1
|
Shiri F, Choi J, Vietz C, Rathnayaka C, Manoharan A, Shivanka S, Li G, Yu C, Murphy MC, Soper SA, Park S. Nano-injection molding with resin mold inserts for prototyping of nanofluidic devices for single molecular detection. LAB ON A CHIP 2023; 23:4876-4887. [PMID: 37870483 PMCID: PMC10995647 DOI: 10.1039/d3lc00543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
While injection molding is becoming the fabrication modality of choice for high-scale production of microfluidic devices, especially those used for in vitro diagnostics, its translation into the growing area of nanofluidics (structures with at least one dimension <100 nm) has not been well established. Another prevailing issue with injection molding is the high startup costs and the relatively long time between device iterations making it in many cases impractical for device prototyping. We report, for the first time, functional nanofluidic devices with dimensions of critical structures below 30 nm fabricated by injection molding for the manipulation, identification, and detection of single molecules. UV-resin molds replicated from Si masters served as mold inserts, negating the need for generating Ni-mold inserts via electroplating. Using assembled devices with a cover plate via hybrid thermal fusion bonding, we demonstrated two functional thermoplastic nanofluidic devices. The first device consisted of dual in-plane nanopores placed at either end of a nanochannel and was used to detect and identify single ribonucleotide monophosphate molecules via resistive pulse sensing and obtain the effective mobility of the molecule through nanoscale electrophoresis to allow its identification. The second device demonstrated selective binding of a single RNA molecule to a solid phase bioreactor decorated with a processive exoribonuclease, XRN1. Our results provide a simple path towards the use of injection molding for device prototyping in the development stage of any nanofluidic or even microfluidic application, through which rapid scale-up is made possible by transitioning from prototyping to high throughput production using conventional Ni mold inserts.
Collapse
Affiliation(s)
- Farhad Shiri
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Chad Vietz
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Anishkumar Manoharan
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Suresh Shivanka
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Guoqiang Li
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Chengbin Yu
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Michael C Murphy
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
2
|
Trojanowicz M. Impact of nanotechnology on progress of flow methods in chemical analysis: A review. Anal Chim Acta 2023; 1276:341643. [PMID: 37573121 DOI: 10.1016/j.aca.2023.341643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
In evolution of instrumentation for analytical chemistry as crucial technological breakthroughs should be considered a common introduction of electronics with all its progress in integration, and then microprocessors which was followed by a widespread computerization. It is seems that a similar role can be attributed to the introduction of various elements of modern nanotechnology, observed with a fast progress since beginning of this century. It concerns all areas of the applications of analytical chemistry, including also progress in flow analysis, which are being developed since the middle of 20th century. Obviously, it should not be omitted the developed earlier and analytically applied planar structures like lipid membranes or self-assembled monolayers They had essential impact prior to discoveries of numerous extraordinary nanoparticles such as fullerenes, carbon nanotubes and graphene, or nanocrystalline semiconductors (quantum dots). Mostly, due to catalytic effects, significantly developed surface and the possibility of easy functionalization, their application in various stages of flow analytical procedures can significantly improve them. The application of new nanomaterials may be used for the development of new detection methods for flow analytical systems in macro-flow setups as well as in microfluidics and lateral flow immunoassay tests. It is also advantageous that quick flow conditions of measurements may be helpful in preventing unfavorable agglomeration of nanoparticles. A vast literature published already on this subject (e.g. almost 1000 papers about carbon nanotubes and flow-injection analytical systems) implies that for this reviews it was necessary to make an arbitrary selection of reported examples of this trend, focused mainly on achievements reported in the recent decade.
Collapse
Affiliation(s)
- Marek Trojanowicz
- Laboratory of Nuclear Analytical Techniques, Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Chemistry, University of Warsaw, Poland.
| |
Collapse
|
3
|
Sano H, Kazoe Y, Ohta R, Shimizu H, Morikawa K, Kitamori T. Nanofluidic analytical system integrated with nanochannel open/close valves for enzyme-linked immunosorbent assay. LAB ON A CHIP 2023; 23:727-736. [PMID: 36484269 DOI: 10.1039/d2lc00881e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There have been significant advances in the field of nanofluidics, and novel technologies such as single-cell analysis have been demonstrated. Despite the evident advantages of nanofluidics, fluid control in nanochannels for complicated analyses is extremely difficult because the fluids are currently manipulated by maintaining the balance of driving pressure. To address this issue, the use of valves will be essential. Our group previously developed a nanochannel open/close valve utilizing glass deformation, but this has not yet been integrated into nanofluidic devices for analytical applications. In the present study, a nanofluidic analytical system integrated with multiple nanochannel open/close valves was developed. This system consists of eight pneumatic pumps, seven nanochannel open/close valves combined with piezoelectric actuators, and an ultra-high sensitivity detector for non-fluorescent molecules. For simultaneous actuation of multiple valves, a device holder was designed that prevented deformation of the entire device caused by operating the valves. A system was subsequently devised to align each valve and actuator with a precision of better than 20 μm to permit the operation of valves. The developed analytical system was verified by analyzing IL-6 molecules using an enzyme-linked immunosorbent assay. Fluid operations such as sample injection, pL-level aliquot sampling and flow switching were accomplished in this device simply by opening/closing specific valves, and a sample consisting of approximately 1500 IL-6 molecules was successfully detected. This study is expected to significantly improve the usability of nanofluidic analytical devices and lead to the realization of sophisticated analytical techniques such as single-cell proteomics.
Collapse
Affiliation(s)
- Hiroki Sano
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yutaka Kazoe
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan.
| | - Ryoichi Ohta
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Hisashi Shimizu
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kyojiro Morikawa
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takehiko Kitamori
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
4
|
Chantipmanee N, Xu Y. Toward nanofluidics‐based mass spectrometry for exploring the unknown complex and heterogenous subcellular worlds. VIEW 2022. [DOI: 10.1002/viw.20220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nattapong Chantipmanee
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
| | - Yan Xu
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
- Japan Science and Technology Agency (JST) PRESTO Kawaguchi Japan
- Japan Science and Technology Agency (JST) CREST Kawaguchi Japan
| |
Collapse
|
5
|
Chantipmanee N, Xu Y. Nanofluidics for chemical and biological dynamics in solution at the single molecular level. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Xia L, Deb R, Yanagisawa N, Dutta D. Application of an electrokinetic backflow for enhancing pressure-driven charge based separations in sub-micrometer deep channels. Anal Chim Acta 2022; 1233:340476. [DOI: 10.1016/j.aca.2022.340476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/01/2022]
|
7
|
Yamamoto K, Morikawa K, Imanaka H, Imamura K, Kitamori T. Kinetics of Enzymatic Reactions at the Solid/Liquid Interface in Nanofluidic Channels. Anal Chem 2022; 94:15686-15694. [DOI: 10.1021/acs.analchem.2c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koki Yamamoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| | - Kyojiro Morikawa
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan, ROC
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| | - Hiroyuki Imanaka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama700-8530, Japan
| | - Koreyoshi Imamura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama700-8530, Japan
| | - Takehiko Kitamori
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan, ROC
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| |
Collapse
|
8
|
Levin S, Lerch S, Boje A, Fritzsche J, KK S, Ström H, Moth-Poulsen K, Sundén H, Hellman A, Westerlund F, Langhammer C. Nanofluidic Trapping of Faceted Colloidal Nanocrystals for Parallel Single-Particle Catalysis. ACS NANO 2022; 16:15206-15214. [PMID: 36054658 PMCID: PMC9527799 DOI: 10.1021/acsnano.2c06505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Catalyst activity can depend distinctly on nanoparticle size and shape. Therefore, understanding the structure sensitivity of catalytic reactions is of fundamental and technical importance. Experiments with single-particle resolution, where ensemble-averaging is eliminated, are required to study it. Here, we implement the selective trapping of individual spherical, cubic, and octahedral colloidal Au nanocrystals in 100 parallel nanofluidic channels to determine their activity for fluorescein reduction by sodium borohydride using fluorescence microscopy. As the main result, we identify distinct structure sensitivity of the rate-limiting borohydride oxidation step originating from different edge site abundance on the three particle types, as confirmed by first-principles calculations. This advertises nanofluidic reactors for the study of structure-function correlations in catalysis and identifies nanoparticle shape as a key factor in borohydride-mediated catalytic reactions.
