1
|
Qian M, Huang H, Zhang D, Zhang C, Qi H. Coordination-Based Site-Specific Labeling Strategy for Electrogenerated Chemiluminescence Biosensing of Matrix Metalloproteinase 2. Anal Chem 2024; 96:19504-19510. [PMID: 39592147 DOI: 10.1021/acs.analchem.4c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Matrix metalloproteinase 2 (MMP-2) is an important biomarker for some diseases. Herein, one first-case coordination-based site-specific labeling strategy is proposed for electrogenerated chemiluminescence (ECL) biosensing of MMP-2 by employing an iridium(III) solvent complex as a signal reagent and a histidine (His)-containing peptide as a molecular recognition substrate. One ECL probe was prepared via coordination labeling of the His-containing peptide with one iridium(III) solvent complex ([(3-(2-pyridyl)benzoic acid)2Ir(DMSO)Cl], Ir1-DMSO). High ECL efficiency and good cleavage ability by MMP-2 were obtained for the ECL probe. By combining the high sensitivity of the ECL method, the good specificity of the peptide, and the simpleness of the magnetic bead-based assay, one "cleavage-magnetic enrichment type" ECL biosensing method was developed to detect MMP-2. MMP-2 can be sensitively detected in the linear range of 1.0-10 ng/mL with a limit of quantification of 1.0 ng/mL and a limit of detection of 0.3 ng/mL. Moreover, the ECL biosensing method was successfully applied for the determination of MMP-2 in serum samples with recoveries from 98.0% ± 8.0% to 108.0% ± 6.0%. Further, high affinity (Kd = 0.11 nM) was obtained for the Ir1-DMSO-labeled His-containing peptide and MMP-2. This work may pave the way for the labeling of His-containing biomolecules with an iridium(III) solvent complex and provides a promising method in point-of-care testing of MMP-2.
Collapse
Affiliation(s)
- Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Hong Huang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Danyang Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| |
Collapse
|
2
|
Ye Z, Ma M, Chen Y, Yang J, Zhao C, Diao Q, Ma P, Song D. Early Diagnosis of Triple-Negative Breast Cancer Based on Dual microRNA Detection Using a Well-Defined DNA Crown-Carbon Dots Structure as an Electrochemiluminescence Sensing Platform. Anal Chem 2024; 96:17984-17992. [PMID: 39480061 DOI: 10.1021/acs.analchem.4c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC). Thus, early detection and accurate diagnosis of this cancer are crucial for improving the survival rate of patients. Specific microRNAs (miRNAs) have been implicated in the occurrence, proliferation, and metastasis of TNBC. Addressing this need, our study developed a biosensor platform for early and accurate TNBC diagnosis by integrating electrochemiluminescence (ECL) technology with a DNA sensing strategy. Specifically, synthesized positively charged carbon dots (CDs) were used to neutralize the electrostatic repulsion between DNA strands and facilitate the assembly of DNA triangular prisms (DNA TP-CDs). Hairpins were then incorporated into the DNA TP-CDs to form the final DNA crown structure. The early TNBC biomarker, microRNA-93-3p (miR-93-3p), allowed for the binding between the DNA Crown and the DNA track on the electrode and initiated the ECL signal. Subsequently, microRNA-210 (miR-210) unlocked the DNA tripedal walker, and its movement on the DNA Crown eventually quenched the ECL signal, enabling accurate TNBC diagnosis and tumor stage assessment. Our proposed biosensor had satisfactory sensing efficiency due to the ordered DNA track and rapid-moving DNA walker. The data revealed a good linear relationship between the ECL signals and the logarithm of miRNA concentrations, with miR-93-3p having a detection limit of 31.04 aM and miR-210 having a detection limit of 7.69 aM. The biosensor also showed satisfactory performance in serum samples and cells. Taken together, this study hopes to provide ideas and applications for clinical diagnosis as well as the personalized treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yuxuan Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jukun Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Chen Zhao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Quanping Diao
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan 114005,China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan 114005,China
| |
Collapse
|
3
|
Shi J, Li S, Shao R, Jiang Y, Qiao Y, Liu J, Zhou Y, Li Y. Electrochemiluminescence aptasensing method for ultrasensitive determination of lipopolysaccharide based on CRISPR-Cas12a accessory cleavage activity. Talanta 2024; 272:125828. [PMID: 38428132 DOI: 10.1016/j.talanta.2024.125828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
In this study, an ultrasensitive electrochemiluminescence (ECL) aptasensing method was developed for lipopolysaccharide (LPS) determination based on CRISPR-Cas12a accessory cleavage activity. Tris (2,2'-bipyridine) dichlororuthenium (II) (Ru(bpy)32+) was adsorbed on the surface of a glassy carbon electrode (GCE) coated with a mixture of gold nanoparticles (AuNPs) and Nafion film via electrostatic interaction. The obtained ECL platform (Ru(bpy)32+/AuNP/Nafion/GCE) exhibited strong ECL emission. Thiol-functionalized single-stranded DNA (ssDNA) was modified with a ferrocenyl (Fc) group and autonomously assembled on the ECL platform of Ru(bpy)32+/AuNP/Nafion/GCE via thiol-gold bonding, resulting in the quenching of ECL emission. After hybridization of the LPS aptamer strand (AS) with its partial complementary strand (CS), the formed double-stranded DNA (dsDNA) could activate CRISPR-Cas12a to indiscriminately cleave ssDNA-Fc on the surface of Ru(bpy)32+/AuNP/Nafion/GCE, resulting in recovery of the ECL intensity of Ru(bpy)32+ due to the increasing distance between Fc and the electrode surface. The combination of LPS and AS suppressed the formation of dsDNA, inhibited the activation of CRISPR-Cas12a, and prevented further cleavage of ssDNA-Fc. This mechanism aided in upholding the integrity of ssDNA-Fc on the surface of the electrode and was combined with ECL quenching induced by the target. The ECL intensity decreased linearly as the concentration of LPS increased from 1 to 50,000 pg/mL and followed a logarithmic relationship. This method exhibited a remarkably low detection limit of 0.24 pg/mL, which meets the requirement for low-concentration detection of LPS in the human body. The proposed method demonstrates the capacity of CRISPR-Cas12a to perform non-specific cutting of single-stranded DNA and transform the resultant cutting substances into changes in the ECL signal. By amalgamating this approach with the distinct identification abilities of LPS and its aptamers, a simple, responsive, and discriminatory LPS assay was established that holds immense significance for clinical diagnosis.
Collapse
Affiliation(s)
- Jiayue Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Sijia Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Rongguang Shao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Yang Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Yanxia Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Jin Liu
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, China.
| | - Yaqian Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China.
