Faraco V, Amoresano A. Protein Glycosylation Investigated by Mass Spectrometry: An Overview. Cells 2020; 9:E1986. [PMID: 32872358 PMCID: PMC7564411 DOI: 10.3390/cells9091986] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
The protein glycosylation is a post-translational modification of crucial importance for its involvement in molecular recognition, protein trafficking, regulation, and inflammation. Indeed, abnormalities in protein glycosylation are correlated with several disease states such as cancer, inflammatory diseases, and congenial disorders. The understanding of cellular mechanisms through the elucidation of glycan composition encourages researchers to find analytical solutions for their detection. Actually, the multiplicity and diversity of glycan structures bond to the proteins, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies make their detection much trickier than other kinds of biopolymers. An overview of the most prominent techniques based on mass spectrometry (MS) for protein glycosylation (glycoproteomics) studies is here presented. The tricks and pre-treatments of samples are discussed as a crucial step prodromal to the MS analysis to improve the glycan ionization efficiency. Therefore, the different instrumental MS mode is also explored for the qualitative and quantitative analysis of glycopeptides and the glycans structural composition, thus contributing to the elucidation of biological mechanisms.
Collapse
Affiliation(s)
- Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- CEINGE Advanced Biotechnology, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- Istituto Nazionale Biostrutture e Biosistemi—Consorzio Interuniversitario, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy
| |
Collapse
|
25
|
Zhang Y, Lin T, Zhao Y, Mao Y, Tao Y, Huang Y, Wang S, Hu L, Cheng J, Yang H. Characterization of N-linked intact glycopeptide signatures of plasma IgGs from patients with prostate carcinoma and benign prostatic hyperplasia for diagnosis pre-stratification. Analyst 2020; 145:5353-5362. [PMID: 32568312 DOI: 10.1039/d0an00225a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The discovery of novel non-invasive biomarkers for discriminating between prostate carcinoma (PCa) patients and benign prostatic hyperplasia (BPH) patients is necessary to reduce the burden of biopsies, avoid overdiagnosis and improve quality of life. Previous studies suggest that abnormal glycosylation of immunoglobulin gamma molecules (IgGs) is strongly associated with immunological diseases and prostate diseases. Hence, characterizing N-linked intact glycopeptides of IgGs that correspond to the N-glycan structure with specific site information might enable a better understanding of the molecular pathogenesis and discovery of novel signatures in preoperative discrimination of BPH from PCa. In this study, we profiled N-linked intact glycopeptides of purified IgGs from 51 PCa patients and 45 BPH patients by our developed N-glycoproteomic method using hydrophilic interaction liquid chromatography enrichment coupled with high resolution LC-MS/MS. The quantitative analysis of the N-linked intact glycopeptides using pGlyco 2.0 and MaxQuant software provided quantitative information on plasma IgG subclass-specific and site-specific N-glycosylation. As a result, we found four aberrantly expressed N-linked intact glycopeptides across different IgG subclasses. In particular, the N-glycopeptide IgG2-GP09 (EEQFNSTFR (H5N5S1)) was dramatically elevated in plasma from PCa patients, compared with that in BPH patients (PCa/BPH ratio = 5.74, p = 0.001). Additionally, the variations in these N-linked intact glycopeptide abundances were not caused by the changes in the IgG concentrations. Furthermore, IgG2-GP09 displayed a more powerful prediction capability (auROC = 0.702) for distinguishing PCa from BPH than the clinical index t-PSA (auROC = 0.681) when used alone or in combination with other indicators (auROC = 0.853). In conclusion, these abnormally expressed N-linked intact glycopeptides have potential for non-invasive monitoring and pre-stratification of prostate diseases.
Collapse
Affiliation(s)
- Yong Zhang
- Key Lab of Transplant Engineering and Immunology, MOH; West China-Washington Mitochondria and Metabolism Research Center; Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Glycomic analysis of antibody indicates distinctive glycosylation profile in patients with autoimmune cholangitis. J Autoimmun 2020; 113:102503. [PMID: 32546343 DOI: 10.1016/j.jaut.2020.102503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
Abstract
Glycosylation of antibodies, particularly in the Fc domain, critically modulate the ability of antibodies to bind to FcRs, maintaining immune quiescence to achieve a finely orchestrated immune response. The removal of sialic acid and galactose residues dramatically alters the physiological function of IgGs, and alterations of Ig glycosylation have been associated with several autoimmune disorders. However, Ig glycosylation has not been extensively studied in autoimmune cholangitis. We applied triple quadruple mass spectroscopy with subsequent multiple reaction monitoring to elucidate the profile, composition and linkage of sugar residues of antibody glycans in patients with primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and healthy controls (HC). Agalactosylated, HexNAc terminated IgG1 glycoforms were enriched in both PBC and PSC. Levels of IgM glycans at site N439 and fucosylated glycans in J chain, were significantly decreased in PBC compared to PSC and HC. PSC patients had decreased bisecting glycoforms and increased biantennary glycoforms on IgA compared to PBC. Importantly, our data demonstrate the association of distinct branching and composition patterns of Ig glycoforms with disease severity and liver cirrhosis, which highlight the importance of glycan biology as a potential mechanism and/or a disease specific signal of inflammation.
