1
|
Schorr HC, Schultz ZD. Digital surface enhanced Raman spectroscopy for quantifiable single molecule detection in flow. Analyst 2024; 149:3711-3715. [PMID: 38895849 PMCID: PMC11229883 DOI: 10.1039/d4an00801d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Surface enhanced Raman scattering (SERS) provides a label free method of analyzing molecules from diverse and complex signals, potentially with single molecule sensitivity. The chemical specificity inherent in the SERS spectrum can identify molecules; however signal variability arising from the diversity of plasmonic environments can limit quantification, particularly at low concentrations. Here we show that digitizing, or counting SERS events, can decrease the limit of detection in flowing solutions enabling quantification of single molecules. By using multivariate curve resolution and establishing a score threshold, each individual spectrum can be classified as containing an event or not. This binary "yes/no" can then be quantified, and a linear region can be established. This method was shown to lower the limit of detection to the lowest physical limit, and lowered the limit of detection by an order of magnitude from the traditional, intensity based LOD calculations.
Collapse
Affiliation(s)
- Hannah C Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Poonia M, Morder CJ, Schorr HC, Schultz ZD. Raman and Surface-Enhanced Raman Scattering Detection in Flowing Solutions for Complex Mixture Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:411-432. [PMID: 38382105 PMCID: PMC11254575 DOI: 10.1146/annurev-anchem-061522-035207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Raman scattering provides a chemical-specific and label-free method for identifying and quantifying molecules in flowing solutions. This review provides a comprehensive examination of the application of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to flowing liquid samples. We summarize developments in online and at-line detection using Raman and SERS analysis, including the design of microfluidic devices, the development of unique SERS substrates, novel sampling interfaces, and coupling these approaches to fluid-based chemical separations (e.g., chromatography and electrophoresis). The article highlights the challenges and limitations associated with these techniques and provides examples of their applications in a variety of fields, including chemistry, biology, and environmental science. Overall, this review demonstrates the utility of Raman and SERS for analysis of complex mixtures and highlights the potential for further development and optimization of these techniques.
Collapse
Affiliation(s)
- Monika Poonia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| | - Courtney J Morder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| | - Hannah C Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
3
|
Morder CJ, Schultz ZD. A 3D printed sheath flow interface for surface enhanced Raman spectroscopy (SERS) detection in flow. Analyst 2024; 149:1849-1860. [PMID: 38347805 PMCID: PMC10926779 DOI: 10.1039/d3an02125d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/23/2024] [Indexed: 03/10/2024]
Abstract
Surface enhanced Raman spectroscopy (SERS) is an effective technique for detecting molecules in aqueous solutions due to its insensitivity to water, which makes it especially useful for biological samples. Utilizing SERS in flow can aid in a variety of applications such as metabolomics, pharmaceuticals, and diagnostics. The ability to 3D print complex objects enables rapid dissemination of prototypes. A 3D printed flow cell for sheath flow SERS detection has been developed that can incorporate a variety of planar substrates. The 3D printed flow cell incorporates hydrodynamic focusing, a sheath flow, that confines the analyte near the SERS substrate. Since the SERS signal obtained relies on the interaction between analyte molecules and nanostructures, sheath flow increases the detection efficiency and eliminates many issues associated with SERS detection in solution. This device was optimized by analyzing both molecules and particles with and without using sheath flow for SERS detection. Our results show that the flow rates can be optimized to increase the SERS signal obtained from a variety of analytes, and that the signal was increased when using sheath flow. This 3D printed flow cell offers a straightforward method to disseminate this technology and to facilitate online SERS detection.
Collapse
Affiliation(s)
- Courtney J Morder
- Department of Chemistry and Biochemistry, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, USA.
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Sibug-Torres SM, Grys DB, Kang G, Niihori M, Wyatt E, Spiesshofer N, Ruane A, de Nijs B, Baumberg JJ. In situ electrochemical regeneration of nanogap hotspots for continuously reusable ultrathin SERS sensors. Nat Commun 2024; 15:2022. [PMID: 38448412 PMCID: PMC10917746 DOI: 10.1038/s41467-024-46097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) harnesses the confinement of light into metallic nanoscale hotspots to achieve highly sensitive label-free molecular detection that can be applied for a broad range of sensing applications. However, challenges related to irreversible analyte binding, substrate reproducibility, fouling, and degradation hinder its widespread adoption. Here we show how in-situ electrochemical regeneration can rapidly and precisely reform the nanogap hotspots to enable the continuous reuse of gold nanoparticle monolayers for SERS. Applying an oxidising potential of +1.5 V (vs Ag/AgCl) for 10 s strips a broad range of adsorbates from the nanogaps and forms a metastable oxide layer of few-monolayer thickness. Subsequent application of a reducing potential of -0.80 V for 5 s in the presence of a nanogap-stabilising molecular scaffold, cucurbit[5]uril, reproducibly regenerates the optimal plasmonic properties with SERS enhancement factors ≈106. The regeneration of the nanogap hotspots allows these SERS substrates to be reused over multiple cycles, demonstrating ≈5% relative standard deviation over at least 30 cycles of analyte detection and regeneration. Such continuous and reliable SERS-based flow analysis accesses diverse applications from environmental monitoring to medical diagnostics.