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
4
|
Redondo-Gómez C, Parreira P, Martins MCL, Azevedo HS. Peptide-based self-assembled monolayers (SAMs): what peptides can do for SAMs and vice versa. Chem Soc Rev 2024; 53:3714-3773. [PMID: 38456490 DOI: 10.1039/d3cs00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Self-assembled monolayers (SAMs) represent highly ordered molecular materials with versatile biochemical features and multidisciplinary applications. Research on SAMs has made much progress since the early begginings of Au substrates and alkanethiols, and numerous examples of peptide-displaying SAMs can be found in the literature. Peptides, presenting increasing structural complexity, stimuli-responsiveness, and biological relevance, represent versatile functional components in SAMs-based platforms. This review examines the major findings and progress made on the use of peptide building blocks displayed as part of SAMs with specific functions, such as selective cell adhesion, migration and differentiation, biomolecular binding, advanced biosensing, molecular electronics, antimicrobial, osteointegrative and antifouling surfaces, among others. Peptide selection and design, functionalisation strategies, as well as structural and functional characteristics from selected examples are discussed. Additionally, advanced fabrication methods for dynamic peptide spatiotemporal presentation are presented, as well as a number of characterisation techniques. All together, these features and approaches enable the preparation and use of increasingly complex peptide-based SAMs to mimic and study biological processes, and provide convergent platforms for high throughput screening discovery and validation of promising therapeutics and technologies.
Collapse
Affiliation(s)
- Carlos Redondo-Gómez
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - Paula Parreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Helena S Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| |
Collapse
|
5
|
Ding Y, Zhang S, Zang X, Ding M, Ding C. Ratiometric antifouling electrochemical biosensors based on designed Y-shaped peptide and MXene loaded with Au@ZIF-67 and methylene blue. Mikrochim Acta 2023; 191:5. [PMID: 38051447 DOI: 10.1007/s00604-023-06079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
Based on the designed inverted Y-shaped peptide and MXene nanocomposite (MXene-Au@ZIF-67), a ratiometric anti-pollution electrochemical biosensor was designed and applied to the detection of biomarkers in serum. Au@ZIF-67 inserted into the interior of MXene can not only prevent the accumulation of MXene but also provide a large amounts of binding sites for capturing biomolecules. A designed multifunctional Y-shaped peptide containing anchoring, antifouling, and recognition sequences was anchored onto MXene-Au@ZIF-67 through Au-S bonds. Electrochemical signal molecules, ferrocenecarboxylic acid (Fc) and methylene blue (MB), were modified to another end of multifunctional peptide and interior of MXene-Au@ZIF-67, respectively, to produce a ratiometric electrochemical signal. We selected prostate specific antigen (PSA) as the model compound. PSA specifically recognizes and cleaves the recognition segment in the Y-shaped peptide, and the signal of Fc is reduced, while the signal of MB remains unchanged. The ratiometric strategy endows the present biosensor high accuracy and sensitivity with a detection limit of 0.85 pg/mL. In addition, the sensing surface has good antifouling ability due to the antifouling sequence of the two branching parts of the Y-shaped peptide. More importantly, by replacing the recognition segment of peptides also other targets are accessible, indicating the potential application of the universal detection strategy to the detection of various biomarkers in clinical diagnosis.
Collapse
Affiliation(s)
- Yan Ding
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Shulei Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiuhui Zang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Mengli Ding
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao, 266042, People's Republic of China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, People's Republic of China
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, People's Republic of China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Caifeng Ding
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao, 266042, People's Republic of China.
- Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, People's Republic of China.
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, People's Republic of China.
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
6
|
Yang X, Li J, Qi H, Gao Q, Zhang C. Disposable capillary-fill device for the determination of proteases incorporating elimination of light-shielding from the magnetic beads with cleavage of the electrogenerated chemiluminescence label-tagged peptide probe. Analyst 2023; 148:6253-6260. [PMID: 37937443 DOI: 10.1039/d3an01591b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A novel point-of-care testing (POCT) method for the determination of proteases was developed for the first time using a designed disposable capillary-fill device based on the cleavage of electrogenerated chemiluminescence (ECL)-label-tagged peptide probes and enabling elimination of the light-shielding from the magnetic beads (MBs). As a proof-of-principle, prostate-specific antigen (PSA) was taken as a model analyte, and streptavidin-coated magnetic beads bound with ruthenium-complex-tagged specific peptide (biotin-HSSKLQK) were utilized as MB ECL probes. The capillary-fill device was designed to be divided into a reaction zone and detection zone. In the reaction zone, the bio-cleavage reaction between the PSA analyte with the peptide on the surface of the MB ECL probes occurred, while in the detection zone, ECL emission was produced by a screen-printed carbon electrode, Ag/AgCl reference electrode and carbon counter electrode. When the analyte PSA was introduced into the suspension of MB ECL probes in the reaction zone of the device, biocleavage of the peptide occurred, and the cleaved Ru1 part was released from the surface of the MB ECL probes. The capillary-filled device was tilted 90°, and with the aid of gravity, the solution containing the released Ru1 part flowed to the surface of the working electrode in the detection region of the device, while the MB ECL probes were fixed in the reaction zone by an external magnet. PSA can be determined by the ECL emission from the released Ru1 part in the presence of the co-reactant tri-n-propylamine at the detection zone. Under the optimal conditions, the developed ECL method showed a low detection limit of 0.12 ng mL-1 for PSA. This work demonstrates that the developed ECL biosensing approach can eliminate the MB light-shielding effect and quantify proteases with high sensitivity and selectivity, which could be easily extended to POCT-based ECL biosensing for other proteases.
Collapse
Affiliation(s)
- Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.
| | - Jie Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.
| |
Collapse
|
7
|
Zeng Y, Qian M, Yang X, Gao Q, Zhang C, Qi H. Electrochemiluminescence bioassay with anti-fouling ability for determination of matrix metalloproteinase 9 secreted from living cells under external stimulation. Mikrochim Acta 2023; 190:422. [PMID: 37775573 DOI: 10.1007/s00604-023-05996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
An electrochemiluminescence (ECL) bioassay with high sensitivity and anti-fouling ability was developed for determination of matrix metalloproteinase 9 (MMP-9) secreted from living cells under external stimulation. A peptide with sequence of CLGRMGLPGK and a new cyclometalated iridium(III) complex bearing carboxyl group, (pq)2Ir(dcbpy) (pq = 2-phenylquinoline, dcbpy = 2,2'-bipyridyl-4,4'-dicarboxyli acid, abbreviated as Ir) were employed as molecular recognition substrate and ECL emitter, respectively. The peptide was labelled with the Ir to form Ir-peptide as ECL probe. Ir-peptide was self-assembled onto Nafion and gold nanoparticles (AuNPs) modified glassy carbon electrode (AuNPs/Nafion/GCE) and then both of 6-mercapto-1-hexanol (MCH) and zwitterionic peptide as blocking reagents were co-assembled on Ir-peptide/AuNPs/Nafion/GCE to form an anti-fouling ECL peptide-based biosensor. MMP-9 can be quantified in the range 1.0-50 ng·mL-1 with a detection limit of 0.50 ng·mL-1 based on the decreased ECL intensity. Relative standard derivation was 2.3% for six fabricated anti-fouling ECL peptide-based biosensors after reaction with 50 ng·mL-1 MMP-9. The anti-fouling ECL peptide-based biosensor can be used to monitor MMP-9 secreted from living cells under external stimulation. 96.0%-108.0% of recoveries were obtained in 60-diluted cell culture media. This study demonstrates that the ECL biosensor by the combination of iridium(III) complex-based sensitive ECL method and the anti-fouling interface provides a promising way for the determination of MMP-9 in biological sample, which is viable in clinical diagnosis and point-of-care test of protease.