Collapse
|
27
|
Han J, Liu Q, Xu X, Qin W, Pan Y, Qin R, Zhao R, Gu Y, Gu J, Ren S. Relative Quantitation of Subclass-Specific Murine IgG Fc N-Glycoforms by Multiple Reaction Monitoring. ACS OMEGA 2020; 5:8564-8571. [PMID: 32337418 PMCID: PMC7178347 DOI: 10.1021/acsomega.9b04412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
N-Linked glycosylation of the fragment crystallizable (Fc) domain of immunoglobulin G (IgG) is considered a significant modulator of antibody functions, which is known to be subclass-specific. As mice are the most widely used model organisms in immunological research, determining the variation in Fc glycosylation among each murine IgG subclass in different physiological or pathological statuses is beneficial for studying how the IgG subclass effector function is affected by Fc glycosylation. In this study, we established a method to quantify murine IgG Fc glycoforms normalized to the protein abundance at a subclass-specific level for various mouse strains using multiple reaction monitoring. The glycoform level was normalized to the subclass protein abundance (subclass-specific peptide intensity) in each IgG subclass to eliminate the contribution from the subclass protein abundance. Both good linearity and high repeatability of the method were validated by investigating a mixed mouse serum sample. The method was applied to quantify the differences in subclass-specific IgG Fc N-glycoforms between systemic sclerosis (SSc) mice and healthy control mice. The results demonstrated that each IgG subclass had its own characteristic-altered glycosylation, implying the close association of subclass-specific IgG Fc glycosylation with SSc in mice. This report demonstrates a method with great reliability and practicality that has promising potential for the relative quantitation of subclass-specific IgG Fc N-glycoforms in multiple mouse models.
Collapse
Affiliation(s)
- Jing Han
- NHC
Key Laboratory of Glycoconjugates Research, Department of Biochemistry
and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qingmei Liu
- Department
of Dermatology, Huashan Hospital, Fudan
University, Shanghai 200040, China
- State
Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xiaoyan Xu
- NHC
Key Laboratory of Glycoconjugates Research, Department of Biochemistry
and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenjun Qin
- NHC
Key Laboratory of Glycoconjugates Research, Department of Biochemistry
and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yiqing Pan
- NHC
Key Laboratory of Glycoconjugates Research, Department of Biochemistry
and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ruihuan Qin
- NHC
Key Laboratory of Glycoconjugates Research, Department of Biochemistry
and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ran Zhao
- Obstetrics
and Gynecology Hospital, Fudan University, Shanghai 200090, China
| | - Yong Gu
- NHC
Key Laboratory of Glycoconjugates Research, Department of Biochemistry
and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianxin Gu
- NHC
Key Laboratory of Glycoconjugates Research, Department of Biochemistry
and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shifang Ren
- NHC
Key Laboratory of Glycoconjugates Research, Department of Biochemistry
and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
28
|
Chen HF, Shiao CY, Wu MY, Lin YC, Chen HH, Chang WC, Wu MS, Kao CC, Tsai IL. Quantitative determination of human IgA subclasses and their Fc-glycosylation patterns in plasma by using a peptide analogue internal standard and ultra-high-performance liquid chromatography/triple quadrupole mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8606. [PMID: 31705576 DOI: 10.1002/rcm.8606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Glycosylation on immunoglobulins is important for the immune function. In this study, we developed and validated a method for the absolute quantification of IgA subclasses and relative quantification of IgA-Fc glycopeptides by using affinity purification and ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS). Only micro-volumes of plasma were required from each sample and we also applied the method to discover IgA and IgA-glycopeptide profiles in patients with chronic kidney diseases and IgA nephropathy. METHODS Peptide M affinity beads were used to purify IgA, and a cost-effective peptide analogue was added as internal standard. With an efficient on-bead digestion process, purified samples were analyzed by UHPLC/MS/MS in multiple reaction monitoring mode. RESULTS Correlation coefficients were greater than 0.999 for the IgA1 and IgA2 calibration curves and greater than 0.994 for glycopeptide regression curves. Intraday and interday precisions for IgA1 and IgA2 were <1.6% and <5.1% RSD, respectively. Intraday and interday accuracies ranged from 102.6 to 114.9% and 103.5 to 113.5% for IgA1 and IgA2, respectively. Stabilities of IgA1 and IgA2 at -80°C for 7 to 15 days ranged from 96.0 to 109.4%, respectively. The Pearson's correlation coefficient was 0.916 when comparing the IgA quantification results of the 30 clinical samples by using ELISAs and the developed UHPLC/MS/MS method. Compared with healthy controls, IgA and IgA-glycopeptides showed different profiles in patients with chronic kidney diseases and IgA nephropathy. CONCLUSIONS The developed method showed good validation results, and the absolute quantification results of IgA correlated with those from ELISA. The pilot application study showed that IgA and IgA-glycopeptides can be potential biomarker candidates for kidney diseases, and more clinical sample applications are worth investigating.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Ya Shiao
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Tapei, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yen-Chung Lin
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chin Kao
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Lin Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Tapei, Taiwan
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
29
|
Komaromy A, Reider B, Jarvas G, Guttman A. Glycoprotein biomarkers and analysis in chronic obstructive pulmonary disease and lung cancer with special focus on serum immunoglobulin G. Clin Chim Acta 2020; 506:204-213. [PMID: 32243984 DOI: 10.1016/j.cca.2020.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/11/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are two major diseases of the lung with high rate of mortality, mostly among tobacco smokers. The glycosylation patterns of various plasma proteins show significant changes in COPD and subsequent hypoxia, inflammation and lung cancer, providing promising opportunities for screening aberrant glycan structures contribute to early detection of both diseases. Glycoproteins associated with COPD and lung cancer consist of highly sialylated N-glycans, which play an important role in inflammation whereby hypoxia leads to accumulation of sialyl Lewis A and X glycans. Although COPD is an inflammatory disease, it is an independent risk factor for lung cancer. Marked decrease in galactosylation of plasma immunoglobulin G (IgG) together with increased presence of sialic acids and more complex highly branched N-glycan structures are characteristic for COPD and lung cancer. Numerous glycan biomarkers have been discovered, and analysis of glycovariants associated with COPD and lung cancer has been carried out. In this paper we review fundamental glycosylation changes in COPD and lung cancer glycoproteins, focusing on IgG to provide an opportunity to distinguish between the two diseases at the glycoprotein level with diagnostic value.