Collapse
Affiliation(s)
- Sarah May Sibug-Torres
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - David-Benjamin Grys
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Gyeongwon Kang
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Marika Niihori
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Elle Wyatt
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Nicolas Spiesshofer
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Ashleigh Ruane
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Bart de Nijs
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
5
|
Morder CJ, Schorr HC, Balss KM, Schultz ZD. Bleach Cleaning of Commercially Available Gold Nanopillar Arrays for Surface-Enhanced Raman Spectroscopy (SERS). APPLIED SPECTROSCOPY 2024; 78:268-276. [PMID: 38112337 PMCID: PMC10921819 DOI: 10.1177/00037028231219721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive technique that can assist in trace analysis for biomedical, diagnostic, and environmental applications. However, a major limitation of SERS is surface contamination of the substrates used, which can complicate the spectral reproducibility, limits of detection, and detection of unknown analytes. This is especially prevalent with commercially available substrates as shipping under a controlled and clean environment is difficult. Here we report a method using dilute bleach solutions to remove surface contamination from commercially available substrates consisting of gold-coated nanopillar arrays that maintains functionality. The results show that this method can be used to remove background signals associated with typical surface contamination in commercially available substrates as well as remove thiolated self-assembled monolayers (SAMs). Results indicate the bleach oxidizes the surface contaminants, which can then be easily washed away. Although the metallic surface also becomes oxidized in this process, the surface can be reduced without loss of SERS activity. The SERS intensity of SAMs improved following bleach treatment across all concentrations studied.
Collapse
Affiliation(s)
- Courtney J. Morder
- Department of Chemistry and Biochemistry, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, USA
| | - Hannah C. Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, USA
| | - Karin M. Balss
- Emerging Technologies, Manufacturing Science and Technology, Janssen Supply Chain, Spring House, PA 19477, USA
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Schorr HC, Schultz ZD. Chemical conjugation to differentiate monosaccharides by Raman and surface enhanced Raman spectroscopy. Analyst 2023; 148:2035-2044. [PMID: 36974935 PMCID: PMC10167912 DOI: 10.1039/d2an01762h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Sugars play important roles in numerous biological processes, from providing energy to modifying proteins to alter their function. Glycosylation, the attachment of a sugar residue to a protein, is the most common post translational modification. Identifying the glycans on a protein is a useful tool both for pharmaceutical development as well as probing the proteome and glycome further. Sugars, however, are difficult analytes to probe due to their isomeric nature. In this work, Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are used to identify different monosaccharide species based on the vibrational modes of these isomeric analytes. The weak scattering of the sugars was overcome through conjugation with phenylboronic acid to provide a larger Raman scattering cross section and induce slight changes in the observed spectra associated with the structure of the monosaccharides. Spontaneous Raman, SERS in flow, and static SERS detection were performed in order to discriminate between arabinose, fructose, galactose, glucose, mannose, and ribose, as well as provide a method for identification and quantification for these sugar conjugates.
Collapse
Affiliation(s)
- Hannah C Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Capillary electrophoresis and Raman: Can we ever expect light at the end of the tunnel? Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
Moldovan R, Vereshchagina E, Milenko K, Iacob BC, Bodoki AE, Falamas A, Tosa N, Muntean CM, Farcău C, Bodoki E. Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. Anal Chim Acta 2022; 1209:339250. [PMID: 35569862 DOI: 10.1016/j.aca.2021.339250] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
The discovery of surface enhanced Raman scattering (SERS) from an electrochemical (EC)-SERS experiment is known as a historic breakthrough. Five decades have passed and Raman spectroelectrochemistry (SEC) has developed into a common characterization tool that provides information about the electrode-electrolyte interface. Recently, this technique has been successfully explored for analytical purposes. EC was found to highly improve the performances of SERS sensors, providing, among others, controlled adsorption of analytes and increased reproducibility. In this review, we highlight the potential of EC-SERS sensors to be implemented for point-of-need (PON) analyses as miniaturized devices, and their ability to revolutionize fields like quality control, diagnosis or environmental and food safety. Important developments have been achieved in Raman spectroelectrochemistry, which now represents a promising alternative to conventional analytical methods and interests more and more researchers. The studies included in this review open endless possibilities for real-life EC-SERS analytical applications.
Collapse
Affiliation(s)
- Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Elizaveta Vereshchagina
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Karolina Milenko
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Andreea Elena Bodoki
- General and Inorganic Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, 12, Ion Creangă, 400010, Cluj-Napoca, Romania
| | - Alexandra Falamas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Nicoleta Tosa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cristina M Muntean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cosmin Farcău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania.
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania.
| |
Collapse
|
9
|
Morder CJ, Scarpitti BT, Balss KM, Schultz ZD. Determination of lentiviral titer by surface enhanced Raman scattering. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1387-1395. [PMID: 35274114 PMCID: PMC8989645 DOI: 10.1039/d2ay00041e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lentiviruses are commonly used to deliver genetic code into host cells for biomedical applications, such as gene therapy, pharmaceuticals, and vaccine development. Knowing the infectious titer of these virus particles is critical for development in these areas. Current methods of determining viral titer often require cell culture, where a cell is infected and the inserted genetic code is expressed in a known number of cells, which can require days or weeks to prepare and analyze samples. To provide a more rapid method of determining viral titer, the use of surface enhanced Raman spectroscopy (SERS) was explored. SERS provides both chemical and structural information by using plasmonic metallic nanostructures to amplify the Raman signal. Two different lentiviruses, one with a vector encoding a GFP gene and the same virus without the GFP gene included, were analyzed by SERS in viral production media at various concentrations. The SERS response was demonstrated to be sensitive to the incorporation of the GFP gene into the viral vector. Chemometric analysis using multivariate curve resolution (MCR) was able to identify a component in the observed SERS spectra that correlated with the concentration of GFP containing virus particles. Using the MCR model and the SERS response, the viral titer of lentivirus encoding for GFP was determined. The viral titer determined by SERS agreed well with expression of the GFP in infected cells. The SERS response using different metals and excitation wavelengths was also explored. Overall, this work demonstrates the utility of SERS for rapid determination of lentiviral titer.