Collapse
Affiliation(s)
- Yu Zeng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| |
Collapse
|
8
|
Sang M, Meng X, Zhang Y, Li Z, Zhou Q, Jing X, Sun X, Zhao W. An "on-off-on" electrochemiluminescence aptasensor based on a self-enhanced luminophore for ochratoxin A detection. Anal Bioanal Chem 2023; 415:5833-5844. [PMID: 37477648 DOI: 10.1007/s00216-023-04864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/11/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
A highly selective and sensitive "on-off-on" electrochemiluminescence (ECL) aptasensor based on a self-enhanced luminophore was developed for the detection of ochratoxin A (OTA). Specifically, polyethyleneimine functionalized multi-walled carbon nanotubes decorated with gold nanoparticles (AuNPs-PEI-MWCNTs) were used as the electrode matrix to accelerate electron transfer and provide a favorable microenvironment for self-enhanced luminophore loading and ECL signal enhancement. In addition, black phosphorus quantum dots (BPQDs) were used as co-reactants of the ECL reagent tris (2,2'-bipyridyl) ruthenium(II) (Ru(bpy)32+) in ECL experiments, and the reaction mechanism was investigated. The self-enhanced luminophore Ru@SiO2-BPQDs was obtained by encapsulating Ru(bpy)32+ in silica (SiO2) nanoparticles and then combining it with BPQDs through electrostatic interaction. In conventional ECL systems, the emitter and its co-reactants reacted via the inter-nanoparticle pathway, leading to long distance electron transfer. However, the electron transfer distance in the self-enhanced luminophore was significantly shortened due to the intra-nanoparticle electron transfer pathway because BPQDs and oxidized Ru(bpy)32+ were bound within one nanoparticle, thereby improving ECL efficiency to achieve the first "switch-on" state. Then, the luminophore was quenched using ferrocenes (Fc) modified on an aptamer to achieve the "switch-off" state. Finally, OTA was specifically identified by the adapter, causing Fc to be released from the sensor interface, restoring the ECL intensity to achieve the second "switch-on" state. Under optimal conditions, the aptasensor exhibited good sensitivity, stability, and reproducibility, with a linear detection range from 0.1 to 320 ng/mL and a detection limit of 0.03 ng/mL. The novel ECL aptasensor provided a common analytical tool for the detection of mycotoxins and other small molecules.
Collapse
Affiliation(s)
- Maosheng Sang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Xiaoya Meng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Yuhao Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Zhongyu Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Quanlong Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Xiangzhu Jing
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China
| | - Wenping Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China.
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China.
| |
Collapse
|
9
|
Wei Y, Qi H, Zhang C. Recent advances and challenges in developing electrochemiluminescence biosensors for health analysis. Chem Commun (Camb) 2023; 59:3507-3522. [PMID: 36820650 DOI: 10.1039/d2cc06930j] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
This Feature Article simply introduces principles and mechanisms of electrochemiluminescence (ECL) biosensors for the determination of biomarkers and highlights recent advances of ECL biosensors on key aspects including new ECL reagents and materials, new biological recognition elements, and emerging construction biointerfacial strategies with illustrative examples and a critical eye on pitfalls and discusses challenges and perspectives of ECL biosensors for health analysis.
Collapse
Affiliation(s)
- Yuxi Wei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| |
Collapse
|
10
|
Mwanza D, Adeniyi O, Tesfalidet S, Nyokong T, Mashazi P. Capacitive label-free ultrasensitive detection of PSA on a covalently attached monoclonal anti-PSA antibody gold surface. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Duan Y, Xu L, Song W, Gao H, Sun L, Chen F, Ma F. Label-free electrogenerated chemiluminescence biosensor for quantization of CD44 on basis of its heterodimerization with matrix metalloproteinase-14. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ratiometric electrochemiluminescence biosensor for hepatitis C virus E2 protein based on block copolymers-solubilized Ir(ppy)3 with high electrochemiluminescence efficiency. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Yan L, Zhang C, Xi F. Disposable Amperometric Label-Free Immunosensor on Chitosan-Graphene-Modified Patterned ITO Electrodes for Prostate Specific Antigen. Molecules 2022; 27:molecules27185895. [PMID: 36144631 PMCID: PMC9505937 DOI: 10.3390/molecules27185895] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022] Open
Abstract
A facile and highly sensitive determination of prostate-specific antigen (PSA) is of great significance for the early diagnosis, monitoring and prognosis of prostate cancer. In this work, a disposable and label-free electrochemical immunosensing platform was demonstrated based on chitosan–graphene-modified indium tin oxide (ITO) electrode, which enables sensitive amperometric determination of PSA. Chitosan (CS) modified reduced graphene oxide (rGO) nanocomposite (CS–rGO) was easily synthesized by the chemical reduction of graphene oxide (GO) using CS as a dispersant and biofunctionalizing agent. When CS–rGO was modified on the patterned ITO, CS offered high biocompatibility and reactive groups for the immobilization of recognition antibodies and rGO acted as a transduction element and enhancer to improve the electronic conductivity and stability of the CS–rGO composite film. The affinity-based biosensing interface was constructed by covalent immobilization of a specific polyclonal anti-PSA antibody (Ab) on the amino-enriched electrode surface via a facile glutaraldehyde (GA) cross-linking method, which was followed by the use of bovine serum albumin to block the non-specific sites. The immunosensor allowed the detection of PSA in a wide range from 1 to 5 ng mL−1 with a low limit of detection of 0.8 pg mL−1. This sensor also exhibited high selectivity, reproducibility, and good storage stability. The application of the prepared immunosensor was successfully validated by measuring PSA in spiked human serum samples.
