1
|
Lan Z, Chen R, Zou D, Zhao CX. Microfluidic Nanoparticle Separation for Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411278. [PMID: 39632600 DOI: 10.1002/advs.202411278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/11/2024] [Indexed: 12/07/2024]
Abstract
A deeper understanding of disease heterogeneity highlights the urgent need for precision medicine. Microfluidics, with its unique advantages, such as high adjustability, diverse material selection, low cost, high processing efficiency, and minimal sample requirements, presents an ideal platform for precision medicine applications. As nanoparticles, both of biological origin and for therapeutic purposes, become increasingly important in precision medicine, microfluidic nanoparticle separation proves particularly advantageous for handling valuable samples in personalized medicine. This technology not only enhances detection, diagnosis, monitoring, and treatment accuracy, but also reduces invasiveness in medical procedures. This review summarizes the fundamentals of microfluidic nanoparticle separation techniques for precision medicine, starting with an examination of nanoparticle properties essential for separation and the core principles that guide various microfluidic methods. It then explores passive, active, and hybrid separation techniques, detailing their principles, structures, and applications. Furthermore, the review highlights their contributions to advancements in liquid biopsy and nanomedicine. Finally, it addresses existing challenges and envisions future development spurred by emerging technologies such as advanced materials science, 3D printing, and artificial intelligence. These interdisciplinary collaborations are anticipated to propel the platformization of microfluidic separation techniques, significantly expanding their potential in precision medicine.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Rui Chen
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Da Zou
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
2
|
Norouzy N, Nikdoost A, Rezai P. Parallelization of Curved Inertial Microfluidic Channels to Increase the Throughput of Simultaneous Microparticle Separation and Washing. MICROMACHINES 2024; 15:1228. [PMID: 39459102 PMCID: PMC11509581 DOI: 10.3390/mi15101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024]
Abstract
The rising global need for clean water highlights the importance of efficient sample preparation methods to separate and wash various contaminants such as microparticles. Microfluidic methods for these purposes have emerged but they mostly deliver either separation or washing, with very low throughputs. Here, we investigate parallelization of a curved-channel particle separation and washing device in order to increase its throughput for sample preparation. A curved microchannel applies inertial forces to focus larger 10 µm microparticles at the inner wall of the channel and separate them from smaller 5 µm microparticles at the outer wall. At the same time, Dean flow recirculation is used to exchange the carrier solution of the large microparticles to a clean buffer (washing). We increased the number of curved channels in a stepwise manner from two to four to eight channels in two different arraying designs, i.e., rectangular and polar arrays. We examined efficient separation of target 10 µm particles from 5 µm particles, while transferring the larger microparticles into a clean buffer. Dean flow recirculation studies demonstrated that the rectangular arrayed device performs better, providing solution exchange efficiencies of more than 96% on average as compared to 89% for the polar array device. Our 8-curve rectangular array device provided a particle separation efficiency of 98.93 ± 0.91%, while maintaining a sample purity of 92.83 ± 1.47% at a high working flow rate of 12.8 mL/min. Moreover, the target particles were transferred into a clean buffer with a solution exchange efficiency of 96.81 ± 0.54% in our 8-curve device. Compared to the literature, our in-plane parallelization design of curved microchannels resulted in a 13-fold increase in the working flow rate of the setup while maintaining a very high performance in particle separation and washing. Our microfluidic device offers the potential to enhance the throughput and the separation and washing efficiencies in applications for biological and environmental samples.
Collapse
Affiliation(s)
| | | | - Pouya Rezai
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, ON M3J 1P3, Canada; (N.N.); (A.N.)