Collapse
Affiliation(s)
- Sune Levin
- Department
of Biology and Biological Engineering, Chalmers
University of Technology; SE-412 96 Gothenburg, Sweden
| | - Sarah Lerch
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology; SE-412 96 Gothenburg, Sweden
| | - Astrid Boje
- Department
of Physics, Chalmers University of Technology; SE-412 96 Gothenburg, Sweden
| | - Joachim Fritzsche
- Department
of Physics, Chalmers University of Technology; SE-412 96 Gothenburg, Sweden
| | - Sriram KK
- Department
of Biology and Biological Engineering, Chalmers
University of Technology; SE-412 96 Gothenburg, Sweden
| | - Henrik Ström
- Department
of Mechanics and Maritime Sciences, Chalmers
University of Technology; SE-412 96 Gothenburg, Sweden
- Department
of Energy and Process Engineering, Norwegian
University of Science and Technology; NO-7034 Trondheim, Norway
| | - Kasper Moth-Poulsen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology; SE-412 96 Gothenburg, Sweden
- Institute
of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, ES-08193 Barcelona, Spain
- Catalan
Institution for Research and Advanced Studies, ICREA; ES-08010 Barcelona, Spain
| | - Henrik Sundén
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology; SE-412 96 Gothenburg, Sweden
- Department
of Chemistry & Molecular Biology, University
of Gothenburg; SE-412 96 Gothenburg, Sweden
| | - Anders Hellman
- Department
of Physics, Chalmers University of Technology; SE-412 96 Gothenburg, Sweden
- Competence
Centre for Catalysis, Chalmers University
of Technology; SE-412 96 Gothenburg, Sweden
| | - Fredrik Westerlund
- Department
of Biology and Biological Engineering, Chalmers
University of Technology; SE-412 96 Gothenburg, Sweden
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology; SE-412 96 Gothenburg, Sweden
| |
Collapse
|
9
|
Saruko T, Morikawa K, Kitamori T, Mawatari K. Proton diffusion and hydrolysis enzymatic reaction in 100 nm scale biomimetic nanochannels. BIOMICROFLUIDICS 2022; 16:044109. [PMID: 35992637 PMCID: PMC9385217 DOI: 10.1063/5.0105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Liquids in 10-100 nm spaces are expected to play an important role in biological systems. However, the liquid properties and their influence on biological activity have been obscured due to the difficulty in nanoscale measurements, either in vivo or in vitro. In this study, an in vitro analytical platform for biological systems is established. The nanochannels were modified with lipid bilayers, thereby serving as a model for biological confinement, e.g., the intercellular or intracellular space. As a representative property, the proton diffusion coefficient was measured by a nanofluidic circuit using fluorescein as a pH probe. It was verified that proton conduction was enhanced for channel widths less than 330 nm. A proton-related enzymatic reaction, the hydrolysis reaction, was also investigated, and a large confinement effect was observed.
Collapse
Affiliation(s)
- Takashi Saruko
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kyojiro Morikawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
10
|
Yang J, Xu Y. Nanofluidics for sub-single cellular studies: Nascent progress, critical technologies, and future perspectives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Label-free nanofluidic scattering microscopy of size and mass of single diffusing molecules and nanoparticles. Nat Methods 2022; 19:751-758. [PMID: 35637303 PMCID: PMC9184284 DOI: 10.1038/s41592-022-01491-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 04/12/2022] [Indexed: 12/18/2022]
Abstract
Label-free characterization of single biomolecules aims to complement fluorescence microscopy in situations where labeling compromises data interpretation, is technically challenging or even impossible. However, existing methods require the investigated species to bind to a surface to be visible, thereby leaving a large fraction of analytes undetected. Here, we present nanofluidic scattering microscopy (NSM), which overcomes these limitations by enabling label-free, real-time imaging of single biomolecules diffusing inside a nanofluidic channel. NSM facilitates accurate determination of molecular weight from the measured optical contrast and of the hydrodynamic radius from the measured diffusivity, from which information about the conformational state can be inferred. Furthermore, we demonstrate its applicability to the analysis of a complex biofluid, using conditioned cell culture medium containing extracellular vesicles as an example. We foresee the application of NSM to monitor conformational changes, aggregation and interactions of single biomolecules, and to analyze single-cell secretomes. Nanofluidic scattering microscopy enables label-free, quantitative measurements of the molecular weight and hydrodynamic radius of biological molecules and nanoparticles freely diffusing inside a nanofluidic channel.
Collapse
|
12
|
Shirai J, Yoshida K, Koreeda H, Kitamori T, Yamaguchi T, Mawatari K. Water structure in 100 nm nanochannels revealed by nano X-ray diffractometry and Raman spectroscopy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Kawagishi H, Kawamata S, Xu Y. Fabrication of Nanoscale Gas-Liquid Interfaces in Hydrophilic/Hydrophobic Nanopatterned Nanofluidic Channels. NANO LETTERS 2021; 21:10555-10561. [PMID: 34645267 PMCID: PMC10860204 DOI: 10.1021/acs.nanolett.1c02871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gas-liquid interfaces (GLIs) are ubiquitous and have found widespread applications in a large variety of fields. Despite the recent trend of downscaling GLIs, their nanoscale fabrication remains challenging because of the lack of suitable tools. In this study, a nanofluidic device, which has undergone precise local surface modification, is used in combination with tailored physicochemical effects in nanospace and optimized nanofluidic operations, to produce uniform, arrayable, stable, and transportable nanoscale GLIs that can concentrate molecules of interest at the nanoscale. This approach provides a delicate nanofluidic mechanism for downscaling gas-liquid interfaces to the nanometer scale, thus opening up a new avenue for gas-liquid interface studies and applications.
Collapse
Affiliation(s)
- Hiroto Kawagishi
- Department
of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Shuichi Kawamata
- Department
of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Yan Xu
- Department
of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
- Japan
Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- NanoSquare
Research Institute, Research Center for the 21st Century, Organization
for Research Promotion, Osaka Prefecture
University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
14
|
Sathish S, Shen AQ. Toward the Development of Rapid, Specific, and Sensitive Microfluidic Sensors: A Comprehensive Device Blueprint. JACS AU 2021; 1:1815-1833. [PMID: 34841402 PMCID: PMC8611667 DOI: 10.1021/jacsau.1c00318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 05/04/2023]
Abstract
Recent advances in nano/microfluidics have led to the miniaturization of surface-based chemical and biochemical sensors, with applications ranging from environmental monitoring to disease diagnostics. These systems rely on the detection of analytes flowing in a liquid sample, by exploiting their innate nature to react with specific receptors immobilized on the microchannel walls. The efficiency of these systems is defined by the cumulative effect of analyte detection speed, sensitivity, and specificity. In this perspective, we provide a fresh outlook on the use of important parameters obtained from well-characterized analytical models, by connecting the mass transport and reaction limits with the experimentally attainable limits of analyte detection efficiency. Specifically, we breakdown when and how the operational (e.g., flow rates, channel geometries, mode of detection, etc.) and molecular (e.g., receptor affinity and functionality) variables can be tailored to enhance the analyte detection time, analytical specificity, and sensitivity of the system (i.e., limit of detection). Finally, we present a simple yet cohesive blueprint for the development of high-efficiency surface-based microfluidic sensors for rapid, sensitive, and specific detection of chemical and biochemical analytes, pertinent to a variety of applications.