Collapse
Affiliation(s)
- Liang Yan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| | - Chaoyan Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
14
|
Chen M, Han R, Li Y, Luo X. Nonfouling and ratiometric electrochemical detection of prostate specific antigen in whole serum. Anal Chim Acta 2022; 1224:340191. [DOI: 10.1016/j.aca.2022.340191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
|
15
|
Rational design of effective solid-state electrochemiluminescence platform of Gold@Polyluminol nanocomposite as an ultrasensitive immuno-probe for selective detection of prostate specific antigen. Anal Chim Acta 2022; 1206:339736. [PMID: 35473865 DOI: 10.1016/j.aca.2022.339736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022]
Abstract
An electrodeposited gold@poly-luminol nanocomposite on glassy carbon electrode (Au@PL-NC/GCE) has been developed and demonstrated as solid-state electrochemiluminescence (ECL) immunosensor platform for prostate specific antigen (PSA) sensing. In-situ electro-generated reactive oxygen species (ROS) from oxygen reduction reaction in oxygen saturated PBS (pH 7.4) acts as sole co-reactant augmenting the signal transduction. Protein-G bio-affinity layer interfaced with Au@PL-NC/GCE (Protein-G/Au@PL-NC/GCE) to support the effective localization of Fc region of the monoclonal antibodies of PSA (mAb-PSA). As-developed ECL probe exhibit selective recognition of target analyte, PSA, enabling wide linearity of 1 fg mL-1 to 10 μg mL-1 with a calculated limit of detection (LOD) and limit of quantification (LOQ) of 0.45 fg mL-1 and 1.37 fg mL-1, respectively. The selectivity and specificity of the ECL probe was tested using human serum albumin, immunoglobulin G and mixtures of the same with target analyte. Fabricated ECL probe not only exhibit high sensitivity and specificity against commercial PSA samples but also enable clinical detection in real human serum and urine samples with acceptable recovery range from 97% to 103%. Our results suggest that the fabricated reagent-less solid-state ECL platform holds promising application in the field of prostate oncological screening and its point-of-care applications.
Collapse
|
16
|
Kurup CP, Mohd-Naim NF, Ahmed MU. A solid-state electrochemiluminescence aptasensor for β-lactoglobulin using Ru-AuNP/GNP/Naf nanocomposite-modified printed sensor. Mikrochim Acta 2022; 189:165. [PMID: 35355134 DOI: 10.1007/s00604-022-05275-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/10/2022] [Indexed: 01/16/2023]
Abstract
An electrochemiluminescence (ECL) aptasensor for the detection of the milk protein allergen β-lactoglobulin (β-LG) using nanocomposite as luminophore was fabricated. The Ru-AuNPs/GNP/Naf complex was formed by combining the Rubpy32+-AuNPs complex (Ru-AuNPs), prepared by modifying the negatively charged surface of gold nanoparticles (AuNPs) with positively charged Rubpy32+ through electrostatic interactions and the graphene nanoplatelets-Nafion (GNP/Naf) at a ratio of 2:1. The nanocomposite was coated on the surface of the screen-printed electrode (SPCE) through the film-forming properties of Nafion. A layer of chitosan (CS) was coated onto this modified electrode, and later amine-terminated β-LG aptamers were covalently attached to the CS/Ru-AuNP/GNP/Naf via glutaraldehyde (GLUT) cross-linking. When β-LG was incubated with the aptasensor, a subsequent decrease in ECL intensity was recorded. Under the optimal conditions, the ECL intensity of the aptasensor changed linearly with the logarithmic concentration of β-LG, in the range 0.1 to 1000 pg/ml, and the detection limit was 0.02 pg/mL (3σ/m). The constructed aptasensor displayed simple and fast determination of β-LG with excellent reproducibility, stability, and high specificity. Additionally, the proposed ECL aptasensor displayed high recoveries (92.5-112%) and low coefficients of variation (1.6-7.8%), when β-LG fortified samples were analyzed. Integrating Ru-AuNPs/GNP/Naf nanocomposite in the ECL aptasensor paves the way towards a cost-effective and sensitive detection of the milk allergen β-LG.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, 1410, BE, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, 1410, BE, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, 1410, BE, Brunei Darussalam.
| |
Collapse
|
17
|
Hui N, Wang J, Wang D, Wang P, Luo X, Lv S. An ultrasensitive biosensor for prostate specific antigen detection in complex serum based on functional signal amplifier and designed peptides with both antifouling and recognizing capabilities. Biosens Bioelectron 2022; 200:113921. [PMID: 34973567 DOI: 10.1016/j.bios.2021.113921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022]
Abstract
The development of biosensors capable of averting biofouling and detecting biomarkers in complex biological media remains a challenge. Herein, an ultralow fouling and highly sensitive biosensor based on specifically designed antifouling peptides and a signal amplification strategy was designed for prostate specific antigen (PSA) detection in human serum. A low fouling layer of poly(ethylene glycol) (PEG) doped the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was electrodeposited on the electrode surface, followed by the immobilization of streptavidin and further attachment of biotin-labelled peptides. The peptide was designed to include PSA specific recognition domain (HSSKLQK) and antifouling domain (PPPPEKEKEKE), and the terminal of the peptide was functionalized with -SH group. DNA functionalized gold nanorods (DNA/AuNRs) were then attached to the electrode, and methylene blue (MB) molecules were adsorbed to the DNA to form the signal amplifier. In the presence of PSA, the peptide was specifically cleaved and resulted in the loss of AuNRs together with DNA and MB, and thus significant decrease of the current signal. The biosensor exhibited a low limit of detection (LOD) of 0.035 pg mL-1 (S/N = 3), with a wide linear range from 0.10 pg mL-1 to 10.0 ng mL-1, and it was able to detect PSA in real human serum owing to the presence of the antifouling peptides, indicating great potential of the constructed biosensor for practical application.