| |
Collapse
|
3
|
Norouzy N, Zabihihesari A, Rezai P. Simultaneous high-throughput particle-bacteria separation and solution exchange via in-plane and out-of-plane parallelization of microfluidic centrifuges. BIOMICROFLUIDICS 2024; 18:054107. [PMID: 39345266 PMCID: PMC11435783 DOI: 10.1063/5.0215930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
Inertial microfluidic devices have gained attention for point-of-need (PoN) sample preparation. Yet, devices capable of simultaneous particle-bacteria solution exchange and separation are low in throughput, hindering their applicability to PoN settings. This paper introduces a microfluidic centrifuge for high-throughput solution exchange and separation of microparticles, addressing the need for processing large sample volumes at elevated flow rates. The device integrates Dean flow recirculation and inertial focusing of microparticles within 24 curved microchannels assembled in a three-layer configuration via in-plane and out-of-plane parallelization. We studied solution exchange and particle migration using singleplex and duplex samples across devices with varying curve numbers (2-curve, 8-curve, and 24-curve). Processing 5 and 10 μm microparticles at flow rates up to 16.8 ml/min achieved a solution exchange efficiency of 96.69%. In singleplex solutions, 10 and 5 μm particles selectively migrated to inner and outer outlets, demonstrating separation efficiencies of 99.7% and 90.3%, respectively. With duplex samples, sample purity was measured to be 93.4% and 98.6% for 10 and 5 μm particles collected from the inner and the outer outlets, respectively. Application of our device in biological assays was shown by performing duplex experiments where 10 μm particles were isolated from Salmonella bacterial suspension with purity of 97.8% while increasing the state-of-the-art particle solution exchange and separation throughput by 16 folds. This parallelization enabled desirable combinations of high throughput, low-cost, and scalability, without compromising efficiency and purity, paving the way for sample preparation at the PoN in the future.
Collapse
Affiliation(s)
- Nima Norouzy
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| | - Alireza Zabihihesari
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
4
|
Fang Y, Zhu S, Cheng W, Ni Z, Xiang N. Efficient bioparticle extraction using a miniaturized inertial microfluidic centrifuge. LAB ON A CHIP 2022; 22:3545-3554. [PMID: 35989675 DOI: 10.1039/d2lc00496h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional bioparticle extraction requires labor-intensive operation, and expensive and bulky centrifuges. Herein, we report a miniaturized centrifuge by cascading four paralleled inertial spiral channels with a two-stage serpentine channel, allowing for the efficient washing and acquisition of concentrated bioparticles from background fluids. First, the effects of channel size and flow rate on particle focusing dynamics and solution exchange performances are explored to enable the optimization and wide application of our device. Then, the integrated device is fabricated and tested experimentally. The results indicate that 10-20 μm particles can be washed from the original samples with increased concentrations and with recovery efficiencies of >93%. Finally, to verify its versatility, we use our miniaturized centrifuge to successfully change the culture medium for cultured MCF-7 breast cancer cells, extract A549 lung cancer cells from a calcein-AM staining solution, purify white blood cells (WBCs) from lysed whole blood, and extract target cells from an unbonded magnetic microbead background. Compared with conventional centrifuges, our device has the advantages of simple fabrication, easy operation, and small footprint. More importantly, it offers outstanding capability for extracting bioparticles from various background fluids, and avoids bioparticle damage that may be caused by high-speed centrifugation. Therefore, we envision that our miniaturized centrifuge could be a promising alternative to traditional centrifuges in many applications.