Collapse
Affiliation(s)
- Shivani Sathish
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
15
|
Kazoe Y, Shibata K, Kitamori T. Super-Resolution Defocusing Nanoparticle Image Velocimetry Utilizing Spherical Aberration for Nanochannel Flows. Anal Chem 2021; 93:13260-13267. [PMID: 34559530 DOI: 10.1021/acs.analchem.1c02575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding fluid flows and mass transport in nanospaces is becoming important with recent advances in nanofluidic analytical devices utilizing nanopores and nanochannels. In the present study, we developed a super-resolution and fast particle tracking method utilizing defocusing images with spherical aberration and demonstrated the measurement of nanochannel flow. Since the spherical aberration generates the defocusing nanoparticle image with diffraction rings, the position of fluorescent nanoparticles was determined from the radius of the diffraction ring. Effects of components of an optical system on the diffraction ring of the defocusing image were investigated and optimized to achieve the spatial resolution exceeding the optical diffraction limit. We found that there is an optimal magnitude of spherical aberration to enhance the spatial resolution. Furthermore, we confirmed that nanoparticles with diameters in the order of 101 nm, which is much smaller than the light wavelength, do not affect the defocusing images and the spatial resolution because such nanoparticles can be regarded as point light sources. At optimized conditions, we achieved a spatial resolution of 19 nm and a temporal resolution of 160 μs, which are sufficient for the nanochannel flow measurements. We succeeded in the measurement of pressure-driven flow in a nanochannel with a depth of 370 nm using 67 nm fluorescent nanoparticles. The measured nanoparticle velocities exhibited a parabolic flow profile with a slip velocity even at the hydrophilic glass surface but with an average velocity similar to the Hagen-Poiseuille law. The method will accelerate researches in the nanofluidics and other related fields.
Collapse
Affiliation(s)
- Yutaka Kazoe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.,Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Kazuki Shibata
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.,Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.,Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan, ROC
| |
Collapse
|
16
|
Morikawa K, Ohta R, Mawatari K, Kitamori T. Metal-Free Fabrication of Fused Silica Extended Nanofluidic Channel to Remove Artifacts in Chemical Analysis. MICROMACHINES 2021; 12:mi12080917. [PMID: 34442539 PMCID: PMC8399996 DOI: 10.3390/mi12080917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
In microfluidics, especially in nanofluidics, nanochannels with functionalized surfaces have recently attracted attention for use as a new tool for the investigation of chemical reaction fields. Molecules handled in the reaction field can reach the single-molecule level due to the small size of the nanochannel. In such surroundings, contamination of the channel surface should be removed at the single-molecule level. In this study, it was assumed that metal materials could contaminate the nanochannels during the fabrication processes; therefore, we aimed to develop metal-free fabrication processes. Fused silica channels 1000 nm-deep were conventionally fabricated using a chromium mask. Instead of chromium, electron beam resists more than 1000 nm thick were used and the lithography conditions were optimized. From the results of optimization, channels with 1000 nm scale width and depth were fabricated on fused silica substrates without the use of a chromium mask. In nanofluidic experiments, an oxidation reaction was observed in a device fabricated by conventional fabrication processes using a chromium mask. It was found that Cr6+ remained on the channel surfaces and reacted with chemicals in the liquid phase in the extended nanochannels; this effect occurred at least to the micromolar level. In contrast, the device fabricated with metal-free processes was free of artifacts induced by the presence of chromium. The developed fabrication processes and results of this study will be a significant contribution to the fundamental technologies employed in the fields of microfluidics and nanofluidics.
Collapse
Affiliation(s)
- Kyojiro Morikawa
- Collaborative Research Organization for Micro and Nano Multifunctional Devices (NMfD), The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Ryoichi Ohta
- Collaborative Research Organization for Micro and Nano Multifunctional Devices (NMfD), The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takehiko Kitamori
- Collaborative Research Organization for Micro and Nano Multifunctional Devices (NMfD), The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Institute of Nanoengineering and Microsystems (iNEMS), Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
17
|
Fabrication of Ultranarrow Nanochannels with Ultrasmall Nanocomponents in Glass Substrates. MICROMACHINES 2021; 12:mi12070775. [PMID: 34209303 PMCID: PMC8305551 DOI: 10.3390/mi12070775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022]
Abstract
Nanofluidics is supposed to take advantage of a variety of new physical phenomena and unusual effects at nanoscales typically below 100 nm. However, the current chip-based nanofluidic applications are mostly based on the use of nanochannels with linewidths above 100 nm, due to the restricted ability of the efficient fabrication of nanochannels with narrow linewidths in glass substrates. In this study, we established the fabrication of nanofluidic structures in glass substrates with narrow linewidths of several tens of nanometers by optimizing a nanofabrication process composed of electron-beam lithography and plasma dry etching. Using the optimized process, we achieved the efficient fabrication of fine glass nanochannels with sub-40 nm linewidths, uniform lateral features, and smooth morphologies, in an accurate and precise way. Furthermore, the use of the process allowed the integration of similar or dissimilar material-based ultrasmall nanocomponents in the ultranarrow nanochannels, including arrays of pockets with volumes as less as 42 zeptoliters (zL, 10−21 L) and well-defined gold nanogaps as narrow as 19 nm. We believe that the established nanofabrication process will be very useful for expanding fundamental research and in further improving the applications of nanofluidic devices.
Collapse
|
18
|
Tsuyama Y, Morikawa K, Mawatari K. Integration of sequential analytical processes into sub-100 nm channels: volumetric sampling, chromatographic separation, and label-free molecule detection. NANOSCALE 2021; 13:8855-8863. [PMID: 33949427 DOI: 10.1039/d0nr08385b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The progress of nanotechnology has developed nanofluidic devices utilizing nanochannels with a width and/or depth of sub-100 nm (101 nm channels), and several experiments have been implemented in ultra-small spaces comparable to DNAs and proteins. However, current experiments utilizing 101 nm channels focus on a single function or operation; integration of multiple analytical operations into 101 nm channels using nanofluidic circuits and fluidic control has yet to be realized despite the advantage of nanochannels. Herein, we report the establishment of a label-free molecule detection method for 101 nm channels and demonstration of sequential analytical processes using integrated nanofluidic devices. Our absorption-based detection method called photothermal optical diffraction (POD) enables non-invasive label-free molecule detection in 101 nm channels for the first time, and the limit of detection (LOD) of 1.8 μM is achieved in 70 nm wide and deep nanochannels, which corresponds to 7.5 molecules in the detection volume of 7 aL. As a demonstration of sampling in 101 nm channels, aL-fL volumetric sampling is performed using 90 nm deep cross-shaped nanochannels and pressure-driven fluidic control from three directions. Finally, the POD and volumetric sampling are combined with nanochannel chromatography, and separation analysis in 101 nm channels is demonstrated. The experimental results reported in this paper will contribute to the advances in 101 nm fluidic devices which have the potential to provide a novel platform for chemical/biological analyses.
Collapse
Affiliation(s)
- Yoshiyuki Tsuyama
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan.
| | | | | |
Collapse
|
19
|
Abstract
Biological membranes composed of a lipid bilayer and associated proteins work as a platform for highly selective and sensitive detection in nature. Substrate-supported lipid bilayers (SLBs) are a model system of the biological membrane that are mechanically stable, accessible to highly sensitive analytical techniques, and amenable to micro-fabrication, such as patterning. The surface of SLBs can effectively suppress the non-specific binding of proteins, and enhance selective detection by specific interactions. These features render SLBs highly attractive for the development of devices that utilize artificially mimicked cellular functions. Furthermore, SLBs can be combined with nanoscopic spaces, such as nano-channels and nano-pores, that can reduce the detection volume and suppress the non-specific background noise, enhancing the signal-to-background noise (S/B) ratio. SLBs therefore provide promising platforms for a wide range of biomedical and environmental analyses.
Collapse
Affiliation(s)
- Kenichi Morigaki
- Biosignal Research Center, Kobe University.,Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
20
|
Mawatari K, Isogai K, Morikawa K, Ushiyama H, Kitamori T. Isotope Effect in the Liquid Properties of Water Confined in 100 nm Nanofluidic Channels. J Phys Chem B 2021; 125:3178-3183. [PMID: 33730502 DOI: 10.1021/acs.jpcb.1c00780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Liquids confined in 10-100 nm spaces show different liquid properties from those in the bulk. Proton transfer plays an essential role in liquid properties. The Grotthuss mechanism, in which charge transfer occurs among neighboring water molecules, is considered to be dominant in bulk water. However, the rotational motion and proton transfer kinetics have not been studied well, which makes further analysis difficult. In this study, an isotope effect was used to study the kinetic effect of rotational motion and proton hopping processes by measurement of the viscosity, proton diffusion coefficient, and the proton hopping activation energy. As a result, a significant isotope effect was observed. These results indicate that the rotational motion is not significant, and the decrease of the proton hopping activation energy enhances the apparent proton diffusion coefficient.