Collapse
Affiliation(s)
- Courtney J Morder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Brian T Scarpitti
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Karin M Balss
- Advanced Technology Center of Excellence, Janssen Supply Chain, Spring House, PA 19477, USA
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Advances in droplet microfluidics for SERS and Raman analysis. Biosens Bioelectron 2022; 198:113822. [PMID: 34836710 DOI: 10.1016/j.bios.2021.113822] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Raman spectroscopy can realize qualitative and quantitative characterization, and surface-enhanced Raman spectroscopy (SERS) can further enhance its detection sensitivity. In combination with droplet microfluidics, some significant but insurmountable limitations of SERS and Raman spectroscopy can be overcome to some extent, thus improving their detection capability and extending their application. During the past decade, these systems have constantly developed and demonstrated a great potential in more applications, but there is no new review systematically summarizing the droplet microfluidics-based Raman and SERS analysis system since the first related review was published in 2011. Thus, there is a great need for a new review to summarize the advances. In this review, we focus on droplet microfluidics-based Raman and SERS analysis, and summarize two mainstream research directions on this topic up to now. The one is SERS or Raman detection in the moving droplet microreactors, including analysis of molecules, single cells and chemical reaction processes. The other one is SERS active microparticle fabrication via microfluidic droplet templates covering polymer matrix and photonic crystal microparticles. We also comment on the advantages, disadvantage and correlation resolution of droplet microfluidics for SERS or Raman. Finally, we summarize these systems and illustrate our perspectives for future research directions in this field.
Collapse
|
11
|
Masár M, Troška P, Hradski J, Talian I. Microchip isotachophoresis coupled to surface-enhanced Raman spectroscopy for pharmaceutical analysis. Mikrochim Acta 2020; 187:448. [PMID: 32676809 DOI: 10.1007/s00604-020-04436-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
Abstract
A novel online coupling of microchip isotachophoresis (μITP) with surface-enhanced Raman spectroscopy (SERS) for the analysis of complex samples is presented. Polymeric microchip with coupled channels was used for μITP-SERS analysis of four structurally similar Raman active synthetic dyes (brilliant black BN, carmoisine, ponceau 4R, and sunset yellow FCF) in pharmaceuticals. The μITP separation and simultaneous pre-concentration of the analytes were performed in the first channel of the microchip at pH 6.0 with the aid of non-Raman active discrete spacers (acetate, butyrate, glutarate, pantothenate, and valerate). Silver nanoparticles used for Raman enhancement were present in the second channel, and individual SERS spectra of the dyes were acquired by a mini Raman spectrometer operating at 532 nm. The analytical enhancement factors for silver nanoparticles were 1-5 × 104. The microchip with coupled channels enabled independent μITP separation and SERS detection, and eliminated any adverse impact of nanoparticles on the separation. The developed approach allowed reliable online SERS identification and detection of dyes with limits of detection ranging from 12 to 62 nM. Synthetic dyes were successfully separated, identified, and quantified in pharmaceutical preparations within 7 min without the need for complex or time-consuming sample pretreatment. The results were in good agreement with those obtained by an independent analytical method reported for studied dyes. Graphical abstract.
Collapse
Affiliation(s)
- Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH2, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Peter Troška
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH2, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Jasna Hradski
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH2, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| |
Collapse
|
12
|
Krafft B, Tycova A, Urban RD, Dusny C, Belder D. Microfluidic device for concentration and SERS-based detection of bacteria in drinking water. Electrophoresis 2020; 42:86-94. [PMID: 32391575 DOI: 10.1002/elps.202000048] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
There is a constant need for the development of easy-to-operate systems for the rapid and unambiguous identification of bacterial pathogens in drinking water without the requirement for time-consuming culture processes. In this study, we present a disposable and low-cost lab-on-a-chip device utilizing a nanoporous membrane, which connects two stacked perpendicular microfluidic channels. Whereas one of the channels supplies the sample, the second one attracts it by potential-driven forces. Surface-enhanced Raman spectrometry (SERS) is employed as a reliable detection method for bacteria identification. To gain the effect of surface enhancement, silver nanoparticles were added to the sample. The pores of the membrane act as a filter trapping the bodies of microorganisms as well as clusters of nanoparticles creating suitable conditions for sensitive SERS detection. Therein, we focused on the construction and characterization of the device performance. To demonstrate the functionality of the microfluidic chip, we analyzed common pathogens (Escherichia coli DH5α and Pseudomonas taiwanensis VLB120) from spiked tap water using the optimized experimental parameters. The obtained results confirmed our system to be promising for the construction of a disposable optical platform for reliable and rapid pathogen detection which couples their electrokinetic concentration on the integrated nanoporous membrane with SERS detection.
Collapse
Affiliation(s)
- Benjamin Krafft
- Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - Anna Tycova
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Raphael D Urban
- Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - Christian Dusny
- Department Solar Materials, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
13
|
Xiao L, Wang C, Dai C, Littlepage LE, Li J, Schultz ZD. Untargeted Tumor Metabolomics with Liquid Chromatography-Surface-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2020; 59:3439-3443. [PMID: 31765069 PMCID: PMC7028501 DOI: 10.1002/anie.201912387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Metabolomics is a powerful systems biology approach that monitors changes in biomolecule concentrations to diagnose and monitor health and disease. However, leading metabolomics technologies, such as NMR and mass spectrometry (MS), access only a small portion of the metabolome. Now an approach is presented that uses the high sensitivity and chemical specificity of surface-enhanced Raman scattering (SERS) for online detection of metabolites from tumor lysates following liquid chromatography (LC). The results demonstrate that this LC-SERS approach has metabolite detection capabilities comparable to the state-of-art LC-MS but suggest a selectivity for the detection of a different subset of metabolites. Analysis of replicate LC-SERS experiments exhibit reproducible metabolite patterns that can be converted into barcodes, which can differentiate different tumor models. Our work demonstrates the potential of LC-SERS technology for metabolomics-based diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Lifu Xiao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Chuanqi Wang
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556
- Harper Cancer Research Institute, South Bend, IN 46617
| | - Chen Dai
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- Harper Cancer Research Institute, South Bend, IN 46617
| | - Laurie E Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- Harper Cancer Research Institute, South Bend, IN 46617
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556
- Harper Cancer Research Institute, South Bend, IN 46617
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
14
|
Wang C, Xiao L, Dai C, Nguyen AH, Littlepage LE, Schultz ZD, Li J. A Statistical Approach of Background Removal and Spectrum Identification for SERS Data. Sci Rep 2020; 10:1460. [PMID: 31996718 PMCID: PMC6989639 DOI: 10.1038/s41598-020-58061-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/10/2020] [Indexed: 11/24/2022] Open
Abstract
SERS (surface-enhanced Raman scattering) enhances the Raman signals, but the plasmonic effects are sensitive to the chemical environment and the coupling between nanoparticles, resulting in large and variable backgrounds, which make signal matching and analyte identification highly challenging. Removing background is essential, but existing methods either cannot fit the strong fluctuation of the SERS spectrum or do not consider the spectra’s shape change across time. Here we present a new statistical approach named SABARSI that overcomes these difficulties by combining information from multiple spectra. Further, after efficiently removing the background, we have developed the first automatic method, as a part of SABARSI, for detecting signals of molecules and matching signals corresponding to identical molecules. The superior efficiency and reproducibility of SABARSI are shown on two types of experimental datasets.