Collapse
Affiliation(s)
- Ni Hui
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, PR China
| | - Jiasheng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, PR China
| | - Dongwei Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, PR China
| | - Peipei Wang
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Shaoping Lv
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China.
| |
Collapse
|
18
|
Chen M, Song Z, Yang X, Song Z, Luo X. Antifouling peptides combined with recognizing DNA probes for ultralow fouling electrochemical detection of cancer biomarkers in human bodily fluids. Biosens Bioelectron 2022; 206:114162. [PMID: 35272212 DOI: 10.1016/j.bios.2022.114162] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022]
Abstract
Herein, a universal strategy for the construction of highly sensitive and low fouling biosensors was proposed based on antifouling peptides conjugated with recognizing DNA probes. The peptide-DNA conjugate was formed through a reagent-free click reaction between a typical DNA aptamer modified with 5'-dibenzocyclooctyne (DBCO) and the designed antifouling peptide terminated with biotin and the azide group at its two ends. With the assistance of streptavidin (SA), the electrochemical biosensor was constructed via immobilization of the straight peptides and peptide-DNA conjugates in sequence onto the electrode surface modified with electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) and gold nanoparticles (AuNPs). The prepared biosensor exhibited excellent antifouling performances in various human bodily fluids such as serum, sweat and urine, with a wide linear response range for CA125 from 0.01 U mL-1 to 1000 U mL-1, and a low limit of detection of 0.003 U mL-1. Combining the advantages of the antifouling peptide and recognizing DNA probe, this sensing strategy was capable of assaying CA125 in undiluted human serum, and it also offered a highly promising way for the development of different antifouling biosensors through the conjugation of antifouling peptides with various DNA probes.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Zhen Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiqin Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Zhiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
19
|
Moradi R, Khalili NP, Septiani NLW, Liu CH, Doustkhah E, Yamauchi Y, Rotkin SV. Nanoarchitectonics for Abused-Drug Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104847. [PMID: 34882957 DOI: 10.1002/smll.202104847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Rapid, accessible, and highly accurate biosensors for the detection of addictive and abused drugs are needed to reduce the adverse personal and societal impacts of addiction. Modern sensors that utilize next-generation technologies, e.g., nanobiotechnology and nanoarchitectonics, have triggered revolutionary progress in the field as they allow accurate detection and tracking of trace levels of major classes of drugs. This paper reviews advances in the field of biosensors for the detection of commonly abused drugs, both prescribed such as codeine and morphine, and illegal narcotics like cocaine.
Collapse
Affiliation(s)
- Rasoul Moradi
- Nanotechnology Laboratory, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
- Department of Chemical Engineering, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
| | - Nazila Pour Khalili
- Nanotechnology Laboratory, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
- Center for Cell Pathology Research, Department of Biological Science, Khazar University, Baku, Az1096, Azerbaijan
| | - Ni Luh Wulan Septiani
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, and TMU Research Center of Urology and Kidney, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, 110, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Esmail Doustkhah
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Slava V Rotkin
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, Millennium Science Complex, University Park, PA, 16802, USA
| |
Collapse
|
20
|
Yang X, Wei Y, Wang Z, Wang J, Qi H, Gao Q, Zhang C. Highly Efficient Electrogenerated Chemiluminescence Quenching on Lipid-Coated Multifunctional Magnetic Nanoparticles for the Determination of Proteases. Anal Chem 2022; 94:2305-2312. [DOI: 10.1021/acs.analchem.1c05033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolin Yang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Yuxi Wei
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Zimei Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Junxia Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Honglan Qi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Qiang Gao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Chengxiao Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| |
Collapse
|
21
|
Veni, Vidi, Vici: Immobilized Peptide-Based Conjugates as Tools for Capture, Analysis, and Transformation. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Analysis of peptide biomarkers of pathological states of the organism is often a serious challenge, due to a very complex composition of the cell and insufficient sensitivity of the current analytical methods (including mass spectrometry). One of the possible ways to overcome this problem is sample enrichment by capturing the selected components using a specific solid support. Another option is increasing the detectability of the desired compound by its selective tagging. Appropriately modified and immobilized peptides can be used for these purposes. In addition, they find application in studying the specificity and activity of proteolytic enzymes. Immobilized heterocyclic peptide conjugates may serve as metal ligands, to form complexes used as catalysts or analytical markers. In this review, we describe various applications of immobilized peptides, including selective capturing of cysteine-containing peptides, tagging of the carbonyl compounds to increase the sensitivity of their detection, enrichment of biological samples in deoxyfructosylated peptides, and fishing out of tyrosine–containing peptides by the formation of azo bond. Moreover, the use of the one-bead-one-compound peptide library for the analysis of substrate specificity and activity of caspases is described. Furthermore, the evolution of immobilization from the solid support used in peptide synthesis to nanocarriers is presented. Taken together, the examples presented here demonstrate immobilized peptides as a multifunctional tool, which can be successfully used to solve multiple analytical problems.
Collapse
|
22
|
Zhang K, Fan Z, Huang Y, Ding Y, Xie M. A strategy combining 3D-DNA Walker and CRISPR-Cas12a trans-cleavage activity applied to MXene based electrochemiluminescent sensor for SARS-CoV-2 RdRp gene detection. Talanta 2022; 236:122868. [PMID: 34635250 PMCID: PMC8429000 DOI: 10.1016/j.talanta.2021.122868] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
Early diagnosis and timely management of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are the keys to preventing the spread of the epidemic and controlling new infection clues. Therefore, strengthening the surveillance of the epidemic and timely screening and confirming SARS-CoV-2 infection is the primary task. In this work, we first proposed the idea of activating CRISPR-Cas12a activity using double-stranded DNA amplified by a three-dimensional (3D) DNA walker. We applied it to the design of an electrochemiluminescent (ECL) biosensor to detect the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) gene. We first activated the cleavage activity of CRISPR-Cas12a by amplifying the target DNA into a segment of double-stranded DNA through the amplification effect of a 3D DNA walker. At the same time, we designed an MXene based ECL material: PEI-Ru@Ti3C2@AuNPs, and constructed an ECL biosensor to detect the RdRp gene based on this ECL material as a framework. Activated CRISPR-Cas12a cleaves the single-stranded DNA on the surface of this sensor and causes the ferrocene modified at one end of the DNA to move away from the electrode surface, increasing the ECL signal. The extent of the change in electrochemiluminescence reflects the concentration of the gene to be measured. Using this system, we detected the SARS-CoV-2 RdRp gene with a detection limit of 12.8 aM. This strategy contributes to the rapid and convenient detection of SARS-CoV-2-associated nucleic acids and promotes the clinical application of ECL biosensors based on CRISPR-Cas12a and novel composite materials.
Collapse
Affiliation(s)
- Kai Zhang
- NHC Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China.
| | - Zhenqiang Fan
- NHC Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Yue Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Minhao Xie
- NHC Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China.