Collapse
Affiliation(s)
- Kazuma Mawatari
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kohei Isogai
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kyojiro Morikawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Hiroshi Ushiyama
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
21
|
Yamamoto K, Ota N, Tanaka Y. Nanofluidic Devices and Applications for Biological Analyses. Anal Chem 2021; 93:332-349. [PMID: 33125221 DOI: 10.1021/acs.analchem.0c03868] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Koki Yamamoto
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobutoshi Ota
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yo Tanaka
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Morikawa K, Kazoe Y, Takagi Y, Tsuyama Y, Pihosh Y, Tsukahara T, Kitamori T. Advanced Top-Down Fabrication for a Fused Silica Nanofluidic Device. MICROMACHINES 2020; 11:E995. [PMID: 33182488 PMCID: PMC7697862 DOI: 10.3390/mi11110995] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Nanofluidics have recently attracted significant attention with regard to the development of new functionalities and applications, and producing new functional devices utilizing nanofluidics will require the fabrication of nanochannels. Fused silica nanofluidic devices fabricated by top-down methods are a promising approach to realizing this goal. Our group previously demonstrated the analysis of a living single cell using such a device, incorporating nanochannels having different sizes (102-103 nm) and with branched and confluent structures and surface patterning. However, fabrication of geometrically-controlled nanochannels on the 101 nm size scale by top-down methods on a fused silica substrate, and the fabrication of micro-nano interfaces on a single substrate, remain challenging. In the present study, the smallest-ever square nanochannels (with a size of 50 nm) were fabricated on fused silica substrates by optimizing the electron beam exposure time, and the absence of channel breaks was confirmed by streaming current measurements. In addition, micro-nano interfaces between 103 nm nanochannels and 101 μm microchannels were fabricated on a single substrate by controlling the hydrophobicity of the nanochannel surfaces. A micro-nano interface for a single cell analysis device, in which a nanochannel was connected to a 101 μm single cell chamber, was also fabricated. These new fabrication procedures are expected to advance the basic technologies employed in the field of nanofluidics.
Collapse
Affiliation(s)
- Kyojiro Morikawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (Y.K.); (Y.T.); (Y.P.)
| | - Yutaka Kazoe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (Y.K.); (Y.T.); (Y.P.)
| | - Yuto Takagi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (Y.K.); (Y.T.); (Y.P.)
| | - Yoshiyuki Tsuyama
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Yuriy Pihosh
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (Y.K.); (Y.T.); (Y.P.)
| | - Takehiko Tsukahara
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1-6, Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (Y.K.); (Y.T.); (Y.P.)
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| |
Collapse
|
23
|
Inoguchi S, Fukami K, Amano KI, Kitada A, Murase K. Reactivity of Zinc Cations under Spontaneous Accumulation of Hydrophobic Coexisting Cations in Hydrophobic Nanoporous Silicon. ACS OMEGA 2020; 5:26894-26901. [PMID: 33111015 PMCID: PMC7581247 DOI: 10.1021/acsomega.0c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The ion enrichment behavior due to surface-induced phase separation and the concomitant phase transition of electrolyte solutions between a liquid and a solid confined within nanopores of porous silicon is examined using concentrated aqueous solutions. We performed open-circuit potential measurements and differential scanning calorimetry (DSC) while varying the concentration of aqueous tetraethylammonium chloride (TEACl) solution. Open-circuit potential measurements revealed that the local OH- concentration within the nanopores increases as the bulk TEACl concentration increases. DSC measurements indicated that TEA+ cations are enriched within the nanopores and an extremely high concentration of TEA+ remarkably increases the local OH- concentration. This increase in the local pH should realize the selective precipitation of metal hydroxides within the nanopores. However, such precipitation was not observed in our investigations using aqueous solutions containing zinc cations. The experimental results suggest that ionic species within the nanopores of porous silicon are more stable than those in a bulk solution due to the formation of ion pairs with enhanced stability as well as kinetic factors that increase the activation energy for precipitation.
Collapse
Affiliation(s)
- Shota Inoguchi
- Department
of Materials Science and Engineering, Kyoto
University, Kyoto 606-8501, Japan
| | - Kazuhiro Fukami
- Department
of Materials Science and Engineering, Kyoto
University, Kyoto 606-8501, Japan
| | - Ken-ichi Amano
- Faculty
of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Atsushi Kitada
- Department
of Materials Science and Engineering, Kyoto
University, Kyoto 606-8501, Japan
| | - Kuniaki Murase
- Department
of Materials Science and Engineering, Kyoto
University, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
Xu J, Ren Z, Dong B, Liu X, Wang C, Tian Y, Lee C. Nanometer-Scale Heterogeneous Interfacial Sapphire Wafer Bonding for Enabling Plasmonic-Enhanced Nanofluidic Mid-Infrared Spectroscopy. ACS NANO 2020; 14:12159-12172. [PMID: 32812748 DOI: 10.1021/acsnano.0c05794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one of the most effective surface-enhanced infrared absorption (SEIRA) techniques, metal-insulator-metal structured metamaterial perfect absorbers possess an ultrahigh sensitivity and selectivity in molecular infrared fingerprint detection. However, most of the localized electromagnetic fields (i.e., hotspots) are confined in the dielectric layer, hindering the interaction between analytes and hotspots. By replacing the dielectric layer with the nanofluidic channel, we develop a sapphire (Al2O3)-based mid-infrared (MIR) hybrid nanofluidic-SEIRA (HN-SEIRA) platform for liquid sensors with the aid of a low-temperature interfacial heterogeneous sapphire wafer direct bonding technique. The robust atomic bonding interface is confirmed by transmission electron microscope observation. We also establish a design methodology for the HN-SEIRA sensor using coupled-mode theory to carry out the loss engineering and experimentally validate its feasibility through the accurate nanogap control. Thanks to the capillary force, liquid analytes can be driven into sensing hotspots without external actuation systems. Besides, we demonstrate an in situ real-time dynamic monitoring process for the acetone molecular diffusion in deionized water. A small concentration change of 0.29% is distinguished and an ultrahigh sensitivity (0.8364 pmol-1 %) is achieved. With the aid of IR fingerprint absorption, our HN-SEIRA platform brings the selectivity of liquid molecules with similar refractive indexes. It also resolves water absorption issues in traditional IR liquid sensors thanks to the sub-nm long light path. Considering the wide transparency window of Al2O3 in MIR (up to 5.2 μm), the HN-SEIRA platform covers more IR absorption range for liquid sensing compared to fused glass commonly used in micro/nanofluidics. Leveraging the aforementioned advantages, our work provides insights into developing a MIR real-time liquid sensing platform with intrinsic IR fingerprint selectivity, label-free ultrahigh sensitivity, and ultralow analyte volume, demonstrating a way toward quantitative molecule identification and dynamic analysis for the chemical and biological reaction processes.
Collapse
Affiliation(s)
- Jikai Xu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore
| | - Xinmiao Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore
| | - Chenxi Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Yanhong Tian
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
25
|
Shoda K, Tanaka M, Mino K, Kazoe Y. A Simple Low-Temperature Glass Bonding Process with Surface Activation by Oxygen Plasma for Micro/Nanofluidic Devices. MICROMACHINES 2020; 11:E804. [PMID: 32854246 PMCID: PMC7570177 DOI: 10.3390/mi11090804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022]
Abstract
The bonding of glass substrates is necessary when constructing micro/nanofluidic devices for sealing micro- and nanochannels. Recently, a low-temperature glass bonding method utilizing surface activation with plasma was developed to realize micro/nanofluidic devices for various applications, but it still has issues for general use. Here, we propose a simple process of low-temperature glass bonding utilizing typical facilities available in clean rooms and applied it to the fabrication of micro/nanofluidic devices made of different glasses. In the process, the substrate surface was activated with oxygen plasma, and the glass substrates were placed in contact in a class ISO 5 clean room. The pre-bonded substrates were heated for annealing. We found an optimal concentration of oxygen plasma and achieved a bonding energy of 0.33-0.48 J/m2 in fused-silica/fused-silica glass bonding. The process was applied to the bonding of fused-silica glass and borosilicate glass, which is generally used in optical microscopy, and revealed higher bonding energy than fused-silica/fused-silica glass bonding. An annealing temperature lower than 200 °C was necessary to avoid crack generation by thermal stress due to the different thermal properties of the glasses. A fabricated micro/nanofluidic device exhibited a pressure resistance higher than 600 kPa. This work will contribute to the advancement of micro/nanofluidics.