Collapse
Affiliation(s)
- Chuanqi Wang
- University of Notre Dame, Department of Applied and Computational Mathematics and Statistics, Notre Dame, IN, 46556, United States
| | - Lifu Xiao
- The Ohio State University, Department of Chemistry and Biochemistry, Columbus, OH, 43210, United States
| | - Chen Dai
- University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, IN, 46556, United States.,Harper Cancer Research Institute, South Bend, IN, 46617, United States
| | - Anh H Nguyen
- University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, IN, 46556, United States
| | - Laurie E Littlepage
- University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, IN, 46556, United States.,Harper Cancer Research Institute, South Bend, IN, 46617, United States
| | - Zachary D Schultz
- The Ohio State University, Department of Chemistry and Biochemistry, Columbus, OH, 43210, United States.,University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, IN, 46556, United States.,Harper Cancer Research Institute, South Bend, IN, 46617, United States
| | - Jun Li
- University of Notre Dame, Department of Applied and Computational Mathematics and Statistics, Notre Dame, IN, 46556, United States. .,Harper Cancer Research Institute, South Bend, IN, 46617, United States.
| |
Collapse
|
15
|
Xiao L, Wang C, Dai C, Littlepage LE, Li J, Schultz ZD. Untargeted Tumor Metabolomics with Liquid Chromatography–Surface‐Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lifu Xiao
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
| | - Chuanqi Wang
- Department of Applied and Computational Mathematics and StatisticsUniversity of Notre Dame Notre Dame IN 46556 USA
- Harper Cancer Research Institute South Bend IN 46617 USA
| | - Chen Dai
- Department of Chemistry and BiochemistryUniversity of Notre Dame Notre Dame IN 46556 USA
- Harper Cancer Research Institute South Bend IN 46617 USA
| | - Laurie E. Littlepage
- Department of Chemistry and BiochemistryUniversity of Notre Dame Notre Dame IN 46556 USA
- Harper Cancer Research Institute South Bend IN 46617 USA
| | - Jun Li
- Department of Applied and Computational Mathematics and StatisticsUniversity of Notre Dame Notre Dame IN 46556 USA
- Harper Cancer Research Institute South Bend IN 46617 USA
| | - Zachary D. Schultz
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
- Comprehensive Cancer CenterThe Ohio State University Columbus OH 43210 USA
| |
Collapse
|
16
|
Fan M, Andrade GFS, Brolo AG. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 2019; 1097:1-29. [PMID: 31910948 DOI: 10.1016/j.aca.2019.11.049] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
This review is focused on recent developments of surface-enhanced Raman scattering (SERS) applications in Analytical Chemistry. The work covers advances in the fabrication methods of SERS substrates, including nanoparticles immobilization techniques and advanced nanopatterning with metallic features. Recent insights in quantitative and sampling methods for SERS implementation and the development of new SERS-based approaches for both qualitative and quantitative analysis are discussed. The advent of methods for pre-concentration and new approaches for single-molecule SERS quantification, such as the digital SERS procedure, has provided additional improvements in the analytical figures-of-merit for analysis and assays based on SERS. The use of metal nanostructures as SERS detection elements integrated in devices, such as microfluidic systems and optical fibers, provided new tools for SERS applications that expand beyond the laboratory environment, bringing new opportunities for real-time field tests and process monitoring based on SERS. Finally, selected examples of SERS applications in analytical and bioanalytical chemistry are discussed. The breadth of this work reflects the vast diversity of subjects and approaches that are inherent to the SERS field. The state of the field indicates the potential for a variety of new SERS-based methods and technologies that can be routinely applied in analytical laboratories.
Collapse
Affiliation(s)
- Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Gustavo F S Andrade
- Centro de Estudos de Materiais, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário s/n, CEP 36036-900, Juiz de Fora, Brazil
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC, V8W 3V6, Canada; Centre for Advanced Materials and Related Technology, University of Victoria, V8W 2Y2, Canada.
| |
Collapse
|
17
|
Ochoa-Vazquez G, Kharisov B, Arizmendi-Morquecho A, Cario A, Aymonier C, Marre S, Lopez I. Microfluidics and Surface-Enhanced Raman Spectroscopy: A Perfect Match for New Analytical Tools. IEEE Trans Nanobioscience 2019; 18:558-566. [PMID: 31545740 DOI: 10.1109/tnb.2019.2943078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this perspective article, we emphasize the combination of Surface-Enhanced Raman Spectroscopy (SERS) and Microfluidic devices. SERS approaches have been widely studied and used for multiple applications including trace molecules detection, in situ analysis of biological samples and monitoring or, all of them with good results, however still with limitations of the technique, for example regarding with improved precision and reproducibility. These implications can be overcome by microfluidic approaches. The resulting coupling Microfluidics - SERS (MF-SERS) has recently gained increasing attention by creating thundering opportunities for the analytical field. For this purpose, we introduce some of the strategies developed to implement SERS within microfluidic reactor along with a brief overview of the most recent MF-SERS applications for biology, health and environmental concerns. Eventually, we will discuss future research opportunities of such systems.