| |
Collapse
|
23
|
Liu M, Xu R, Liu W, Qiu JG, Wang Y, Ma F, Zhang CY. Integration of exonuclease III-powered three-dimensional DNA walker with single-molecule detection for multiple initiator caspases assay. Chem Sci 2021; 12:15645-15654. [PMID: 35003595 PMCID: PMC8654043 DOI: 10.1039/d1sc05115f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Initiator caspases are important components of cellular apoptotic signaling and they can activate effector caspases in extrinsic and intrinsic apoptotic pathways. The simultaneous detection of multiple initiator caspases is essential for apoptosis mechanism studies and disease therapy. Herein, we develop a sensitive nanosensor based on the integration of exonuclease III (Exo III)-powered three-dimensional (3D) DNA walker with single-molecule detection for the simultaneous measurement of initiator caspase-8 and caspase-9. This assay involves two peptide-DNA detection probe-conjugated magnetic beads and two signal probe-conjugated gold nanoparticles (signal probes@AuNPs). The presence of caspase-8 and caspase-9 can induce the cleavage of peptides in two peptide-DNA detection probes, releasing two trigger DNAs from the magnetic beads, respectively. The two trigger DNAs can serve as the walker DNA to walk on the surface of the signal probes@AuNPs powered by Exo III digestion, liberating numerous Cy5 and Texas Red fluorophores which can be quantified by single-molecule detection, with Cy5 indicating caspase-8 and Texas Red indicating caspase-9. Notably, the introduction of the AuNP-based 3D DNA walker greatly reduces the background signal and amplifies the output signals, and the introduction of single-molecule detection further improves the detection sensitivity. This nanosensor is very sensitive with a detection limit of 2.08 × 10-6 U μL-1 for caspase-8 and 1.71 × 10-6 U μL-1 for caspase-9, and it can be used for the simultaneous screening of caspase inhibitors and the measurement of endogenous caspase activity in various cell lines at the single-cell level. Moreover, this nanosensor can be extended to detect various proteases by simply changing the peptide sequences of the detection probes.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 China +86-0531-82615258 +86-0531-86186033
| | - Rui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 China +86-0531-82615258 +86-0531-86186033
| | - Wenjing Liu
- Academy of Medical Sciences, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 China
| | - Yan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 China +86-0531-82615258 +86-0531-86186033
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 China +86-0531-82615258 +86-0531-86186033
| |
Collapse
|
24
|
Li XY, Zhang MM, Zhou XD, Hu JM. A functional peptide-mediated colorimetric assay for mercury ion based on dual-modified gold nanoparticles. Anal Biochem 2021; 631:114369. [PMID: 34516968 DOI: 10.1016/j.ab.2021.114369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022]
Abstract
In the work, a rapid and accurate biosensor for mercury ions (Hg2+) was constructed, with which aggregation of dual-modified (DGPFHR- and CALNN-) gold nanoparticles (D/C-AuNPs) could be triggered by the high specificity of peptides to Hg2+. The given peptide DGPFHR possesses great capability of capturing Hg2+, accompanied by the conformational folding. Under the circumstances, D/C-AuNPs were employed as the detection probes to accomplish the quantitative analysis of Hg2+. This is primarily because the specific Hg2+-induced folding of peptides reduces the electrostatic repulsion and steric hindrance, thus accelerating the AuNPs aggregation. The principle and application potential of this proposal was proved by evidence. And the results demonstrated that Hg2+ ions could be selectively detected as low as 28 nM with a linear range of 100-800 nM. In consideration of superior simplicity, selectivity, accuracy and stability, the protocol was advantageous over other projects in practical measurement of various water samples.
Collapse
Affiliation(s)
- Xin-Yi Li
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, PR China
| | - Miao-Miao Zhang
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, PR China
| | - Xiao-Dong Zhou
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, PR China.
| | - Ji-Ming Hu
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
25
|
Dong S, Gao X, Fu L, Jia J, Zou G. Low-Triggering-Potential Electrochemiluminescence from Surface-Confined CuInS 2@ZnS Nanocrystals and their Biosensing Applications. Anal Chem 2021; 93:12250-12256. [PMID: 34463494 DOI: 10.1021/acs.analchem.1c01601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electrochemiluminescence (ECL) of low triggering potential is strongly anticipated for ECL assays with less inherent electrochemical interference and improved long-term stability of the working electrode. Herein, effects of the thiol capping agents and the states of luminophores, i.e., the thiol-capped CuInS2@ZnS nanocrystals (CuInS2@ZnS-Thiol), on the ECL triggering potential of CuInS2@ZnS-Thiol/N2H4·H2O were explored on the Au working electrode. The thiol capping agent of glutathione (GSH) not only enabled CuInS2@ZnS-Thiol/N2H4·H2O with the stronger oxidative-reduction ECL than other thiol capping agents but also demonstrated the largest shift for the ECL triggering potential of CuInS2@ZnS-Thiol/N2H4·H2O upon changing the luminophores from the monodispersed state to the surface-confined state. CuInS2@ZnS-GSH/N2H4·H2O exhibited an efficient oxidative-reduction ECL around 0.78 V (vs Ag/AgCl) with CuInS2@ZnS-GSH of the monodispersed state. Upon employing CuInS2@ZnS-GSH as the ECL tag and immobilizing them onto the Au working electrode, the oxidative-reduction ECL of CuInS2@ZnS-GSH/N2H4·H2O was lowered to 0.32 V (vs Ag/AgCl), which was about 0.88 V lower than that of traditional Ru(bpy)32+/TPrA (typically ∼1.2 V, vs Ag/AgCl). The ECL of the CuInS2@ZnS-GSH/N2H4·H2O system with the luminophore of both monodispersed and surface-confined states was spectrally identical to each other, indicating that this surface-confining strategy exhibited negligible effect on the excited state for the ECL of CuInS2@ZnS-GSH. A surface-confined ECL sensor around 0.32 V was fabricated with CuInS2@ZnS-GSH as a luminophore, which could sensitively and selectively determine the K-RAS gene from 1 to 500 pM with a limit of detection at 0.5 pmol L-1 (S/N = 3).
Collapse
Affiliation(s)
- Shuangtian Dong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Li Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jingna Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
26
|
Yao B, Zhang J, Fan Z, Ding Y, Zhou B, Yang R, Zhao J, Zhang K. Rational Engineering of the DNA Walker Amplification Strategy by Using a Au@Ti 3C 2@PEI-Ru(dcbpy) 32+ Nanocomposite Biosensor for Detection of the SARS-CoV-2 RdRp Gene. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19816-19824. [PMID: 33890471 PMCID: PMC8084271 DOI: 10.1021/acsami.1c04453] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 05/02/2023]
Abstract
The detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for preventing and controlling infectious diseases and disease treatment. In this work, a Au@Ti3C2@PEI-Ru(dcbpy)32+ nanocomposite-based electrochemiluminescence (ECL) biosensor was rationally designed, which realized sensitive detection of the RNA-dependent RNA polymerase (RdRp) gene of SARS-CoV-2. In addition, a DNA walker was also used to excise the hairpin DNAs under the action of Nb.BbvCI endonuclease. Furthermore, model DNA-Ag nanoclusters (model DNA-AgNCs) were used to quench the initial ECL signal. As a result, the ECL biosensor was used to sensitively detect the SARS-CoV-2 RdRp gene with a detection range of 1 fM to 100 pM and a limit of detection of 0.21 fM. It was indicated that the ECL biosensor had a great application potential for clinical medical detection. Furthermore, the DNA walker amplification also played a reliable candidate strategy for other detection methods.