Collapse
Affiliation(s)
- Andras Komaromy
- University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary
| | - Balazs Reider
- University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary
| | - Gabor Jarvas
- University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary; Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 98 Nagyerdei Krt, Debrecen 4032, Hungary.
| | - Andras Guttman
- University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary; Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 98 Nagyerdei Krt, Debrecen 4032, Hungary
| |
Collapse
|
30
|
Development of efficient on-bead protein elution process coupled to ultra-high performance liquid chromatography-tandem mass spectrometry to determine immunoglobulin G subclass and glycosylation for discovery of bio-signatures in pancreatic disease. J Chromatogr A 2020; 1621:461039. [PMID: 32295703 DOI: 10.1016/j.chroma.2020.461039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022]
Abstract
Type 1 autoimmune pancreatitis (AIP) is a kind of IgG4-related disease in which higher IgG4 and total IgG levels have been found in patient serum. Due to the similar imaging features and laboratory parameters between AIP and pancreatic ductal adenocarcinoma (PDAC), a differential diagnosis is still challenging. Since IgG profiles can be potential bio-signatures for disease, we developed and validated a method which coupled on-bead enzymatic protein elution process to an efficient UHPLC-MS/MS method to determine IgG subclass and glycosylation. A stable-isotope labeled IgG was incorporated as internal standard to achieve accurate quantification. For calibration curves, the correlation coefficients for total IgG and the four IgG subclasses were higher than 0.995. Intraday (n = 5) and interday (n = 3) precisions of the peak area ratios of LLOQ, low, medium, and high QC samples were all less than 6.6% relative standard deviation (% RSD), and the accuracies were between 93.5 and 114.9%. Calibration curves, precision, and accuracy were also evaluated for 26 IgG glycopeptides. The method was applied to samples from healthy controls and patients with AIP and PDAC. Distinct IgG patterns were discovered among the groups, and 7 glycopeptides showed high potential in differentiating AIP and PDAC. The results demonstrated that the developed method is suitable for multi-feature analysis of human IgG, and the discovered IgG profiles can be used as bio-signatures for AIP and PDAC.
Collapse
|
31
|
Absolute quantitation of high abundant Fc-glycopeptides from human serum IgG-1. Anal Chim Acta 2020; 1102:130-139. [DOI: 10.1016/j.aca.2019.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/01/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023]
|
32
|
Liu S, Fu Y, Huang Z, Liu Y, Liu BF, Cheng L, Liu X. A comprehensive analysis of subclass-specific IgG glycosylation in colorectal cancer progression by nanoLC-MS/MS. Analyst 2020; 145:3136-3147. [DOI: 10.1039/d0an00369g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Colorectal cancer is associated with changed IgG glycosylation, but the alteration in specific subclasses of IgG is unknown.
Collapse
Affiliation(s)
- Si Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Yang Fu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Zhiwen Huang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Yuanyuan Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| | - Liming Cheng
- Department of Laboratory Medicine
- Tongji Hospital
- Tongji Medical College
- Huzhong University of Science and Technology
- China
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory
- Systems Biology Theme
- Department of Biomedical Engineering
- College of Life Science and Technology
- Huazhong University of Science and Technology
| |
Collapse
|
33
|
Zhang S, Cao X, Liu C, Li W, Zeng W, Li B, Chi H, Liu M, Qin X, Tang L, Yan G, Ge Z, Liu Y, Gao Q, Lu H. N-glycopeptide Signatures of IgA 2 in Serum from Patients with Hepatitis B Virus-related Liver Diseases. Mol Cell Proteomics 2019; 18:2262-2272. [PMID: 31501225 PMCID: PMC6823847 DOI: 10.1074/mcp.ra119.001722] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
N-glycosylation alteration has been reported in liver diseases. Characterizing N-glycopeptides that correspond to N-glycan structure with specific site information enables better understanding of the molecular pathogenesis of liver damage and cancer. Here, unbiased quantification of N-glycopeptides of a cluster of serum glycoproteins with 40-55 kDa molecular weight (40-kDa band) was investigated in hepatitis B virus (HBV)-related liver diseases. We used an N-glycopeptide method based on 18O/16O C-terminal labeling to obtain 82 comparisons of serum from patients with HBV-related hepatocellular carcinoma (HCC) and liver cirrhosis (LC). Then, multiple reaction monitoring (MRM) was performed to quantify N-glycopeptide relative to the protein content, especially in the healthy donor-HBV-LC-HCC cascade. TPLTAN205ITK (H5N5S1F1) and (H5N4S2F1) corresponding to the glycopeptides of IgA2 were significantly elevated in serum from patients with HBV infection and even higher in HBV-related LC patients, as compared with healthy donor. In contrast, the two glycopeptides of IgA2 fell back down in HBV-related HCC patients. In addition, the variation in the abundance of two glycopeptides was not caused by its protein concentration. The altered N-glycopeptides might be part of a unique glycan signature indicating an IgA-mediated mechanism and providing potential diagnostic clues in HBV-related liver diseases.