Collapse
Affiliation(s)
| | | | | | - Yutaka Kazoe
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Kanagawa 223-8522, Japan; (K.S.); (M.T.); (K.M.)
| |
Collapse
|
26
|
Amarasekara CA, Athapattu US, Rathnayaka C, Choi J, Park S, Soper SA. Open-tubular nanoelectrochromatography (OT-NEC): gel-free separation of single stranded DNAs (ssDNAs) in thermoplastic nanochannels. Electrophoresis 2020; 41:1627-1640. [PMID: 33460211 DOI: 10.1002/elps.202000109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
Electrophoresis or electrochromatography carried out in nanometer columns (width and depth) offers some attractive benefits compared to microscale columns. These advantages include unique separation mechanisms that are scale dependent, fast separation times, and simpler workflow due to the lack of a need for column packing and/or wall coatings to create a stationary phase. We report the use of thermoplastics, in this case PMMA, as the substrate for separating single-stranded DNAs (ssDNAs). Electrophoresis nanochannels were created in PMMA using nanoimprint lithography (NIL), which can produce devices at lower cost and in a higher production mode compared to the fabrication techniques required for glass devices. The nanochannel column in PMMA was successful in separating ssDNAs in free solution that was not possible using microchip electrophoresis in PMMA. The separation could be performed in <1 s with resolution >1.5 when carried out using at an electric field strength of 280 V/cm and an effective column length of 60 μm (100 nm × 100 nm, depth and width). The ssDNAs transport through the PMMA column was driven electrokinetically under the influence of an EOF. The results indicated that the separation was dominated by chromatographic effects using an open tubular nano-electrochromatography (OT-NEC) mode of separation. Interesting to these separations was that no column packing was required nor a wall coating to create the stationary phase; the separation was affected using the native polymer that was UV/O3 activated and an aqueous buffer mobile phase.
Collapse
Affiliation(s)
- Charuni A Amarasekara
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA
| | - Uditha S Athapattu
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA
| | - Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA
| | - Junseo Choi
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sunggook Park
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA.,Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas, USA.,Bioengineering Program, The University of Kansas, Lawrence, Kansas, USA.,KU Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
27
|
Kazoe Y, Mawatari K, Li L, Emon H, Miyawaki N, Chinen H, Morikawa K, Yoshizaki A, Dittrich PS, Kitamori T. Lipid Bilayer-Modified Nanofluidic Channels of Sizes with Hundreds of Nanometers for Characterization of Confined Water and Molecular/Ion Transport. J Phys Chem Lett 2020; 11:5756-5762. [PMID: 32633535 DOI: 10.1021/acs.jpclett.0c01084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Water inside and between cells with dimensions on the order of 101-103 nm such as synaptic clefts and mitochondria is thought to be important to biological functions, such as signal transmissions and energy production. However, the characterization of water in such spaces has been difficult owing to the small size and complexity of cellular environments. To this end, we proposed and fabricated a biomimetic nanospace exploiting nanofluidic channels with defined dimensions of hundreds of nanometers and controlled environments. A method of modifying a glass nanochannel with a unilamellar lipid bilayer was developed. We revealed that 2.1-5.6 times higher viscosity of water arises in a 200 nm sized biomimetic nanospace by interactions between water molecules and the lipid bilayer surface and significantly affects the molecular/ion transport that is required for the biological functions. The proposed method provides both a technical breakthrough and new findings to the fields of physical chemistry and biology.
Collapse
Affiliation(s)
- Yutaka Kazoe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Lixiao Li
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Hisaki Emon
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Naoya Miyawaki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Hiroyuki Chinen
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kyojiro Morikawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
28
|
Fujiwara S, Morikawa K, Endo T, Hisamoto H, Sueyoshi K. Size Sorting of Exosomes by Tuning the Thicknesses of the Electric Double Layers on a Micro-Nanofluidic Device. MICROMACHINES 2020; 11:mi11050458. [PMID: 32354140 PMCID: PMC7281254 DOI: 10.3390/mi11050458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022]
Abstract
Exosomes, a type of extracellular vesicle with a diameter of 30–150 nm, perform key biological functions such as intercellular communication. Recently, size sorting of exosomes has received increasing attention in order to clarify the correlation between their size and components. However, such sorting remains extremely difficult. Here, we propose to sort their size by controlling their electrokinetic migration in nanochannels in a micro-nanofluidic device, which is achieved by tuning the thickness of the electric double layers in the nanochannels. This approach was demonstrated experimentally for exosomes smaller than 250 nm. Using different running buffer concentrations (1 × 10−3, 1 × 10−4, and 1 × 10−5 M), most of the exosomes larger than 140, 110, and 80 nm were successfully cut off at the downstream of the nanochannels, respectively. Therefore, it is clarified that the proposed method is applicable for the size sorting of exosomes.
Collapse
Affiliation(s)
- Satoko Fujiwara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan; (S.F.); (T.E.); (H.H.)
| | - Kyojiro Morikawa
- Department of Applied Chemistry, School of Engineering, University of Tokyo, Tokyo 113-0033, Japan;
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan; (S.F.); (T.E.); (H.H.)
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan; (S.F.); (T.E.); (H.H.)
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan; (S.F.); (T.E.); (H.H.)
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo 102-8666, Japan
- Correspondence: ; Tel.: +81-72-254-9477
| |
Collapse
|
29
|
Yamamoto K, Morikawa K, Imanaka H, Imamura K, Kitamori T. Picoliter enzyme reactor on a nanofluidic device exceeding the bulk reaction rate. Analyst 2020; 145:5801-5807. [DOI: 10.1039/d0an00998a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A picoliter enzyme reactor using a trypsin immobilized nanochannel realized 25 times faster reaction than the bulk reaction.
Collapse
Affiliation(s)
- Koki Yamamoto
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kyojiro Morikawa
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Hiroyuki Imanaka
- Division of Chemistry and Biochemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Koreyoshi Imamura
- Division of Chemistry and Biochemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Takehiko Kitamori
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
30
|
Kazoe Y, Ugajin T, Ohta R, Mawatari K, Kitamori T. Parallel multiphase nanofluidics utilizing nanochannels with partial hydrophobic surface modification and application to femtoliter solvent extraction. LAB ON A CHIP 2019; 19:3844-3852. [PMID: 31596292 DOI: 10.1039/c9lc00793h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the field of microfluidics, utilizing parallel multiphase flows with immiscible liquid/liquid or gas/liquid interfaces along a microchannel has achieved the integration of various chemical processes for analyses and syntheses. Recently, our group has developed nanofluidics that exploits 100 nm nanochannels to realize ultra-small (aL to fL scale) and highly efficient chemical operations. Novel applications such as single-molecule analyses and single-cell omics are anticipated. However, the formation of parallel multiphase flows in a nanochannel remains challenging. To this end, here we developed a novel method for nanoscale partial hydrophobic surface modification of a nanochannel utilizing a focused ion beam. Hydrophobic and hydrophilic areas could be patterned beside one another even in a 60 nm glass nanochannel. Because this patterning maintained the liquid/liquid interface in the nanochannel based on the difference in wettability, stable aqueous/organic parallel two-phase flow in a 40 fL nanochannel was realized for the first time. Utilizing this flow, nanoscale unit operations involving phase confluence, extraction and phase separation were integrated to demonstrate solvent extraction of a lipid according to the Bligh-Dyer method, which is a broadly used pretreatment process in lipidomics. We accomplished the separation of a lipid and an amino acid in a sample volume of 4 fL (250 times smaller than the pL volume of a single cell) with a processing time of 1 ms (10 000 times faster than that in a microchannel). This study therefore provides a technological breakthrough that advances the field of nanofluidics to allow multiphase chemical processing at fL volumes.