Collapse
Affiliation(s)
- Bo Yao
- Key Laboratory of Flexible Electronics
(KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National
Synergetic Innovation Center for Advanced Materials (SICAM),
Nanjing Tech University
(NanjingTech), 30 South Puzhu Road, Nanjing 211816,
P.R. China
- NHC Key Laboratory of Nuclear
Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine,
Jiangsu Institute of Nuclear
Medicine, Wuxi, Jiangsu 214063, P.R.
China
| | - Jing Zhang
- Key Laboratory of Flexible Electronics
(KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National
Synergetic Innovation Center for Advanced Materials (SICAM),
Nanjing Tech University
(NanjingTech), 30 South Puzhu Road, Nanjing 211816,
P.R. China
| | - Zhenqiang Fan
- NHC Key Laboratory of Nuclear
Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine,
Jiangsu Institute of Nuclear
Medicine, Wuxi, Jiangsu 214063, P.R.
China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear
Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine,
Jiangsu Institute of Nuclear
Medicine, Wuxi, Jiangsu 214063, P.R.
China
| | - Bin Zhou
- NHC Key Laboratory of Nuclear
Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine,
Jiangsu Institute of Nuclear
Medicine, Wuxi, Jiangsu 214063, P.R.
China
| | - Runlin Yang
- NHC Key Laboratory of Nuclear
Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine,
Jiangsu Institute of Nuclear
Medicine, Wuxi, Jiangsu 214063, P.R.
China
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics
(KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National
Synergetic Innovation Center for Advanced Materials (SICAM),
Nanjing Tech University
(NanjingTech), 30 South Puzhu Road, Nanjing 211816,
P.R. China
| | - Kai Zhang
- NHC Key Laboratory of Nuclear
Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine,
Jiangsu Institute of Nuclear
Medicine, Wuxi, Jiangsu 214063, P.R.
China
| |
Collapse
|
27
|
Hu Q, Gan S, Bao Y, Zhang Y, Han D, Niu L. Electrochemically Controlled ATRP for Cleavage-Based Electrochemical Detection of the Prostate-Specific Antigen at Femtomolar Level Concentrations. Anal Chem 2020; 92:15982-15988. [PMID: 33225684 DOI: 10.1021/acs.analchem.0c03467] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As a single-chain glycoprotein with endopeptidase activity, the prostate-specific antigen (PSA) is valuable as an informative serum marker in diagnosing, staging, and prognosis of prostate cancer. In this report, an electrochemical biosensor based on the target-induced cleavage of a specific peptide substrate (PSA peptide) is designed for the highly selective detection of PSA at the femtomolar level, using electrochemically controlled atom transfer radical polymerization (eATRP) as a method for signal amplification. The PSA peptides, without free carboxyl sites, are attached to the gold surface via the N-terminal cysteine residue. The target-induced cleavage of PSA peptides results in the generation of carboxyl sites, to which the alkyl halide initiator α-bromophenylacetic acid (BPAA) is linked via the Zr(IV) linkers. Subsequently, the potentiostatic eATRP of ferrocenylmethyl methacrylate (FcMMA, as the monomer) leads to the surface-initiated grafting of high-density ferrocenyl polymers. As a result, a large amount of Fc redox tags can be recruited for signal amplification, through which the limit of detection (LOD) for PSA can be down to 3.2 fM. As the recognition element, the PSA peptide is easy to synthesize, chemically and thermally stable, and low-cost. Without the necessity of enzyme or nanoparticle labels, the eATRP-based amplification method is easy to operate and low-cost. Results also show that the cleavage-based electrochemical PSA biosensor is highly selective and applicable to PSA detection in complex biological samples. In view of these merits, the integration of the eATRP-based amplification method into cleavage-based recognition is believed to hold great promise for the electrochemical detection of PSA in clinical applications.
Collapse
Affiliation(s)
- Qiong Hu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiyu Gan
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yu Bao
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yuwei Zhang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
28
|
Reis Lima FM, Soares RP, Sinfrônio FSM, Maciel AP, Menezes AS, Pereira SRF, Damos FS, Luz RDCS. Photoelectrochemical Immunosensor for Sensitive Quantification of Prostate Specific Antigen in Human Serum Samples Exploiting BaTiO
3
−CdS. ChemElectroChem 2020. [DOI: 10.1002/celc.202000801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Rossy‐Eric P. Soares
- Department of BiologyLaboratory of Genetics and Molecular BiologyFederal University of Maranhão-UFMA 65080-805 São Luís, MA Brazil
| | | | - Adeilton P. Maciel
- Department of ChemistryFederal University of Maranhão 65080-805 São Luís, MA Brazil
| | - Alan S. Menezes
- Department of PhysicsFederal University of Maranhão CEP 65080–805 São Luis, MA Brazil
| | - Silma Regina F. Pereira
- Department of BiologyLaboratory of Genetics and Molecular BiologyFederal University of Maranhão-UFMA 65080-805 São Luís, MA Brazil
| | - Flavio S. Damos
- Department of ChemistryFederal University of Maranhão 65080-805 São Luís, MA Brazil
| | | |
Collapse
|
29
|
A novel immunosensor for the monitoring of PSA using binding of biotinylated antibody to the prostate specific antigen based on nano-ink modified flexible paper substrate: efficient method for diagnosis of cancer using biosensing technology. Heliyon 2020; 6:e04327. [PMID: 32671252 PMCID: PMC7347657 DOI: 10.1016/j.heliyon.2020.e04327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 06/24/2020] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer is the most significant reason for deaths in men, outside of lung cancer. The clinical examination of cancer proteins or biomarkers is extremely significant in early examination and monitoring of recurrence of disease after treatment. Biomarkers have expanded great clinical significance owing to their extensive spectra in the identification, elimination, early diagnosis and cure of cancer. In this work, novel, ultrasensitive sandwich-type portable bio device based on citrate-capped silver nanoparticles (Citrate-AgNPs) modified graphene quantum dots (GQDs) nano ink for detection of Prostate specific antigen (PSA) was fabricated. Functionalized cysteamine with gold nanoparticles (Cys-AuNPs) was also utilized to amplify the signal. It provides a good and high external area for the immobilization biotinylated antibody of PSA in the large amount. For the first time, citrate-AgNPs-GQDs nano ink was directly written on the cellulose paper surface (ivory sheet and photographic paper) and modified by Cys-AuNPs. So, final structure of the immunodevices was completed after including of Ab1 and PSA (antigen). The immunosensors were used for the recognition of PSA by using DPVs (differential pulse voltammetry) technique. The obtained low limit of quantification (LLOQ) of the first immunodevice (ivory sheet/Citrate AgNPs-GQDs nano-ink/CysA-Au NPs/Ab1/BSA/PSA/Ab2) was 0.07 μg/L and the linear range for the calibration plot was from 0.07 to 60 μg/L. Also, the achieved LLOQ of the second immunodevice (photographic paper/Citrate AgNPs-GQDs nano-ink/Cys-Au NPs/Ab1/BSA/PSA/Ab2) was 0.05 μg/L with the linear range of 10 to 0.05 μg/L. It is noteworthy that, proposed immunoassay was effectively utilized to the monitoring of PSA glycoprotein in unprocessed human plasma sample. Obtained results show that the constructed immunosensor is able to apply as portable bio device for the clinical analysis of PSA in human plasma samples.