Collapse
|
18
|
Höhn EM, Panneerselvam R, Das A, Belder D. Raman Spectroscopic Detection in Continuous Microflow Using a Chip-Integrated Silver Electrode as an Electrically Regenerable Surface-Enhanced Raman Spectroscopy Substrate. Anal Chem 2019; 91:9844-9851. [DOI: 10.1021/acs.analchem.9b01514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eva-Maria Höhn
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, Leipzig 04103, Germany
| | | | - Anish Das
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, Leipzig 04103, Germany
| | - Detlev Belder
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, Leipzig 04103, Germany
| |
Collapse
|
19
|
Porter MD, Granger JH. Surface-enhanced Raman scattering II: concluding remarks. Faraday Discuss 2019; 205:601-613. [PMID: 29177326 DOI: 10.1039/c7fd00206h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Surface-enhanced Raman scattering (SERS) enables the detection of a large number of different adsorbates at extraordinarily low levels. This plasmonics-based technology has undergone a number of remarkable advances since its discovery over 40 years ago, and has emerged from being an investigative tool confined largely to the research laboratory into a much more usable tool across a broad range of investigative studies, both within the laboratory and beyond. The purpose of this Concluding remarks manuscript is to capture, at least in part, the developments in this area since the first Faraday discussion of SERS over a decade ago. It begins with a brief contextual overview and then moves into describing a few of the many highlights from the meeting. Along the way, we have added a few comments and perspectives as a means to more fully stage where the different areas of research with SERS stand today. An addendum is included that collects a few of the recent perspectives on the original work and activities in this area.
Collapse
Affiliation(s)
- Marc D Porter
- Departments of Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
20
|
Týčová A, Klepárník K. Combination of liquid-based column separations with surface-enhanced Raman spectroscopy. J Sep Sci 2018; 42:431-444. [PMID: 30267463 DOI: 10.1002/jssc.201800852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023]
Abstract
Surface-enhanced Raman spectroscopy is a constantly developing analytical method providing not only high-sensitive quantitative but also qualitative information on an analyte. Thus, it is reasonable that it has been tested as a promising detection method in column separations. Although its implementation in analytical separations is not widespread, some surprising results, like enormous signal enhancement and demonstrations of single-molecule identifications, proved in only a few special examples, indicate the potential of the method. The high detection sensitivity and selectivity would be of paramount importance in trace analyses of biologically relevant molecules in complex matrices. However, the combination of surface-enhanced Raman spectroscopy with column separation methods brings two principal issues. Interactions of analytes with metal substrates can cause deteriorations of separations and the detection can be affected by background electrolytes or elution agents. Thus, in principle, this review is on the experimental and methodological solutions to these problems. First, theoretical and practical aspects of Raman scattering, and excitation of surface plasmon in colloid suspensions of nanoparticles and on planar nanostructured substrates are briefly explained. Advances in experimental arrangements of on-line and at-line couplings with column liquid phase separation methods, including microfluidic devices, are described together with chosen analytical applications.
Collapse
Affiliation(s)
- Anna Týčová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Karel Klepárník
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
21
|
Nguyen AH, Deutsch JM, Xiao L, Schultz ZD. Online Liquid Chromatography-Sheath-Flow Surface Enhanced Raman Detection of Phosphorylated Carbohydrates. Anal Chem 2018; 90:11062-11069. [PMID: 30119606 DOI: 10.1021/acs.analchem.8b02907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Online detection and quantification of three phosphorylated carbohydrate molecules: glucose 1-phosphate, glucose 6-phosphate, and fructose 6-phosphate was achieved by coupling sheath-flow surface enhanced Raman spectroscopy (SERS) to liquid chromatography. The presence of an alkanethiol (hexanethiol) self-assembled monolayer adsorbed to a silver SERS-active substrate helps retain and concentrate the analytes of interest at the SERS substrate to improve the detection sensitivity significantly. Mixtures of 2 μM of phosphorylated carbohydrates in pure water as well as in cell culture media were successfully separated by HPLC, with identification using the sheath-flow SERS detector. The quantification of each analyte was achieved using partial least-squares (PLS) regression analysis and acetonitrile in the mobile phases as an internal standard. These results illustrate the utility of sheath-flow SERS for molecular specific detection in complex biological samples appropriate for metabolomics and other applications.
Collapse
Affiliation(s)
- Anh H Nguyen
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Jessica M Deutsch
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Lifu Xiao
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States.,Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
22
|
Tycova A, Gerhardt RF, Belder D. Surface enhanced Raman spectroscopy in microchip electrophoresis. J Chromatogr A 2018; 1541:39-46. [DOI: 10.1016/j.chroma.2018.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 11/27/2022]
|
23
|
Buja OM, Gordan OD, Leopold N, Morschhauser A, Nestler J, Zahn DRT. Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:237-243. [PMID: 28243562 PMCID: PMC5301917 DOI: 10.3762/bjnano.8.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
A microfluidic setup which enables on-line monitoring of residues of malachite green (MG) using surface-enhanced Raman scattering (SERS) is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a continuous flow of a mixture of silver nitrate or gold chloride and sodium citrate. The described microfluidic setup enables within a few minutes the monitoring of several processes: the synthesis of the SERS active spot, MG adsorption to the metal surface, detection of the analyte when saturation of the SERS signal is reached, and finally, the desorption of MG from the spot. Moreover, after MG complete desorption, the regeneration of the SERS active spot was achieved. The detection of MG was possible down to 10-7 M concentration with a good reproducibility when using silver or gold spots as SERS substrate.
Collapse
Affiliation(s)
- Oana-M Buja
- Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Ovidiu D Gordan
- Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Nicolae Leopold
- Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
- MEDFUTURE - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Louis Pasteur 4–6, 400349 Cluj-Napoca, Romania
| | - Andreas Morschhauser
- Fraunhofer Institute for Electronic Nano Systems, Technologie-Campus 3, 09126 Chemnitz, Germany
| | - Jörg Nestler
- Fraunhofer Institute for Electronic Nano Systems, Technologie-Campus 3, 09126 Chemnitz, Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| |
Collapse
|
24
|
Jahn IJ, Žukovskaja O, Zheng XS, Weber K, Bocklitz TW, Cialla-May D, Popp J. Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst 2017; 142:1022-1047. [DOI: 10.1039/c7an00118e] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The review provides an overview of the development in the field of surface-enhanced Raman spectroscopy combined with microfluidic platforms.