Collapse
Affiliation(s)
- Yutaka Kazoe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
| | - Takuya Ugajin
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
| | - Ryoichi Ohta
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
| |
Collapse
|
31
|
Tsuyama Y, Mawatari K. Nonfluorescent Molecule Detection in 102 nm Nanofluidic Channels by Photothermal Optical Diffraction. Anal Chem 2019; 91:9741-9746. [DOI: 10.1021/acs.analchem.9b01334] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yoshiyuki Tsuyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo,
Bunkyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo,
Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
32
|
Kazoe Y, Pihosh Y, Takahashi H, Ohyama T, Sano H, Morikawa K, Mawatari K, Kitamori T. Femtoliter nanofluidic valve utilizing glass deformation. LAB ON A CHIP 2019; 19:1686-1694. [PMID: 30942790 DOI: 10.1039/c8lc01340c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the field of micro/nanofluidics, the channel open/close valves are among the most important technologies for switching and partitioning actions and integration of various operations into fluidic circuits. While several types of valves have been developed in microfluidics, few are capable in nanofluidics. In this study, we proposed a femtoliter (fL) volume nanochannel open/close valve fabricated in glass substrates. The valve consists of a shallow, circular and stepped-bottom valve chamber connected to nanochannels and an actuator. Even with tiny deformation occurring at the nanolevel in glass, an open/closed state of a nanochannel (10-1000 nm) can be achieved. We designed a fL-valve based on an analytical material deformation model, and developed a valve fabrication process. We then verified the open/closed state of the valve using a 308 fL-valve chamber with a four-stepped nanostructure fitting an arc-shape of deflected glass, confirmed its stability and durability over 50 open/close operations, and succeeded in stopping/flowing an aqueous solution at 209 fL s-1 under a 100 kPa pressure in a 900 nm nanochannel with a fast response of ∼0.65 s. A leak flow from the closed valve was sufficiently small even at a 490 kPa pressure-driven flow. Since the developed fL-valve can be applied to various nanofluidic devices made of glass and other rigid materials such as plastic, it is expected that this work will contribute significantly to the development of novel integrated micro/nanofluidics chemical systems for use in various applications, such as single cell/single molecule analysis.
Collapse
Affiliation(s)
- Yutaka Kazoe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Heiland JJ, Geissler D, Piendl SK, Warias R, Belder D. Supercritical-Fluid Chromatography On-Chip with Two-Photon-Excited-Fluorescence Detection for High-Speed Chiral Separations. Anal Chem 2019; 91:6134-6140. [DOI: 10.1021/acs.analchem.9b00726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Josef J. Heiland
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - David Geissler
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sebastian K. Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Rico Warias
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
34
|
Shimizu H, Toyoda K, Mawatari K, Terabe S, Kitamori T. Femtoliter Gradient Elution System for Liquid Chromatography Utilizing Extended Nanofluidics. Anal Chem 2019; 91:3009-3014. [PMID: 30661360 DOI: 10.1021/acs.analchem.8b05302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A gradient system was developed for the separation of proteins on a femtoliter scale utilizing nanofluidic channels. In the history of chromatography, miniaturization of the separation column has been important for efficient separation and downsizing of instruments. Previously, our group developed a small and highly efficient chromatography system utilizing nanofluidic channels, although a flexible design of the gradient was difficult and separation of proteins was not achieved. Here, we propose a flexible gradient system using standard HPLC pumps and an auxiliary mixer with a simple sample injection system. In contrast to our previous sample injection system using pressure balance, the system enables a femtoliter-scale sample injection which is compatible with gradient elution using HPLC pumps. The system was carefully designed, verified for sample injection and gradient elution, and finally applied to the separation of proteins from model and real samples. This femtoliter-scale, efficient separation system will contribute to omics studies at the single-cell level.
Collapse
Affiliation(s)
- Hisashi Shimizu
- International Research Center for Neurointelligence , The University of Tokyo , 7-3-1, Hongo , Bunkyo, Tokyo 113-0033 , Japan
| | - Kouto Toyoda
- Department of Applied Chemistry, School of Engineering , The University of Tokyo , 7-3-1, Hongo , Bunkyo, Tokyo 113-8656 , Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry, School of Engineering , The University of Tokyo , 7-3-1, Hongo , Bunkyo, Tokyo 113-8656 , Japan
| | - Shigeru Terabe
- Graduate School of Material Science , University of Hyogo , 3-2-1, Kouto , Kamigori , Hyogo 678-1297 , Japan
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering , The University of Tokyo , 7-3-1, Hongo , Bunkyo, Tokyo 113-8656 , Japan
| |
Collapse
|
35
|
Tanabe M, Ando K, Komatsu R, Morigaki K. Nanofluidic Biosensor Created by Bonding Patterned Model Cell Membrane and Silicone Elastomer with Silica Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802804. [PMID: 30345636 DOI: 10.1002/smll.201802804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Selective and sensitive detection of specific molecules in a solution containing diverse coexisting molecules is important in many biomedical and environmental applications, including diagnostics and pollutant detection. Here, a nanofluidic biosensor is developed to detect specific target molecules (e.g., toxin proteins) in the presence of nontarget molecules by bonding a patterned model cell membrane and a silicone elastomer (polydimethylsiloxane: PDMS) sheet using surface-modified silica nanoparticles as the adhesive layer. Owing to the uniform size of nanoparticles, a nanometric gap junction is formed between the fluid bilayer and PDMS (nanogap-junction). The thickness of the nanogap-junction is controlled by the size of the silica nanoparticles. Target molecules that specifically bind to the receptor molecules in the fluid bilayer are selectively transported into the nanogap-junction via lateral diffusion through the lipid membrane. A thinner gap formed with smaller nanoparticles can enhance the sensitivity (signal-to-background ratio) more effectively, owing to the suppression of nonspecific penetration of coexisting molecules. Silica nanoparticles also provide excellent mechanical robustness, realizing long-term stability of the gap structure. Nanogap-junction using silica nanoparticles provides a versatile platform for highly selective and sensitive sensing by realizing detection of specific target molecules in a solution containing more concentrated nontarget molecules.
Collapse
Affiliation(s)
- Masashi Tanabe
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe, 657-8501, Japan
| | - Koji Ando
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe, 657-8501, Japan
| | - Ryota Komatsu
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe, 657-8501, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe, 657-8501, Japan
- Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
36
|
Cui J, Mathwig K, Mampallil D, Lemay SG. Potential-Controlled Adsorption, Separation, and Detection of Redox Species in Nanofluidic Devices. Anal Chem 2018; 90:7127-7130. [PMID: 29808992 PMCID: PMC6011178 DOI: 10.1021/acs.analchem.8b01719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoscale channels and electrodes for electrochemical measurements exhibit extreme surface-to-volume ratios and a correspondingly high sensitivity to even weak degrees of surface interactions. Here, we exploit the potential-dependent reversible adsorption of outer-sphere redox species to modulate in space and time their concentration in a nanochannel under advective flow conditions. Induced concentration variations propagate downstream at a species-dependent velocity. This allows one to amperometrically distinguish between attomole amounts of species based on their time-of-flight. On-demand concentration pulse generation, separation, and detection are all integrated in a miniaturized platform.