Collapse
Affiliation(s)
- Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Xinyi Cao
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Precision Medicine, Beihang University, Beijing 100083, China
| | - Wei Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wenfeng Zeng
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China
| | - Baiwen Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 201620, China
| | - Hao Chi
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China
| | - Mingqi Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Lingyi Tang
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Guoquan Yan
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zefan Ge
- State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China.
| | - Haojie Lu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry, Fudan University, Shanghai 200433, China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
| |
Collapse
|
34
|
Yang L, Sun Z, Zhang L, Cai Y, Peng Y, Cao T, Zhang Y, Lu H. Chemical labeling for fine mapping of IgG N-glycosylation by ETD-MS. Chem Sci 2019; 10:9302-9307. [PMID: 32110292 PMCID: PMC7006626 DOI: 10.1039/c9sc02491c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
Immunoglobulin G (IgG), which contains four subclasses (IgG1-4), is one of the most important classes of glycoproteins in the immune system. Because of its importance in the immune system, a steady increase of interest in developing IgG as the biomarker or biotherapeutic agent for the treatment of diseases has been seen, as most therapeutic mAbs were IgG-based. N-Glycosylation of IgG is crucial for its effector function and makes IgG highly heterogeneous both in structure and function, although all four subclasses of IgG contain only a single N-glycosylation site in the Fc region with a highly similar amino acid sequence. Therefore, fine mapping of IgG glycosylation is necessary for understanding the IgG function and avoiding aberrant glycosylation in mAbs. However, site-specific and comprehensive N-glycosylation analysis of IgG subclasses still cannot be achieved by MS alone due to the partial sequence coverage and loss of connections among glycosylation of the protein sequence. We report here a chemical labeling strategy to improve the electron transfer dissociation efficiency in mass spectrometry analysis, which enables a 100% peptide sequence coverage of N-glycopeptides in all subclasses of IgG. Combined with high-energy collisional dissociation for the fragmentation of glycans, fine mapping of the N-glycosylation profile of IgG is achieved. This comprehensive glycosylation analysis strategy for the first time allows the discrimination of IgG3 and IgG4 intact N-glycopeptides with high similarity in sequence without the antibody-based pre-separation. Using this strategy, aberrant serum IgG N-glycosylation for four IgG subclasses associated with cirrhosis and hepatocellular carcinoma was revealed. Moreover, this method identifies 5 times more intact glycopeptides from human serum than the native-ETD method, implying that the approach can also accommodate large-scale site-specific profiling of glycoproteomes.
Collapse
Affiliation(s)
- Lijun Yang
- Shanghai Cancer Center , Department of Chemistry , Fudan University , Shanghai 200032 , China . ;
| | - Zhenyu Sun
- Institutes of Biomedical Sciences , NHC Key Laboratory of Glycoconjugates Research , Fudan University , Shanghai 200032 , China
| | - Lei Zhang
- Institutes of Biomedical Sciences , NHC Key Laboratory of Glycoconjugates Research , Fudan University , Shanghai 200032 , China
| | - Yan Cai
- Institutes of Biomedical Sciences , NHC Key Laboratory of Glycoconjugates Research , Fudan University , Shanghai 200032 , China
| | - Ye Peng
- Institutes of Biomedical Sciences , NHC Key Laboratory of Glycoconjugates Research , Fudan University , Shanghai 200032 , China
| | - Ting Cao
- Shanghai Cancer Center , Department of Chemistry , Fudan University , Shanghai 200032 , China . ;
| | - Ying Zhang
- Shanghai Cancer Center , Department of Chemistry , Fudan University , Shanghai 200032 , China . ;
- Institutes of Biomedical Sciences , NHC Key Laboratory of Glycoconjugates Research , Fudan University , Shanghai 200032 , China
| | - Haojie Lu
- Shanghai Cancer Center , Department of Chemistry , Fudan University , Shanghai 200032 , China . ;
- Institutes of Biomedical Sciences , NHC Key Laboratory of Glycoconjugates Research , Fudan University , Shanghai 200032 , China
| |
Collapse
|
35
|
Yau LF, Liu J, Jiang M, Bai G, Wang JR, Jiang ZH. An integrated approach for comprehensive profiling and quantitation of IgG-Fc glycopeptides with application to rheumatoid arthritis. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1122-1123:64-72. [DOI: 10.1016/j.jchromb.2019.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 11/29/2022]
|
36
|
Flowers SA, Lane CS, Karlsson NG. Deciphering Isomers with a Multiple Reaction Monitoring Method for the Complete Detectable O-Glycan Repertoire of the Candidate Therapeutic, Lubricin. Anal Chem 2019; 91:9819-9827. [PMID: 31246420 DOI: 10.1021/acs.analchem.9b01485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosylation is a fundamental post-translational modification, occurring on half of all proteins. Despite its significance, our understanding is limited, in part due to the inherent difficulty in studying these branched, multi-isomer structures. Accessible, detailed, and quantifiable methods for studying glycans, particularly O-glycans, are needed. Here we take a multiple reaction monitoring (MRM) approach to differentiate and relatively quantify all detectable glycans, including isomers, on the heavily O-glycosylated protein lubricin. Lubricin (proteoglycan 4) is essential for lubrication of the joint and eye. Given the therapeutic potential of lubricin, it is essential to understand its O-glycan repertoire in biological and recombinantly produced samples. O-Glycans were released by reductive β-elimination and defined, showing a range of 26 neutral, sulfated, sialylated, and both sulfated and sialylated core 1 (Galβ1-3GalNAcα1-) and core 2 (Galβ1-3(GlcNAcβ1-6)GalNAcα1-) structures. Isomer-specific MRM transitions allowed effective differentiation of neutral glycan isomers as well as sulfated isomeric structures, where the sulfate was retained on the fragment ions. This strategy was not as effective with labile sialylated structures; instead, it was observed that the optimal collision energy for the m/z 290.1 sialic acid B-fragment differed consistently between sialic acid isomers, allowing differentiation between isomers when fragmentation spectra were insufficient. This approach was also effective for purchased Neu5Acα2-3Galβ1-4Glc and Neu5Acα2-6Galβ1-4Glc and for Neu5Acα2-3Galβ1-4GlcNAc and Neu5Acα2-6Galβ1-4GlcNAc linkage isomers with the Neu5Acα2-6 consistently requiring more energy for optimal generation of the m/z 290.1 fragment. Overall, this method provides an effective and easily accessible approach for the quantification and annotation of complex released O-glycan samples.