Collapse
Affiliation(s)
- Yaohui Fang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Shu Zhu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Weiqi Cheng
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
5
|
Alteration of Inertial Focusing Positions in Triangular Channels Using Flexible PDMS Microfluidics. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Cha H, Fallahi H, Dai Y, Yuan D, An H, Nguyen NT, Zhang J. Multiphysics microfluidics for cell manipulation and separation: a review. LAB ON A CHIP 2022; 22:423-444. [PMID: 35048916 DOI: 10.1039/d1lc00869b] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Dan Yuan
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3216, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
7
|
Tang H, Niu J, Jin H, Lin S, Cui D. Geometric structure design of passive label-free microfluidic systems for biological micro-object separation. MICROSYSTEMS & NANOENGINEERING 2022; 8:62. [PMID: 35685963 PMCID: PMC9170746 DOI: 10.1038/s41378-022-00386-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/27/2022] [Accepted: 03/18/2022] [Indexed: 05/05/2023]
Abstract
Passive and label-free microfluidic devices have no complex external accessories or detection-interfering label particles. These devices are now widely used in medical and bioresearch applications, including cell focusing and cell separation. Geometric structure plays the most essential role when designing a passive and label-free microfluidic chip. An exquisitely designed geometric structure can change particle trajectories and improve chip performance. However, the geometric design principles of passive and label-free microfluidics have not been comprehensively acknowledged. Here, we review the geometric innovations of several microfluidic schemes, including deterministic lateral displacement (DLD), inertial microfluidics (IMF), and viscoelastic microfluidics (VEM), and summarize the most creative innovations and design principles of passive and label-free microfluidics. We aim to provide a guideline for researchers who have an interest in geometric innovations of passive label-free microfluidics.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Han Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Shujing Lin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| |
Collapse
|
8
|
Huang D, Man J, Jiang D, Zhao J, Xiang N. Inertial microfluidics: Recent advances. Electrophoresis 2020; 41:2166-2187. [PMID: 33027533 DOI: 10.1002/elps.202000134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 02/24/2024]
Abstract
Inertial microfluidics has attracted significant attentions in last decade due to its superior advantages of high throughput, label- and external field-free operation, simplicity, and low cost. A wide variety of channel geometry designs were demonstrated for focusing, concentrating, isolating, or separating of various bioparticles such as blood components, circulating tumor cells, bacteria, and microalgae. In this review, we first briefly introduce the physics of inertial migration and Dean flow for allowing the readers with diverse backgrounds to have a better understanding of the fundamental mechanisms of inertial microfluidics. Then, we present a comprehensive review of the recent advances and applications of inertial microfluidic devices according to different channel geometries ranging from straight channels, curved channels to contraction-expansion-array channels. Finally, the challenges and future perspective of inertial microfluidics are discussed. Owing to its superior benefit for particle manipulation, the inertial microfluidics will play a more important role in biology and medicine applications.
Collapse
Affiliation(s)
- Di Huang
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Jiaxiang Man
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Jiyun Zhao
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
9
|
Chen P, Li S, Guo Y, Zeng X, Liu BF. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Anal Chim Acta 2020; 1125:94-113. [PMID: 32674786 DOI: 10.1016/j.aca.2020.05.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Spatiotemporal manipulation of extracellular chemical environments with simultaneous monitoring of cellular responses plays an essential role in exploring fundamental biological processes and expands our understanding of underlying mechanisms. Despite the rapid progress and promising successes in manipulation strategies, many challenges remain due to the small size of cells and the rapid diffusion of chemical molecules. Fortunately, emerging microfluidic technology has become a powerful approach for precisely controlling the extracellular chemical microenvironment, which benefits from its integration capacity, automation, and high-throughput capability, as well as its high resolution down to submicron. Here, we summarize recent advances in microfluidics manipulation of the extracellular chemical microenvironment, including the following aspects: i) Spatial manipulation of chemical microenvironments realized by convection flow-, diffusion-, and droplet-based microfluidics, and surface chemical modification; ii) Temporal manipulation of chemical microenvironments enabled by flow switching/shifting, moving/flowing cells across laminar flows, integrated microvalves/pumps, and droplet manipulation; iii) Spatiotemporal manipulation of chemical microenvironments implemented by a coupling strategy and open-space microfluidics; and iv) High-throughput manipulation of chemical microenvironments. Finally, we briefly present typical applications of the above-mentioned technical advances in cell-based analyses including cell migration, cell signaling, cell differentiation, multicellular analysis, and drug screening. We further discuss the future improvement of microfluidics manipulation of extracellular chemical microenvironments to fulfill the needs of biological and biomedical research and applications.