Collapse
Affiliation(s)
- Jin Cui
- MESA+ Institute for Nanotechnology , University of Twente , PO Box 217, 7500 AE Enschede , The Netherlands
| | - Klaus Mathwig
- MESA+ Institute for Nanotechnology , University of Twente , PO Box 217, 7500 AE Enschede , The Netherlands
| | - Dileep Mampallil
- MESA+ Institute for Nanotechnology , University of Twente , PO Box 217, 7500 AE Enschede , The Netherlands
| | - Serge G Lemay
- MESA+ Institute for Nanotechnology , University of Twente , PO Box 217, 7500 AE Enschede , The Netherlands
| |
Collapse
|
37
|
Mawatari K, Koreeda H, Ohara K, Kohara S, Yoshida K, Yamaguchi T, Kitamori T. Nano X-ray diffractometry device for nanofluidics. LAB ON A CHIP 2018; 18:1259-1264. [PMID: 29594269 DOI: 10.1039/c8lc00077h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanofluidics is gaining attention because it has unique liquid and fluidic properties that are not observed in microfluidics. It has been reported that many liquid properties change when the size of a fluidic channel is reduced below 500-800 nm. To discuss the underlying mechanism, information on the microscopic liquid structure must be obtained (e.g., by X-ray diffractometry). However, the very small volume (attoliters to femtoliters) of a nanochannel and the large volume of its glass substrate prevent measurement of signals from the nanochannel liquid. In this study, we report a novel nanofluidic device that can be used in conjunction with X-ray diffractometry to analyze the structure of water confined in nanochannels. Top-down and bottom-up micro- and nano-fabrication processes were established, and the substrate thickness of the measurement area was reduced to only 2.7 μm, which was almost 1000 times smaller than that of conventional substrates (millimeter scale). With this new device, X-ray diffraction signals were clearly observed in nanochannels 500 nm wide and deep. Based on the X-ray diffraction pattern, the radial distribution function was calculated, which showed a structure nearly similar to that of a bulk sample. Therefore, X-ray diffractometry in nanochannels was realized. This method will provide important information on how a liquid behaves when confined in a nanospace and contribute to chemistry and biology on scales of 10-100 nm (e.g., inter- and intra-cellular spaces). It is also important for designing chemical reactions and fluidic circuits in nanochannels for realizing highly functional devices.
Collapse
Affiliation(s)
- Kazuma Mawatari
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Galvin CJ, Shirai K, Rahmani A, Masaya K, Shen AQ. Total Capture, Convection-Limited Nanofluidic Immunoassays Exhibiting Nanoconfinement Effects. Anal Chem 2018; 90:3211-3219. [PMID: 29446612 DOI: 10.1021/acs.analchem.7b04664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding nanoconfinement phenomena is necessary to develop nanofluidic technology platforms. One example of nanoconfinement phenomena is shifts in reaction equilibria toward reaction products in nanoconfined systems, which have been predicted theoretically and observed experimentally in DNA hybridization. Here we demonstrate a convection-limited nanofluidic immunoassay that achieves total capture of a target analyte and an apparent shift in the antibody-antigen reaction equilibrium due to nanoconfinement. The system exhibits wavefronts of the target analyte that propagate along the length of the nanochannel at a velocity much slower than that of the carrier fluid. We apply an analytical model describing the propagation of these wavefronts to determine the density of capture antibody binding sites in the enclosed nanochannel for a known concentration of the target analyte. We then use this binding site density to estimate the concentration of solutions with 5× and 10× less analyte. Our analysis suggests that nanoconfinement results in a preference toward binding of the target analyte with the surface-grafted capture antibody, as evidenced by an apparent reduction in the equilibrium dissociation constant. Our findings motivate the advancement of new biomedical and chemical synthesis technologies by leveraging nanoconfinement effects, and demonstrate a useful platform for studying the effect of nanoconfinement on chemical systems.
Collapse
Affiliation(s)
- Casey J Galvin
- Micro/Bio/Nanofluidics Unit , Okinawa Institute of Science and Technology Graduate School , 1919-1 Tancha , Onna-son , Okinawa 904-0495 , Japan
| | - Kentaro Shirai
- Sysmex Corporation , 4-4-2 Takatsukadai , Kobe-shi , Hyogo 651-2271 , Japan
| | - Ali Rahmani
- Micro/Bio/Nanofluidics Unit , Okinawa Institute of Science and Technology Graduate School , 1919-1 Tancha , Onna-son , Okinawa 904-0495 , Japan
| | - Kakuta Masaya
- Sysmex Corporation , 4-4-2 Takatsukadai , Kobe-shi , Hyogo 651-2271 , Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit , Okinawa Institute of Science and Technology Graduate School , 1919-1 Tancha , Onna-son , Okinawa 904-0495 , Japan
| |
Collapse
|
39
|
Xu Y. Nanofluidics: A New Arena for Materials Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1702419. [PMID: 29094401 DOI: 10.1002/adma.201702419] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/04/2017] [Indexed: 06/07/2023]
Abstract
A significant growth of research in nanofluidics is achieved over the past decade, but the field is still facing considerable challenges toward the transition from the current physics-centered stage to the next application-oriented stage. Many of these challenges are associated with materials science, so the field of nanofluidics offers great opportunities for materials scientists to exploit. In addition, the use of unusual effects and ultrasmall confined spaces of well-defined nanofluidic environments would offer new mechanisms and technologies to manipulate nanoscale objects as well as to synthesize novel nanomaterials in the liquid phase. Therefore, nanofluidics will be a new arena for materials science. In the past few years, burgeoning progress has been made toward this trend, as overviewed in this article, including materials and methods for fabricating nanofluidic devices, nanofluidics with functionalized surfaces and functional material components, as well as nanofluidics for manipulating nanoscale materials and fabricating new nanomaterials. Many critical challenges as well as fantastic opportunities in this arena lie ahead. Some of those, which are of particular interest, are also discussed.
Collapse
Affiliation(s)
- Yan Xu
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| |
Collapse
|
40
|
Xu J, Wang C, Wang T, Wang Y, Kang Q, Liu Y, Tian Y. Mechanisms for low-temperature direct bonding of Si/Si and quartz/quartz via VUV/O3 activation. RSC Adv 2018; 8:11528-11535. [PMID: 35542819 PMCID: PMC9079126 DOI: 10.1039/c7ra13095c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/18/2018] [Indexed: 01/02/2023] Open
Abstract
Low-temperature Si/Si and quartz/quartz direct bonding was realized via VUV/O3 activation and bonding mechanisms proposed.
Collapse
Affiliation(s)
- Jikai Xu
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Chenxi Wang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Te Wang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yuan Wang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Qiushi Kang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yannan Liu
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yanhong Tian
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
41
|
Liu M. Differential interference contrast-photothermal microscopy in nanospace: impacts of systematic parameters. J Microsc 2017; 269:221-229. [PMID: 28815586 DOI: 10.1111/jmi.12617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/02/2017] [Accepted: 07/26/2017] [Indexed: 11/28/2022]
Abstract
Differential interference contrast-photothermal microscopy (DIC-PTM), as a promising tool for trace analysis of nonfluorescent compounds, suffered low sensitivity in nanospace especially for aqueous samples, due to the poor thermophysical property of water and the unoptimised configuration. To improve its performance, a five-layer DIC-PTM model is built and influences of different parameters on the photothermal signal are investigated. The initial phase shift φ0 between two branches of the probe beam is found to be a key factor determining the detection sensitivity and response linearity: at a large φ0 (≤π/2) both a high sensitivity and a good linearity can be achieved, while a high signal-to-noise ratio occurs at a small φ0 . The steady-state photothermal phase shift φdc has little impact on the linearity, which, however, is greatly influenced by the range of periodic photothermal phase shift φac . By introducing two coatings into a nanospace to confine the photothermal effect within and around the sample, the sensitivity can be enhanced from a few times to over 100 times. On an optimised DIC-PTM configuration and chip structure, detection limit down to 10-3 cm-1 (or 40 molecules in a detection volume of 0.2 fL) was achieved in a 300-nm-thick nanospace. This work paves a way for optimising the DIC-PTM and chip structure for sensitive detection of analytes in nanospaces.
Collapse
Affiliation(s)
- M Liu
- School of Science, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
42
|
Hanasaki I, Walther JH. Suspended particle transport through constriction channel with Brownian motion. Phys Rev E 2017; 96:023109. [PMID: 28950651 DOI: 10.1103/physreve.96.023109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Indexed: 06/07/2023]
Abstract
It is well known that translocation events of a polymer or rod through pores or narrower parts of micro- and nanochannels have a stochastic nature due to the Brownian motion. However, it is not clear whether the objects of interest need to have a larger size than the entrance to exhibit the deviation from the dynamics of the surrounding fluid. We show by numerical analysis that the particle injection into the narrower part of the channel is affected by thermal fluctuation, where the particles have spherical symmetry and are smaller than the height of the constriction. The Péclet number (Pe) is the order parameter that governs the phenomena, which clarifies the spatio-temporal significance of Brownian motion compared to hydrodynamics. Furthermore, we find that there exists an optimal condition of Pe to attain the highest flow rate of particles relative to the dispersant fluid flow. Our finding is important in science and technology from nanopore DNA sequencers and lab-on-a-chip devices to filtration by porous materials and chromatography.