Collapse
Affiliation(s)
- Sarah A Flowers
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Medicinaregatan 9A , 40530 Gothenburg , Sweden.,Department of Neuroscience , Georgetown University , 3970 Reservoir Road NW, New Research Building EP20 , Washington, D.C. , United States
| | - Catherine S Lane
- SCIEX , Phoenix House, Lakeside Drive, Centre Park , Warrington WA1 1RX , United Kingdom
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Medicinaregatan 9A , 40530 Gothenburg , Sweden
| |
Collapse
|
37
|
Xiong Y, Karuppanan K, Bernardi A, Li Q, Kommineni V, Dandekar AM, Lebrilla CB, Faller R, McDonald KA, Nandi S. Effects of N-Glycosylation on the Structure, Function, and Stability of a Plant-Made Fc-Fusion Anthrax Decoy Protein. FRONTIERS IN PLANT SCIENCE 2019; 10:768. [PMID: 31316527 PMCID: PMC6611495 DOI: 10.3389/fpls.2019.00768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/27/2019] [Indexed: 05/29/2023]
Abstract
Protein N-glycosylation is an important post-translational modification and has influences on a variety of biological processes at the cellular and molecular level, making glycosylation a major study aspect for glycoprotein-based therapeutics. To achieve a comprehensive understanding on how N-glycosylation impacts protein properties, an Fc-fusion anthrax decoy protein, viz rCMG2-Fc, was expressed in Nicotiana benthamiana plant with three types of N-glycosylation profiles. Three variants were produced by targeting protein to plant apoplast (APO), endoplasmic reticulum (ER) or removing the N-glycosylation site by a point mutation (Agly). Both the APO and ER variants had a complex-type N-glycan (GnGnXF) as their predominant glycans. In addition, ER variant had a higher concentration of mannose-type N-glycans (50%). The decoy protein binds to the protective antigen (PA) of anthrax through its CMG2 domain and inhibits toxin endocytosis. The protein expression, sequence, N-glycosylation profile, binding kinetics to PA, toxin neutralization efficiency, and thermostability were determined experimentally. In parallel, we performed molecular dynamics (MD) simulations of the predominant full-length rCMG2-Fc glycoform for each of the three N-glycosylation profiles to understand the effects of glycosylation at the molecular level. The MAN8 glycoform from the ER variant was additionally simulated to resolve differences between the APO and ER variants. Glycosylation showed strong stabilizing effects on rCMG2-Fc during in planta accumulation, evidenced by the over 2-fold higher expression and less protein degradation observed for glycosylated variants compared to the Agly variant. Protein function was confirmed by toxin neutralization assay (TNA), with effective concentration (EC50) rankings from low to high of 67.6 ng/ml (APO), 83.15 ng/ml (Agly), and 128.9 ng/ml (ER). The binding kinetics between rCMG2-Fc and PA were measured with bio-layer interferometry (BLI), giving sub-nanomolar affinities regardless of protein glycosylation and temperatures (25 and 37°C). The protein thermostability was examined utilizing the PA binding ELISA to provide information on EC50 differences. The fraction of functional ER variant decayed after overnight incubation at 37°C, and no significant change was observed for APO or Agly variants. In MD simulations, the MAN8 glycoform exhibits quantitatively higher distance between the CMG2 and Fc domains, as well as higher hydrophobic solvent accessible surface areas (SASA), indicating a possibly higher aggregation tendency of the ER variant. This study highlights the impacts of N-glycosylation on protein properties and provides insight into the effects of glycosylation on protein molecular dynamics.
Collapse
Affiliation(s)
- Yongao Xiong
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Kalimuthu Karuppanan
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Austen Bernardi
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | | | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| |
Collapse
|
38
|
Ruhaak LR, Romijn FPHTM, Smit NPM, van der Laarse A, Pieterse MM, de Maat MPM, Haas FJLM, Kluft C, Amiral J, Meijer P, Cobbaert CM. Detecting molecular forms of antithrombin by LC-MRM-MS: defining the measurands. Clin Chem Lab Med 2019; 56:1704-1714. [PMID: 29708875 DOI: 10.1515/cclm-2017-1111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Affiliation(s)
- L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Postzone E2-P, Albinusdreef 2, 2333 ZA Leiden, The Netherlands, Phone: +31-71526-6397
| | - Fred P H T M Romijn
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nico P M Smit
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud van der Laarse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mervin M Pieterse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | - Piet Meijer
- ECAT Foundation, Voorschoten, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
39
|
Naegeli A, Bratanis E, Karlsson C, Shannon O, Kalluru R, Linder A, Malmström J, Collin M. Streptococcus pyogenes evades adaptive immunity through specific IgG glycan hydrolysis. J Exp Med 2019; 216:1615-1629. [PMID: 31092533 PMCID: PMC6605743 DOI: 10.1084/jem.20190293] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
EndoS from Streptococcus pyogenes hydrolyzes the functionally important glycan on the Fc portion of IgG during infections in humans. In mice with IgG mediated immunity against the M1 protein on the bacteria, EndoS is a virulence factor. Streptococcus pyogenes (Group A streptococcus; GAS) is a human pathogen causing diseases from uncomplicated tonsillitis to life-threatening invasive infections. GAS secretes EndoS, an endoglycosidase that specifically cleaves the conserved N-glycan on IgG antibodies. In vitro, removal of this glycan impairs IgG effector functions, but its relevance to GAS infection in vivo is unclear. Using targeted mass spectrometry, we characterized the effects of EndoS on host IgG glycosylation during the course of infections in humans. Substantial IgG glycan hydrolysis occurred at the site of infection and systemically in the severe cases. We demonstrated decreased resistance to phagocytic killing of GAS lacking EndoS in vitro and decreased virulence in a mouse model of invasive infection. This is the first described example of specific bacterial IgG glycan hydrolysis during infection and thereby verifies the hypothesis that EndoS modifies antibodies in vivo. This mechanisms of immune evasion could have implications for treatment of severe GAS infections and for future efforts at vaccine development.