Collapse
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
10
|
Panhwar MH, Czerwinski F, Dabbiru VAS, Komaragiri Y, Fregin B, Biedenweg D, Nestler P, Pires RH, Otto O. High-throughput cell and spheroid mechanics in virtual fluidic channels. Nat Commun 2020; 11:2190. [PMID: 32366850 PMCID: PMC7198589 DOI: 10.1038/s41467-020-15813-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Microfluidics by soft lithography has proven to be of key importance for biophysics and life science research. While being based on replicating structures of a master mold using benchtop devices, design modifications are time consuming and require sophisticated cleanroom equipment. Here, we introduce virtual fluidic channels as a flexible and robust alternative to microfluidic devices made by soft lithography. Virtual channels are liquid-bound fluidic systems that can be created in glass cuvettes and tailored in three dimensions within seconds for rheological studies on a wide size range of biological samples. We demonstrate that the liquid-liquid interface imposes a hydrodynamic stress on confined samples, and the resulting strain can be used to calculate rheological parameters from simple linear models. In proof-of-principle experiments, we perform high-throughput rheology inside a flow cytometer cuvette and show the Young's modulus of isolated cells exceeds the one of the corresponding tissue by one order of magnitude.
Collapse
Affiliation(s)
- Muzaffar H Panhwar
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Fabian Czerwinski
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Venkata A S Dabbiru
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Yesaswini Komaragiri
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Bob Fregin
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Doreen Biedenweg
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Fleischmannstr. 8, 17475, Greifswald, Germany
| | - Peter Nestler
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Ricardo H Pires
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Oliver Otto
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany.
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany.
| |
Collapse
|
11
|
Salehi SS, Shamloo A, Hannani SK. Microfluidic technologies to engineer mesenchymal stem cell aggregates-applications and benefits. Biophys Rev 2020; 12:123-133. [PMID: 31953794 PMCID: PMC7040154 DOI: 10.1007/s12551-020-00613-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional cell culture and the forming multicellular aggregates are superior over traditional monolayer approaches due to better mimicking of in vivo conditions and hence functions of a tissue. A considerable amount of attention has been devoted to devising efficient methods for the rapid formation of uniform-sized multicellular aggregates. Microfluidic technology describes a platform of techniques comprising microchannels to manipulate the small number of reagents with unique properties and capabilities suitable for biological studies. The focus of this review is to highlight recent studies of using microfluidics, especially droplet-based types for the formation, culture, and harvesting of mesenchymal stem cell aggregates and their subsequent application in stem cell biology, tissue engineering, and drug screening. Droplet-based microfluidics can be used to form microgels as carriers for delivering cells and to provide biological cues to the target tissue so as to be minimally invasive. Stem cell-laden microgels with a shape-forming property can be used as smart building blocks by injecting them into the injured tissue thereby constituting the cornerstone of tissue regeneration.
Collapse
Affiliation(s)
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
12
|
Xuan X. Recent Advances in Continuous-Flow Particle Manipulations Using Magnetic Fluids. MICROMACHINES 2019; 10:E744. [PMID: 31683660 PMCID: PMC6915689 DOI: 10.3390/mi10110744] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Magnetic field-induced particle manipulation is simple and economic as compared to other techniques (e.g., electric, acoustic, and optical) for lab-on-a-chip applications. However, traditional magnetic controls require the particles to be manipulated being magnetizable, which renders it necessary to magnetically label particles that are almost exclusively diamagnetic in nature. In the past decade, magnetic fluids including paramagnetic solutions and ferrofluids have been increasingly used in microfluidic devices to implement label-free manipulations of various types of particles (both synthetic and biological). We review herein the recent advances in this field with focus upon the continuous-flow particle manipulations. Specifically, we review the reported studies on the negative magnetophoresis-induced deflection, focusing, enrichment, separation, and medium exchange of diamagnetic particles in the continuous flow of magnetic fluids through microchannels.