Collapse
Affiliation(s)
- Itsuo Hanasaki
- Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Jens H Walther
- Department of Mechanical Engineering, Technical University of Denmark, Building 403, DK-2800 Kgs. Lyngby, Denmark and Swiss Federal Institute of Technology Zürich, Chair of Computational Science, ETH Zentrum, CH-8092 Zürich, Switzerland
| |
Collapse
|
43
|
Shimizu H, Miyawaki N, Asano Y, Mawatari K, Kitamori T. Thermo-optical Characterization of Photothermal Optical Phase Shift Detection in Extended-Nano Channels and UV Detection of Biomolecules. Anal Chem 2017; 89:6043-6049. [DOI: 10.1021/acs.analchem.7b00630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hisashi Shimizu
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Naoya Miyawaki
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yoshihiro Asano
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takehiko Kitamori
- Department of Applied Chemistry,
School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
44
|
Shimizu H, Smirnova A, Mawatari K, Kitamori T. Extended-nano chromatography. J Chromatogr A 2017; 1490:11-20. [DOI: 10.1016/j.chroma.2016.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022]
|
45
|
Koyama A, Fukami K, Imaoka Y, Kitada A, Sakka T, Abe T, Murase K, Kinoshita M. Dynamic manipulation of the local pH within a nanopore triggered by surface-induced phase transition. Phys Chem Chem Phys 2017; 19:16323-16328. [DOI: 10.1039/c7cp01157a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Manipulating the local pH within nanopores is essential in nanofluidics technology and its applications.
Collapse
Affiliation(s)
- Akira Koyama
- Department of Materials Science and Engineering
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Kazuhiro Fukami
- Department of Materials Science and Engineering
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Yujin Imaoka
- Department of Materials Science and Engineering
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Atsushi Kitada
- Department of Materials Science and Engineering
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Tetsuo Sakka
- Department of Energy and Hydrocarbon Chemistry
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Takeshi Abe
- Department of Energy and Hydrocarbon Chemistry
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kuniaki Murase
- Department of Materials Science and Engineering
- Kyoto University
- Kyoto 606-8501
- Japan
| | | |
Collapse
|
46
|
FUKATSU Y, MORIKAWA K, IKEDA Y, TSUKAHARA T. Temperature and Size Effects on Structural and Dynamical Properties of Water Confined in 1 – 10 nm-scale Pores Using Proton NMR Spectroscopy. ANAL SCI 2017; 33:903-909. [DOI: 10.2116/analsci.33.903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yuta FUKATSU
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology
| | - Kyojiro MORIKAWA
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology
| | - Yasuhisa IKEDA
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology
| | | |
Collapse
|
47
|
Wang C, Kazoe Y, Morikawa K, Shimizu H, Pihosh Y, Mawatari K, Kitamori T. Micro heat pipe device utilizing extended nanofluidics. RSC Adv 2017. [DOI: 10.1039/c7ra10017e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A micro heat pipe device based on enhanced condensation on the extended nanopillars and liquid transport in the extended nanochannels.
Collapse
Affiliation(s)
- Chenxi Wang
- State Key Laboratory of Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yutaka Kazoe
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kyojiro Morikawa
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Hisashi Shimizu
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Yuriy Pihosh
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Takehiko Kitamori
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
48
|
Shimizu T, Kameta N, Ding W, Masuda M. Supramolecular Self-Assembly into Biofunctional Soft Nanotubes: From Bilayers to Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12242-12264. [PMID: 27248715 DOI: 10.1021/acs.langmuir.6b01632] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The inner and outer surfaces of bilayer-based lipid nanotubes can be hardly modified selectively by a favorite functional group. Monolayer-based nanotubes display a definitive difference in their inner and outer functionalities if bipolar wedge-shaped amphiphiles, so-called bolaamphiphiles, as a constituent of the monolayer membrane pack in a parallel fashion with a head-to-tail interface. To exclusively form unsymmetrical monolayer lipid membranes, we focus herein on the rational molecular design of bolaamphiphiles and a variety of self-assembly processes into tubular architectures. We first describe the importance of polymorph and polytype control and then discuss diverse methodologies utilizing a polymer template, multiple hydrogen bonds, binary and ternary coassembly, and two-step self-assembly. Novel biologically important functions of the obtained soft nanotubes, brought about only by completely unsymmetrical inner and outer surfaces, are discussed in terms of protein refolding, drug nanocarriers, lectin detection, a chiral inducer for achiral polymers, the tailored fabrication of polydopamine, and spontaneous nematic alignment.
Collapse
Affiliation(s)
- Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naohiro Kameta
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Wuxiao Ding
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Mitsutoshi Masuda
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
49
|
Mei L, Yeh LH, Qian S. Gate modulation of proton transport in a nanopore. Phys Chem Chem Phys 2016; 18:7449-58. [PMID: 26899280 DOI: 10.1039/c5cp07568h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proton transport in confined spaces plays a crucial role in many biological processes as well as in modern technological applications, such as fuel cells. To achieve active control of proton conductance, we investigate for the first time the gate modulation of proton transport in a pH-regulated nanopore by a multi-ion model. The model takes into account surface protonation/deprotonation reactions, surface curvature, electroosmotic flow, Stern layer, and electric double layer overlap. The proposed model is validated by good agreement with the existing experimental data on nanopore conductance with and without a gate voltage. The results show that the modulation of proton transport in a nanopore depends on the concentration of the background salt and solution pH. Without background salt, the gated nanopore exhibits an interesting ambipolar conductance behavior when pH is close to the isoelectric point of the dielectric pore material, and the net ionic and proton conductance can be actively regulated with a gate voltage as low as 1 V. The higher the background salt concentration, the lower is the performance of the gate control on the proton transport.
Collapse
Affiliation(s)
- Lanju Mei
- Institute of Micro/Nanotechnology, Old Dominion University, Norfolk, VA 23529, USA.
| | - Li-Hsien Yeh
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| | - Shizhi Qian
- Institute of Micro/Nanotechnology, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
50
|
Ando K, Tanabe M, Morigaki K. Nanometric Gap Structure with a Fluid Lipid Bilayer for the Selective Transport and Detection of Biological Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7958-7964. [PMID: 27427950 DOI: 10.1021/acs.langmuir.6b01405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The biological membrane is a natural biosensing platform that can detect specific molecules with extremely high sensitivity. We developed a biosensing methodology by combining a model biological membrane and a nanometer-sized gap structure on a glass substrate. The model membrane comprised lithographically patterned polymeric and fluid lipid bilayers. The polymeric bilayer was bonded to a poly(dimethylsiloxane) (PDMS) sheet by using an adhesion layer with a defined thickness (lipid vesicles). Extruded lipid vesicles having a biotin moiety on the surface were used as the adhesion layer in conjunction with the biotin-streptavidin linkage. A gap structure was formed between the fluid bilayer and PDMS (nanogap junction). The thickness of the gap structure was several tens of nanometers, as determined by the thickness of the adhesion layer. The nanogap junction acted as a sensitive biosensing platform. From a mixture of proteins (cholera toxin and albumin), the target protein (cholera toxin) was selectively transported into the gap by the specific binding to a glycolipid (GM1) in the fluid bilayer and lateral diffusion. The target protein molecules were then detected with an elevated signal-to-noise ratio due to the reduced background noise in the nanometric gap. The combination of selective transport and reduced background noise drastically enhanced the sensitivity toward the target protein. The nanogap junction should have broad biomedical applications by realizing highly selective and sensitive biosensing in samples having diverse coexisting molecules.
Collapse
Affiliation(s)
- Koji Ando
- Graduate School of Agricultural Science and ‡Biosignal Research Center, Kobe University , Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Masashi Tanabe
- Graduate School of Agricultural Science and ‡Biosignal Research Center, Kobe University , Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science and ‡Biosignal Research Center, Kobe University , Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|