Collapse
Affiliation(s)
- Andreas Naegeli
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Eleni Bratanis
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Christofer Karlsson
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Raja Kalluru
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Adam Linder
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Mattias Collin
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Parallel reaction monitoring with multiplex immunoprecipitation of N-glycoproteins in human serum for detection of hepatocellular carcinoma. Anal Bioanal Chem 2019; 411:3009-3019. [DOI: 10.1007/s00216-019-01775-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 01/17/2023]
|
41
|
Chang YT, Chang MC, Tsai YJ, Ferng C, Shih HC, Kuo YP, Chen CH, Tsai IL. Method development of immunoglobulin G purification from micro-volumes of human serum for untargeted and targeted proteomics-based antibody repertoire studies. J Food Drug Anal 2019; 27:475-482. [PMID: 30987718 PMCID: PMC9296204 DOI: 10.1016/j.jfda.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulins (Igs) are major serum proteins which play important roles in immunity. Both untargeted and targeted proteomic workflows can be applied to investigate antigen-binding sites and the glycosylation profiles of Igs. For a more-comprehensive picture of IgG from human serum, we developed an IgG purification process and coupled the standardized method to untargeted and targeted proteomic workflows for IgG investigations. Parameters such as the type of purification beads, volume of the bead slurry, incubation conditions, and binding capacities were evaluated in this study. Only 2 μL of human serum was required for each sample. The performance of coupling the purification process to untargeted proteomics in the IgG analysis was evaluated by comparing normalized abundances of IgG subclass-specific peptides with quantification results from an ELISA. Pearson’s correlation values were all >0.82. Targeted proteomic workflow was applied to serum samples from patients with autoimmune pancreatitis and from healthy controls, and the results corresponded to clinical findings that IgG4-related peptides/glycopeptides showed higher abundances in the diseased group. The developed IgG purification process is simple and requires small sample volume, and it can be coupled to targeted and untargeted proteomic workflows for clinical investigations in the future.
Collapse
Affiliation(s)
- Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University Hospital,
Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University,
Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University Hospital,
Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University,
Taiwan
| | - Yun-Jung Tsai
- School of Pharmacy, Taipei Medical University,
Taiwan
| | | | | | - Ya-Po Kuo
- Genomics Research Center, Academia Sinica,
Taiwan
| | | | - I-Lin Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University,
Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University,
Taiwan
- Corresponding author. Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan., E-mail address: (I.-L. Tsai)
| |
Collapse
|
42
|
Li Q, Kailemia MJ, Merleev AA, Xu G, Serie D, Danan LM, Haj FG, Maverakis E, Lebrilla CB. Site-Specific Glycosylation Quantitation of 50 Serum Glycoproteins Enhanced by Predictive Glycopeptidomics for Improved Disease Biomarker Discovery. Anal Chem 2019; 91:5433-5445. [DOI: 10.1021/acs.analchem.9b00776] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qiongyu Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Muchena J. Kailemia
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Alexander A. Merleev
- Department of Dermatology, University of California Davis, School of Medicine, Sacramento, California 95817, United States
| | - Gege Xu
- Venn Biosciences Corporation, 800 Chesapeake Dr., Redwood City, California 94063, United States
| | - Daniel Serie
- Venn Biosciences Corporation, 800 Chesapeake Dr., Redwood City, California 94063, United States
| | - Lieza M. Danan
- Venn Biosciences Corporation, 800 Chesapeake Dr., Redwood City, California 94063, United States
| | - Fawaz G. Haj
- Department of Nutrition, University of California, One Shields Avenue, Davis, California 95616, United States
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of California Davis, Sacramento, California 95817, United States
| | - Emanual Maverakis
- Department of Dermatology, University of California Davis, School of Medicine, Sacramento, California 95817, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
43
|
Smith J, Mittermayr S, Váradi C, Bones J. Quantitative glycomics using liquid phase separations coupled to mass spectrometry. Analyst 2018; 142:700-720. [PMID: 28170017 DOI: 10.1039/c6an02715f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Post-translational modification of proteins by the attachment of glycans is governed by a variety of highly specific enzymes and is associated with fundamental impacts on the parent protein's physical, chemical and biological properties. The inherent connection between cellular physiology and specific glycosylation patterns has been shown to offer potential for diagnostic and prognostic monitoring of altered glycosylation in the disease state. Conversely, glycoprotein based biopharmaceuticals have emerged as dominant therapeutic strategies in the treatment of intricate diseases. Glycosylation present on these biopharmaceuticals represents a major critical quality attribute with impacts on both pharmacokinetics and pharmacodynamics. The structural variety of glycans, based upon their non-template driven assembly, poses a significant analytical challenge for both qualitative and quantitative analysis. Labile monosaccharide constituents, isomeric species and often low sample availability from biological sources necessitates meticulous sample handling, ultra-high-resolution analytical separation and sensitive detection techniques, respectively. In this article a critical review of analytical quantitation approaches using liquid phase separations coupled to mass spectrometry for released glycans of biopharmaceutical and biomedical significance is presented. Considerations associated with sample derivatisation strategies, ionisation, relative quantitation through isotopic as well as isobaric labelling, metabolic/enzymatic incorporation and targeted analysis are all thoroughly discussed.