Collapse
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
13
|
Fregin B, Czerwinski F, Biedenweg D, Girardo S, Gross S, Aurich K, Otto O. High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry. Nat Commun 2019; 10:415. [PMID: 30679420 PMCID: PMC6346011 DOI: 10.1038/s41467-019-08370-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/08/2019] [Indexed: 11/25/2022] Open
Abstract
In life sciences, the material properties of suspended cells have attained significance close to that of fluorescent markers but with the advantage of label-free and unbiased sample characterization. Until recently, cell rheological measurements were either limited by acquisition throughput, excessive post processing, or low-throughput real-time analysis. Real-time deformability cytometry expanded the application of mechanical cell assays to fast on-the-fly phenotyping of large sample sizes, but has been restricted to single material parameters as the Young's modulus. Here, we introduce dynamic real-time deformability cytometry for comprehensive cell rheological measurements at up to 100 cells per second. Utilizing Fourier decomposition, our microfluidic method is able to disentangle cell response to complex hydrodynamic stress distributions and to determine viscoelastic parameters independent of cell shape. We demonstrate the application of our technology for peripheral blood cells in whole blood samples including the discrimination of B- and CD4+ T-lymphocytes by cell rheological properties.
Collapse
Affiliation(s)
- Bob Fregin
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Fabian Czerwinski
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Doreen Biedenweg
- Universitätsmedizin Greifswald, Fleischmannstr. 8, 17489, Greifswald, Germany
| | - Salvatore Girardo
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Stefan Gross
- Universitätsmedizin Greifswald, Fleischmannstr. 8, 17489, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Konstanze Aurich
- Universitätsmedizin Greifswald, Fleischmannstr. 8, 17489, Greifswald, Germany
| | - Oliver Otto
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany.
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany.
| |
Collapse
|
14
|
|
15
|
Thurgood P, Zhu JY, Nguyen N, Nahavandi S, Jex AR, Pirogova E, Baratchi S, Khoshmanesh K. A self-sufficient pressure pump using latex balloons for microfluidic applications. LAB ON A CHIP 2018; 18:2730-2740. [PMID: 30063234 DOI: 10.1039/c8lc00471d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Here, we demonstrate a self-sufficient, inexpensive and disposable pressure pump using commercially available latex balloons. The versatility of the pump is demonstrated against various microfluidic structures, liquid viscosities, and ambient temperatures. The flow rate of the pump can be controlled by varying the size and thickness of the balloon. Importantly, the soft structure of the balloon allows for almost instantaneous change of the flow rate upon manual squeezing of the balloon. This feature has been used for dynamically changing the flow ratio of parallel streams in a T-shaped channel or varying the size of droplets in a droplet generation system. The self-sufficiency, simplicity of fabrication and operation, along with the low-cost of the balloon pump facilitate the widespread application of microfluidic technologies for various research, education, and in situ monitoring purposes.
Collapse
Affiliation(s)
- Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Nguyen N, Thurgood P, Zhu JY, Pirogova E, Baratchi S, Khoshmanesh K. "Do-it-in-classroom" fabrication of microfluidic systems by replica moulding of pasta structures. BIOMICROFLUIDICS 2018; 12:044115. [PMID: 30174774 PMCID: PMC6102117 DOI: 10.1063/1.5042684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/30/2018] [Indexed: 05/03/2023]
Abstract
Here, we describe a novel method for fabrication of microfluidic structures in classroom environments. This method is based on replica moulding of pasta structures in polydimethylsiloxane. Placing pasta structures on a petroleum jelly base layer enables templating round-shaped structures with controllable cross-sectional profiles. The pasta structures can be easily deformed and combined to create more complex 3D microfluidic structures. Proof-of-concept experiments indicate the capability of this method for studying the mixing of neighbouring flows, generation of droplets, lateral migration of particles, as well as culturing, shear stress stimulation, and imaging of cells. Our "do-it-in-classroom" method bridges the gap between the classroom and the laboratory.