Collapse
Affiliation(s)
- I. J. Jahn
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - O. Žukovskaja
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
| | - X.-S. Zheng
- Leibniz Institute of Photonic Technology Jena
- 07745 Jena
- Germany
| | - K. Weber
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - T. W. Bocklitz
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - D. Cialla-May
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - J. Popp
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| |
Collapse
|
25
|
Selmi M, Gazzah MH, Belmabrouk H. Numerical Study of the Electrothermal Effect on the Kinetic Reaction of Immunoassays for a Microfluidic Biosensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13305-13312. [PMID: 27993020 DOI: 10.1021/acs.langmuir.6b02637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this work, we simulate the binding reaction of C-reactive protein in a microchannel of a biosensor. A problem that arises in this device concerns the transport of the analyte toward the reaction surface of the biosensor, which is of a very small dimension. The limitation of mass transport causes the formation of a diffusion boundary layer and restrains the whole kinetic reaction. To enhance the performance of the biosensor by improving the transport, an applied AC electric field and flow confinement are used to stir the flow field. The numerical simulation of these mechanisms on the binding reaction is performed using the finite element method. Swirling patterns are generated in the fluid. They enhance the transport of the analyte and confine it near the reaction surface. The location of the electrode pair on the walls of the microchannel for the design of the biosensor has been studied to find out the effects of varying geometric configurations on the binding efficiency. The best performances of the biosensor are obtained when the electrodes are placed on the same wall of the microchannel as the reaction surface. For the best case, under the effect of the applied electric field alone, the enhancement factors raise up to 2.46 and 2.10 for the association and dissociation phases, respectively. By contrast, under the effect of the electric field with flow confinement, the enhancement factors for the association and the dissociation phases jump to 3.43 and 2.97, respectively, for 30:1 flow confinement (ratio of confining to sample flow).
Collapse
Affiliation(s)
- Marwa Selmi
- Laboratory of Electronics and Microelectronics, Faculty of Science of Monastir, University of Monastir , Environment Boulevard, Monastir 5019, Tunisia
- Department of Radiological Sciences and Medical Imaging, College of Applied Medical Sciences, Majmaah University , Al Majma'ah 11952, Saudi Arabia
| | - Mohamed Hichem Gazzah
- Laboratory of Electronics and Microelectronics, Faculty of Science of Monastir, University of Monastir , Environment Boulevard, Monastir 5019, Tunisia
| | - Hafedh Belmabrouk
- Laboratory of Electronics and Microelectronics, Faculty of Science of Monastir, University of Monastir , Environment Boulevard, Monastir 5019, Tunisia
- Department of Physics, College of Science AlZulfi, Majmaah University , Al Zulfi 11932, Saudi Arabia
| |
Collapse
|
26
|
Bailey MR, Martin RS, Schultz ZD. Role of Surface Adsorption in the Surface-Enhanced Raman Scattering and Electrochemical Detection of Neurotransmitters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:20624-20633. [PMID: 27840665 PMCID: PMC5100693 DOI: 10.1021/acs.jpcc.6b01196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The strength of the analyte-substrate interaction is a key component when evaluating the observed enhancements in surface-enhanced Raman scattering (SERS) detection. By performing Raman and electrochemical measurements on a series of neurotransmitters, including dopamine, serotonin, norepinephrine, and epinephrine, as well as catechol as it allows us to examine the diol moiety without the side chains present, we were able to correlate surface chemistry with the measured SERS signal and examine the oxidation mechanism of each analyte. Finite element simulations of fluid flow, mass transport, and Langmuir adsorption to a surface in a microchannel were used to expand on the experiments. By holding kads constant and changing kdes, Keq was varied systematically to elucidate how the adsorption kinetics change for different molecular adsorbates. The modeling indicates that the largest surface concentration is observed from the analyte with the strongest affinity for the surface in both the continuous flow and time dependent injection scenarios. The COMSOL model of varying surface concentration explains differences observed in integrated current during amperometry and signal intensities in SERS measurements. This combination of results indicates that molecular structure and surface affinity influence the sensitivity in SERS, such that the species with the strongest affinity for the surface has the highest signal-to-noise in the SERS experiments in flowing solutions.
Collapse
Affiliation(s)
- Matthew R. Bailey
- University of Notre Dame, Department of Chemistry and Biochemistry, NotreDame, IN 46556
| | - R. Scott Martin
- Saint Louis University, Department of Chemistry, St. Louis, MO 63103
| | - Zachary D. Schultz
- University of Notre Dame, Department of Chemistry and Biochemistry, NotreDame, IN 46556
| |
Collapse
|
27
|
Riordan CM, Jacobs KT, Negri P, Schultz ZD. Sheath flow SERS for chemical profiling in urine. Faraday Discuss 2016; 187:473-84. [PMID: 27034996 PMCID: PMC4920711 DOI: 10.1039/c5fd00155b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The molecular specificity and sensitivity of surface enhanced Raman scattering (SERS) makes it an attractive method for biomedical diagnostics. Here we present results demonstrating the utility and complications for SERS characterization in urine. The chemical fingerprint characteristics of Raman spectra suggest its use as a label free diagnostic; however, the complex composition of biological fluids presents a tremendous challenge. In particular, the limited number of surface sites and competing absorption tend to mask the presence of analytes in solution, particularly when the solution contains multiple analytes. To address these problems and characterize biological fluids we have demonstrated a sheath-flow interface for SERS detection. This sheath-flow SERS interface uses hydrodynamic focusing to confine analyte molecules eluting out of a column onto a planar SERS substrate where the molecules are detected by their intrinsic SERS signal. In this report we compare the direct detection of benzoylecgonine in urine using DSERS with chemical profiling by capillary zone electrophoresis and sheath-flow SERS detection. The SERS spectrum from the observed migration peaks can identify benzoylecgonine and other distinct spectra are also observed, suggesting improved chemical diagnostics in urine. With over 2000 reported compounds in urine, identification of each of the detected species is an enormous task. Nonetheless, these samples provide a benchmark to establish the potential clinical utility of sheath-flow SERS detection.