Collapse
Affiliation(s)
- Josh Smith
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland. and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590, Ireland
| | - Stefan Mittermayr
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland.
| | - Csaba Váradi
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland.
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Dublin, A94 X099, Ireland. and School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1 W8, Ireland
| |
Collapse
|
44
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
45
|
Awan B, Turkov D, Schumacher C, Jacobo A, McEnerney A, Ramsey A, Xu G, Park D, Kalomoiris S, Yao W, Jao LE, Allende ML, Lebrilla CB, Fierro FA. FGF2 Induces Migration of Human Bone Marrow Stromal Cells by Increasing Core Fucosylations on N-Glycans of Integrins. Stem Cell Reports 2018; 11:325-333. [PMID: 29983388 PMCID: PMC6093088 DOI: 10.1016/j.stemcr.2018.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Since hundreds of clinical trials are investigating the use of multipotent stromal cells (MSCs) for therapeutic purposes, effective delivery of the cells to target tissues is critical. We have found an unexplored mechanism, by which basic fibroblast growth factor (FGF2) induces expression of fucosyltransferase 8 (FUT8) to increase core fucosylations of N-linked glycans of membrane-associated proteins, including several integrin subunits. Gain- and loss-of-function experiments show that FUT8 is both necessary and sufficient to induce migration of MSCs. Silencing FUT8 also affects migration of MSCs in zebrafish embryos and a murine bone fracture model. Finally, we use in silico modeling to show that core fucosylations restrict the degrees of freedom of glycans on the integrin's surface, hence stabilizing glycans on a specific position. Altogether, we show a mechanism whereby FGF2 promotes migration of MSCs by modifying N-glycans. This work may help improve delivery of MSCs in therapeutic settings.
Collapse
Affiliation(s)
- Baarkullah Awan
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - David Turkov
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Cameron Schumacher
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Antonio Jacobo
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Amber McEnerney
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Ashley Ramsey
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Gege Xu
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Stefanos Kalomoiris
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Wei Yao
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, USA
| | - Miguel L Allende
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, USA; Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Fernando A Fierro
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA; Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
46
|
Robinson RC, Poulsen NA, Barile D. Multiplexed bovine milk oligosaccharide analysis with aminoxy tandem mass tags. PLoS One 2018; 13:e0196513. [PMID: 29698512 PMCID: PMC5919578 DOI: 10.1371/journal.pone.0196513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/09/2018] [Indexed: 12/29/2022] Open
Abstract
Milk oligosaccharides (OS) are a key factor that influences the infant gut microbial composition, and their importance in promoting healthy infant development and disease prevention is becoming increasingly apparent. Investigating the structures, properties, and sources of these compounds requires a host of complementary analytical techniques. Relative compound quantification by mass spectral analysis of isobarically labeled samples is a relatively new technique that has been used mainly in the proteomics field. Glycomics applications have so far focused on analysis of protein-linked glycans, while analysis of free milk OS has previously been conducted only on analytical standards. In this paper, we extend the use of isobaric glycan tags to the analysis of bovine milk OS by presenting a method for separation of labeled OS on a porous graphitized carbon liquid chromatographic column with subsequent analysis by quadrupole time-of-flight tandem mass spectrometry. Abundances for 15 OS extracted from mature bovine milk were measured, with replicate injections providing coefficients of variation below 15% for most OS. Isobaric labeling improved ionization efficiency for low-abundance, high-molecular weight fucosylated OS, which are known to exist in bovine milk but have been only sporadically reported in the literature. We compared the abundances of four fucosylated OS in milk from Holstein and Jersey cattle and found that three of the compounds were more abundant in Jersey milk, which is in general agreement with a previous study. This novel method represents an advancement in our ability to characterize milk OS and provides the advantages associated with isobaric labeling, including reduced instrumental analysis time and increased analyte ionization efficiency. This improved ability to measure differences in bioactive OS abundances in large datasets will facilitate exploration of OS from all food sources for the purpose of developing health-guiding products for infants, immune-compromised elderly, and the population at large.