Collapse
Affiliation(s)
- Ngan Nguyen
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jiu Yang Zhu
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Khashayar Khoshmanesh
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- Author to whom correspondence should be addressed:
| |
Collapse
|
17
|
Yuan D, Tan SH, Sluyter R, Zhao Q, Yan S, Nguyen NT, Guo J, Zhang J, Li W. On-Chip Microparticle and Cell Washing Using Coflow of Viscoelastic Fluid and Newtonian Fluid. Anal Chem 2017; 89:9574-9582. [DOI: 10.1021/acs.analchem.7b02671] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Dan Yuan
- School
of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Say Hwa Tan
- Queensland
Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Ronald Sluyter
- School
of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Qianbin Zhao
- School
of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Sheng Yan
- School
of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - N. T. Nguyen
- Queensland
Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Jinhong Guo
- School
of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jun Zhang
- School
of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weihua Li
- School
of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
18
|
Chen Q, Li D, Lin J, Wang M, Xuan X. Simultaneous Separation and Washing of Nonmagnetic Particles in an Inertial Ferrofluid/Water Coflow. Anal Chem 2017; 89:6915-6920. [PMID: 28548482 DOI: 10.1021/acs.analchem.7b01608] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Magnetic fluids (e.g., paramagnetic solutions and ferrofluids) have been increasingly used for label-free separation of nonmagnetic particles in microfluidic devices. Their biocompatibility, however, becomes a concern in high-throughput or large-volume applications. One way to potentially resolve this issue is resuspending the particles that are separated in a magnetic fluid immediately into a biocompatible buffer. We demonstrate herein the proof-of-principle of the first integration of negative magnetophoresis and inertial focusing for a simultaneous separation and washing of nonmagnetic particles in coflowing ferrofluid and water streams. The two operations take place in parallel in a simple T-shaped rectangular microchannel with a nearby permanent magnet. We find that the larger and smaller particles' exiting positions (and hence their separation distance) in the sheath water and ferrofluid suspension, respectively, vary with the total flow rate or the flow rate ratio between the two streams.
Collapse
Affiliation(s)
- Qi Chen
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States.,MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Di Li
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States
| | - Jianhan Lin
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Maohua Wang
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States
| |
Collapse
|
19
|
Chiu DT, deMello AJ, Di Carlo D, Doyle PS, Hansen C, Maceiczyk RM, Wootton RC. Small but Perfectly Formed? Successes, Challenges, and Opportunities for Microfluidics in the Chemical and Biological Sciences. Chem 2017. [DOI: 10.1016/j.chempr.2017.01.009] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Inertial Microfluidics: Mechanisms and Applications. ADVANCED MECHATRONICS AND MEMS DEVICES II 2017. [DOI: 10.1007/978-3-319-32180-6_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Zhang J, Yan S, Yuan D, Alici G, Nguyen NT, Ebrahimi Warkiani M, Li W. Fundamentals and applications of inertial microfluidics: a review. LAB ON A CHIP 2016; 16:10-34. [PMID: 26584257 DOI: 10.1039/c5lc01159k] [Citation(s) in RCA: 489] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the last decade, inertial microfluidics has attracted significant attention and a wide variety of channel designs that focus, concentrate and separate particles and fluids have been demonstrated. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within the Stokes flow region with very low Reynolds number (Re ≪ 1), inertial microfluidics works in the intermediate Reynolds number range (~1 < Re < ~100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite and bring about several intriguing effects that form the basis of inertial microfluidics including (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low cost, inertial microfluidics is a very promising candidate for cellular sample processing, especially for samples with low abundant targets. In this review, we first discuss the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems. We then present a comprehensive review of recent developments and key applications of inertial microfluidic systems according to their microchannel structures. Finally, we discuss the perspective of employing fluid inertia in microfluidics for particle manipulation. Due to the superior benefits of inertial microfluidics, this promising technology will still be an attractive topic in the near future, with more novel designs and further applications in biology, medicine and industry on the horizon.
Collapse
Affiliation(s)
- Jun Zhang
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Sheng Yan
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dan Yuan
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gursel Alici
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane QLD 4111, Australia
| | - Majid Ebrahimi Warkiani
- School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Weihua Li
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
22
|
Chung AJ, Hur SC. High-Speed Microfluidic Manipulation of Cells. ADVANCED MICRO AND NANOSYSTEMS 2015. [DOI: 10.1002/9783527690237.ch1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Tarn MD, Elders LT, Peyman SA, Pamme N. Diamagnetic repulsion of particles for multilaminar flow assays. RSC Adv 2015. [DOI: 10.1039/c5ra21867e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A continuous multilaminar flow reaction was performed on functionalised polymer particlesviadiamagnetic repulsion forces, using a simple, inexpensive setup.
Collapse
|