Collapse
Affiliation(s)
- Colleen M Riordan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Kevin T Jacobs
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Pierre Negri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
28
|
Xiahou Y, Li Y, Zhang P, Huang L, Wang D, Xia H. Synthesis of composition and size controlled AuAg alloy nanocrystals via Fe2+-assisted citrate reduction. CrystEngComm 2016. [DOI: 10.1039/c6ce01407k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Nguyen A, Schultz ZD. Quantitative online sheath-flow surface enhanced Raman spectroscopy detection for liquid chromatography. Analyst 2016; 141:3630-5. [DOI: 10.1039/c6an00155f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sheath-flow surface-enhanced Raman spectroscopy (SERS) was used for online detection and quantification of small molecules separated by liquid chromatography.
Collapse
Affiliation(s)
- Anh Nguyen
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| |
Collapse
|
30
|
Abstract
Improved surface-enhanced Raman scattering (SERS) measurements of a flowing aqueous sample are accomplished by combining line focus optics with sheath-flow SERS detection. The straightforward introduction of a cylindrical lens into the optical path of the Raman excitation laser increases the efficiency of SERS detection and the reproducibility of SERS signals at low concentrations. The width of the line focus is matched to the width of the sample capillary from which the analyte elutes under hydrodynamic focusing conditions, allowing for increased collection across the SERS substrate while maintaining the power density below the damage threshold at any specific point. We show that a 4× increase in power spread across the line increases the signal-to-noise ratio by a factor of 2 for a variety of analytes, such as rhodamine 6G, amino acids, and lipid vesicles, without any detectable photodamage. COMSOL simulations and Raman maps elucidate the hydrodynamic focusing properties of the flow cell, providing a clearer picture of the confinement effects at the surface where the sample exits the capillary. The lipid vesicle results suggest that the combination of hydrodynamic focusing and increased optical collection enables the reproducible detection of rare events, in this case individual lipid vesicles.
Collapse
Affiliation(s)
- Kevin T. Jacobs
- University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, IN, 46556, USA
| | - Zachary D. Schultz
- University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, IN, 46556, USA
| |
Collapse
|
31
|
Ho CH, Lee S. SERS and DFT investigation of the adsorption behavior of 4-mercaptobenzoic acid on silver colloids. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Pan Y, Guo X, Zhu J, Wang X, Zhang H, Kang Y, Wu T, Du Y. A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1514-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Bailey MR, Pentecost AM, Selimovic A, Martin RS, Schultz ZD. Sheath-flow microfluidic approach for combined surface enhanced Raman scattering and electrochemical detection. Anal Chem 2015; 87:4347-55. [PMID: 25815795 PMCID: PMC4415045 DOI: 10.1021/acs.analchem.5b00075] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The combination of hydrodynamic focusing with embedded capillaries in a microfluidic device is shown to enable both surface enhanced Raman scattering (SERS) and electrochemical characterization of analytes at nanomolar concentrations in flow. The approach utilizes a versatile polystyrene device that contains an encapsulated microelectrode and fluidic tubing, which is shown to enable straightforward hydrodynamic focusing onto the electrode surface to improve detection. A polydimethyslsiloxane (PDMS) microchannel positioned over both the embedded tubing and SERS active electrode (aligned ∼200 μm from each other) generates a sheath flow that confines the analyte molecules eluting from the embedded tubing over the SERS electrode, increasing the interaction between the Riboflavin (vitamin B2) and the SERS active electrode. The microfluidic device was characterized using finite element simulations, amperometry, and Raman experiments. This device shows a SERS and amperometric detection limit near 1 and 100 nM, respectively. This combination of SERS and amperometry in a single device provides an improved method to identify and quantify electroactive analytes over either technique independently.
Collapse
Affiliation(s)
- Matthew R Bailey
- †University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, Indiana 46556, United States
| | - Amber M Pentecost
- ‡Saint Louis University, Department of Chemistry, St. Louis, Missouri 63103, United States
| | - Asmira Selimovic
- ‡Saint Louis University, Department of Chemistry, St. Louis, Missouri 63103, United States
| | - R Scott Martin
- ‡Saint Louis University, Department of Chemistry, St. Louis, Missouri 63103, United States
| | - Zachary D Schultz
- †University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, Indiana 46556, United States
| |
Collapse
|
34
|
Negri P, Sarver SA, Schiavone NM, Dovichi NJ, Schultz ZD. Online SERS detection and characterization of eight biologically-active peptides separated by capillary zone electrophoresis. Analyst 2015; 140:1516-22. [PMID: 25599104 PMCID: PMC4331242 DOI: 10.1039/c4an01980f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is a need for low cost, sensitive and chemical specific detectors for routine characterization of biomolecules. In this study, we utilize sheath-flow surface-enhanced Raman scattering (SERS) to analyze a mixture of eight biologically-active peptides separated by capillary zone electrophoresis (CZE). Analysis of the SERS electropherogram resulting from online detection resolves the characteristic Raman bands attributed to the amino acid constituents of each peptide, which enables identification. The detection limit by SERS was found to be 10(-8) M. Our results suggest that the structural information obtained from the detected vibrational modes provides complementary characterization to other chemically specific detectors like mass spectrometry and improved chemical identification over other commonly used optical-based post-chromatographic detection methods. In addition, the sheath-flow SERS detection results in band narrowing in the observed electropherogram that enables distinction of closely migrating species. The results presented here indicate that this platform can provide fast, robust, reproducible, and chemical specific detection to facilitate the characterization of peptides.