Collapse
Affiliation(s)
- Randall C. Robinson
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States of America
| | | | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States of America
- Foods for Health Institute, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Frost DC, Li L. Recent advances in mass spectrometry-based glycoproteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:71-123. [PMID: 24985770 DOI: 10.1016/b978-0-12-800453-1.00003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation plays fundamental roles in many biological processes as one of the most common, and the most complex, posttranslational modification. Alterations in glycosylation profile are now known to be associated with many diseases. As a result, the discovery and detailed characterization of glycoprotein disease biomarkers is a primary interest of biomedical research. Advances in mass spectrometry (MS)-based glycoproteomics and glycomics are increasingly enabling qualitative and quantitative approaches for site-specific structural analysis of protein glycosylation. While the complexity presented by glycan heterogeneity and the wide dynamic range of clinically relevant samples like plasma, serum, cerebrospinal fluid, and tissue make comprehensive analyses of the glycoproteome a challenging task, the ongoing efforts into the development of glycoprotein enrichment, enzymatic digestion, and separation strategies combined with novel quantitative MS methodologies have greatly improved analytical sensitivity, specificity, and throughput. This review summarizes current MS-based glycoproteomics approaches and highlights recent advances in its application to cancer biomarker and neurodegenerative disease research.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA; Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
48
|
Karlsson CAQ, Järnum S, Winstedt L, Kjellman C, Björck L, Linder A, Malmström JA. Streptococcus pyogenes Infection and the Human Proteome with a Special Focus on the Immunoglobulin G-cleaving Enzyme IdeS. Mol Cell Proteomics 2018; 17:1097-1111. [PMID: 29511047 PMCID: PMC5986240 DOI: 10.1074/mcp.ra117.000525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/16/2018] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases are characterized by a complex interplay between host and pathogen, but how these interactions impact the host proteome is unclear. Here we applied a combined mass spectrometry-based proteomics strategy to investigate how the human proteome is transiently modified by the pathogen Streptococcus pyogenes, with a particular focus on bacterial cleavage of IgG in vivo. In invasive diseases, S. pyogenes evokes a massive host response in blood, whereas superficial diseases are characterized by a local leakage of several blood plasma proteins at the site of infection including IgG. S. pyogenes produces IdeS, a protease cleaving IgG in the lower hinge region and we find highly effective IdeS-cleavage of IgG in samples from local IgG poor microenvironments. The results show that IdeS contributes to the adaptation of S. pyogenes to its normal ecological niches. Additionally, the work identifies novel clinical opportunities for in vivo pathogen detection.
Collapse
Affiliation(s)
- Christofer A Q Karlsson
- From the ‡Lund University, Division of Infection Medicine, Department of Clinical Sciences, Solvegatan 19, BMC, Lund, 221 84 Lund, Sweden
| | - Sofia Järnum
- §Hansa Medical AB, Scheelevägen 22, 223 63 Lund, Sweden
| | - Lena Winstedt
- §Hansa Medical AB, Scheelevägen 22, 223 63 Lund, Sweden
| | | | - Lars Björck
- From the ‡Lund University, Division of Infection Medicine, Department of Clinical Sciences, Solvegatan 19, BMC, Lund, 221 84 Lund, Sweden
| | - Adam Linder
- From the ‡Lund University, Division of Infection Medicine, Department of Clinical Sciences, Solvegatan 19, BMC, Lund, 221 84 Lund, Sweden
| | - Johan A Malmström
- From the ‡Lund University, Division of Infection Medicine, Department of Clinical Sciences, Solvegatan 19, BMC, Lund, 221 84 Lund, Sweden;
| |
Collapse
|
49
|
Song T, Chen P, Stroble C, Ruhaak LR, Wang H, Li Z, He W, Lebrilla CB. Serum glycosylation characterization of osteonecrosis of the femoral head by mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2018; 24:178-187. [PMID: 29224385 PMCID: PMC6201689 DOI: 10.1177/1469066717740010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Osteonecrosis of the femoral head is a recalcitrant and paralyzing disease often discovered in the end stage at the time of diagnosis, which is often performed by physical examination and diagnostic imaging. Osteonecrosis of the femoral head is typically caused by trauma or long-term steroid use. There are over 30 million patients in the US taking steroids, and roughly 40% will develop osteonecrosis of the femoral head. However, the exact pathophysiological process is not well understood. This study aims to examine the alteration in serum glycosylation of osteonecrosis of the femoral head using the state-of-the-art analytical tools to provide more chemical data for pathophysiology research and possibly biomarker discovery. A training set containing 27 serum samples from steroid-induced osteonecrosis of the femoral head patients and 25 from gender- and age-matched controls was collected and analyzed. Glycosylation of whole serum and site-specific glycosylation of immunoglobulins are characterized using electrospray ionization-Q-time of flight and electrospray ionization-Triple-Quadruple via multiple reaction monitoring, respectively. The whole serum glycosylation analysis yielded 14 N-glycan compositions and multiple reaction monitoring yielded eight glycopeptides that were altered between cases and controls with statistical significance. The increase of nonsialylated, nonfucosylated N-glycans and decrease of fucosylated N-glycans are associated with the development of osteonecrosis of the femoral head. Glycosylation is a posttranslational protein modification and is apparently affected by osteonecrosis of the femoral head. Future studies with a larger cohort and patients from earlier stage will be performed to assess these potential markers' value in disease onset.
Collapse
Affiliation(s)
- Ting Song
- Department of Chemistry, University of California Davis, Davis, California, 95616, United States
| | - Peng Chen
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Cancer Center, University of California Davis, Sacramento, California, 95817, United States
| | - Carol Stroble
- Department of Chemistry, University of California Davis, Davis, California, 95616, United States
| | - L. Renee Ruhaak
- Department of Chemistry, University of California Davis, Davis, California, 95616, United States
| | - Haibin Wang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ziqi Li
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei He
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California Davis, Davis, California, 95616, United States
| |
Collapse
|
50
|
Kailemia MJ, Xu G, Wong M, Li Q, Goonatilleke E, Leon F, Lebrilla CB. Recent Advances in the Mass Spectrometry Methods for Glycomics and Cancer. Anal Chem 2018; 90:208-224. [PMID: 29049885 PMCID: PMC6200424 DOI: 10.1021/acs.analchem.7b04202] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Muchena J. Kailemia
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- These authors contributed equally to this work
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- These authors contributed equally to this work
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Frank Leon
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
- Foods for Health Institute, University of California, Davis, CA 95616, USA
| |
Collapse
|