Collapse
Affiliation(s)
- Pierre Negri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Kozuch J, Petrusch N, Gkogkou D, Gernert U, Weidinger IM. Calculating average surface enhancement factors of randomly nanostructured electrodes by a combination of SERS and impedance spectroscopy. Phys Chem Chem Phys 2015; 17:21220-5. [DOI: 10.1039/c4cp05015k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Simultaneous use of SERS and impedance spectroscopy allows determining electromagnetic field enhancement factors of electrode surfaces with random nanostructures.
Collapse
Affiliation(s)
- J. Kozuch
- Institut für Chemie
- PC 14
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - N. Petrusch
- Institut für Chemie
- PC 14
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - D. Gkogkou
- Institut für Chemie
- PC 14
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - U. Gernert
- Zentraleinrichtung Elektronenmikroskopie (ZELMI)
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - I. M. Weidinger
- Institut für Chemie
- PC 14
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
37
|
Negri P, Schultz ZD. Online SERS detection of the 20 proteinogenic L-amino acids separated by capillary zone electrophoresis. Analyst 2014; 139:5989-98. [PMID: 25268706 PMCID: PMC4249764 DOI: 10.1039/c4an01177e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A sheath-flow surface-enhanced Raman scattering (SERS) detector is demonstrated to provide chemical information enabling identification of the 20 proteinogenic L-amino acids separated by capillary zone electrophoresis (CZE). Amino acids were used to illustrate the chemical specificity of SERS detection from structurally related molecules. Analysis of the SERS electropherograms obtained from the separation and sequential online detection of six groups of structurally related amino acids shows that our sheath-flow SERS detector is able to resolve the characteristic Raman bands attributed to the amine, carboxyl, and side chain constituents. The results demonstrate the chemical information available from our detector and also provide insight into the nature of the analyte interaction with the silver SERS substrate. The spectra extracted from the SERS electropherogram of a mixture containing the 20 proteinogenic L-amino acids show unique signatures characteristic to each amino acid, thus enabling identification. The results presented here demonstrate the potential of this sheath-flow SERS detector as a general purpose method for high throughput characterization and identification following separations of complex biomolecular mixtures.
Collapse
Affiliation(s)
- Pierre Negri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
38
|
Negri P, Flaherty RJ, Dada OO, Schultz ZD. Ultrasensitive online SERS detection of structural isomers separated by capillary zone electrophoresis. Chem Commun (Camb) 2014; 50:2707-10. [PMID: 24395125 DOI: 10.1039/c3cc49030k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A mixture of structural isomers was separated and identified at nanomolar concentrations (∼100,000 molecules) by incorporating capillary zone electrophoresis (CZE) with a sheath flow surface-enhanced Raman scattering (SERS) detector. Baseline resolution was obtained from three structural isomers of rhodamine using a planar silver SERS substrate, demonstrating the utility of this approach for trace chemical analysis.
Collapse
Affiliation(s)
- Pierre Negri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | |
Collapse
|
39
|
Asiala S, Schultz ZD. Surface enhanced Raman correlation spectroscopy of particles in solution. Anal Chem 2014; 86:2625-32. [PMID: 24502388 PMCID: PMC3966183 DOI: 10.1021/ac403882h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/06/2014] [Indexed: 01/26/2023]
Abstract
Surface enhanced Raman correlation spectroscopy (SERCS) is shown as a label-free, chemically specific method for monitoring individual polymer beads and lipid vesicles interacting with a 2-D planar surface enhanced Raman (SERS) substrate in solution. The enhancement afforded by the SERS substrate allows for spectral data to be acquired in series at rates between 31 and 83 Hz. Auto- and cross-correlation of spectral data facilitates the measurement of diffusion constants for particles ranging in radius from 50 to 500 nm while discriminating signal associated with the target analyte from extraneous fluctuations. The measured diffusion coefficients are on the order of 10(-10)-10(-11) cm(2)/s, a factor of 40 times slower than predicted from the Stokes-Einstein equation, suggesting that particles are experiencing hindered diffusion at the surface. The enhanced signals appear to originate from particles less than 5 nm of the SERS substrate, consistent with adsorption to the surface. This work provides a means to measure and monitor surface interactions and demonstrates the utility and limits of SERS detection in solution over planar SERS substrates.
Collapse
Affiliation(s)
- Steven
M. Asiala
- Department of Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zachary D. Schultz
- Department of Chemistry and
Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
40
|
Abalde-Cela S, Abell C, Alvarez-Puebla RA, Liz-Marzán LM. Real Time Dual-Channel Multiplex SERS Ultradetection. J Phys Chem Lett 2014; 5:73-79. [PMID: 26276183 DOI: 10.1021/jz402419k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface-enhanced Raman scattering (SERS) can be combined with microfluidics for rapid multiplex analyte screening. Through combination of the high intensity and complex signals provided by SERS with the flow characteristics of microfluidic channels, we engineered a microdevice that is capable of monitoring various analytes from different sources in real time. Detection limits down to the nM range may allow the generation of a new family of devices for remote, real time monitoring of environmental samples such as natural or waste waters and application to the high-throughput screening of multiple samples in healthcare diagnostics.
Collapse
Affiliation(s)
- Sara Abalde-Cela
- †Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- ‡Department of Physical Chemistry, Universidade de Vigo, Vigo, Spain
| | - Chris Abell
- †Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Ramón A Alvarez-Puebla
- ∥Departamento de Quimica Fisica e Inorganica, Universitat Rovira i Virgili and Centro de Tecnologia Quimica de Cataluña, Carrer de Marcel·lı́ Domingo s/n, 43007 Tarragona, Spain
- §ICREA, Passeig Lluı́s Companys 23, 08010 Barcelona, Spain
| | - Luis M Liz-Marzán
- ‡Department of Physical Chemistry, Universidade de Vigo, Vigo, Spain
- ⊥Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia - San Sebastián, Spain
- #Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|