Collapse
|
30
|
Moradkhani M, Farshchi F, Hasanzadeh M, Mokhtarzadeh A. A novel bioassay for the monitoring of carcinoembryonic antigen in human biofluid using polymeric interface and immunosensing method. J Mol Recognit 2020; 33:e2852. [PMID: 32303119 DOI: 10.1002/jmr.2852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 01/22/2023]
Abstract
Carcinoembryonic antigen (CEA) is a member of a family of cell surface glycoproteins. Recognition of CEA is needed to monitor the physiological status of the patient for treatment and also it is important to assess the severity of the disease. In this work, we reported a novel sandwich-type electrochemical immunosensor based on gold nanoparticles functionalized cysteamine-glutaraldehyde (AuNPs-CysA-GA) and it successfully designed to detection of the CEA biomarker in a human plasma sample. The AuNPs-CysA-GA provides a large surface area for the effective immobilization of CEA antibody, as well as it ascertains the bioactivity and stability of immobilized CEA antigens. Biotinylated-anti-CEA antibody (Ab1) was immobilized on the surface of glassy carbon electrode (GCE) modified AuNPs-CysA-GA. Also, secondary antibody (HRP-Ab2) was costed immobilized to complete the sandwich part of immunosensor. Field emission scanning electron microscope (FE-SEM and EDS), was employed to monitor the sensor fabrication procedure. The immunosensor was used for the detection of CEA using differential pulse voltammetry (DPVs) technique. The proposed interface led to enhancement of accessible surface area for immobilizing high amount of anti-CEA antibody, increasing electrical conductivity, boosting stability, and biocompatibility. Finally, the low limit of quantitation (LLOQ) of the proposed immunosensor was obtained as 7 ng/mL with the linear range of 0.001-5 μg/L. The proposed immunoassay was successfully applied for the monitoring of the CEA in unprocessed human plasma samples. Obtained results paved that the proposed bioassay can be used as a novel bioassay for the clinical diagnosis of cancer based on CEA monitoring.
Collapse
Affiliation(s)
- Mahbubeh Moradkhani
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Farshchi
- Nutrition Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology-Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Meng Y, Bai W, Zhang Y, Sun H, Li Y. Electrogenerated chemiluminescence biosensing method based on 5-hydroxymethylcytosine antibody and PDDA-CNTs nanocomposites for the determination of 5-hydroxymethylcytosine double-stranded DNA. Talanta 2020; 210:120597. [DOI: 10.1016/j.talanta.2019.120597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023]
|
32
|
Shayesteh OH, Ghavami R. A novel label-free colorimetric aptasensor for sensitive determination of PSA biomarker using gold nanoparticles and a cationic polymer in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117644. [PMID: 31614271 DOI: 10.1016/j.saa.2019.117644] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/25/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
In this colorimetric assay for sensitive detection of prostate specific antigen (PSA) tumor marker, adsorbed non-thiolated poly-Adenine aptamer (polyA Apt) on the gold nanoparticles (AuNPs) surface was used. By incubating the AuNPs and the PSA specific aptamer prior to target addition, polyA Apt adsorbed on the gold nanoparticles and could bind the target while preventing non-specific interactions. Adsorbed polyA Apt on the AuNPs prevents aggregation of them by poly(diallyldimethylammoniumchloride) (PDDA). Upon the addition of PSA, it bind to the polyA Apt and induce the formation of a secondary structure. Therefore, interaction between polyA Apt and PDDA is repressed and PDDA induce the aggregation of the AuNPs. This analytical platform produces a remarkable optical signal in the absence and presence of PSA that accompanied by a color change from red to blue. This effect as a sensing strategy can be observed with naked eyes and quantified by colorimetry via measurement of the ratio of absorbances at 680 nm and 520 nm. Fabricated aptasensor for detection of PSA is linear in the concentration range of 0.1-100 ng/ml with 20 pg/ml as the limit of detection (S/N = 3). Because of the selectively recognized for PSA in the presence of other interfering substances, this proposed assay applied to real samples for the rapid screening of PSA.
Collapse
Affiliation(s)
- Omid Heydari Shayesteh
- Department of Chemistry, Faculty of Science, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Raouf Ghavami
- Department of Chemistry, Faculty of Science, University of Kurdistan, P. O. Box 416, Sanandaj, Iran.
| |
Collapse
|
33
|
Zhao J, Wang S, Zhang S, Zhao P, Wang J, Yan M, Ge S, Yu J. Peptide cleavage-mediated photoelectrochemical signal on-off via CuS electronic extinguisher for PSA detection. Biosens Bioelectron 2020; 150:111958. [DOI: 10.1016/j.bios.2019.111958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 01/09/2023]
|
34
|
Negahdary M, Sattarahmady N, Heli H. Advances in prostate specific antigen biosensors-impact of nanotechnology. Clin Chim Acta 2020; 504:43-55. [PMID: 32004532 DOI: 10.1016/j.cca.2020.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 01/01/2023]
Abstract
Prostate cancer is one of the most dangerous and deadly cancers in elderly men. Early diagnosis using prostate-specific antigen (PSA) facilitates disease detection, management and treatment. Biosensors have recently been used as sensitive, selective, inexpensive and rapid diagnostic tools for PSA detection. In this review, a variety of PSA biosensors such as aptasensors, peptisensors and immunesensors are highlighted. These use aptamers, peptides and antibodies in the biorecognition element, respectively, and can detect PSA with very high sensitivity via electrochemical, electrochemiluminescence, fluorescence and surface-enhanced Raman spectroscopy. To improve the sensitivity of most of these PSA biosensors, different nanostructured materials have played a critical role.
Collapse
Affiliation(s)
- M Negahdary
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
35
|
Abstract
This Feature simply introduces the history and mechanism of classical electrogenerated chemiluminescence (ECL) systems for the detection of biomolecules, highlights new advances and emerging fields of the ECL biosensing with recent illustrative examples, and presents the challenges and perspectives of ECL biosensing.
Collapse
Affiliation(s)
- Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| |
Collapse
|
36
|
Ye Z, Li G, Xu L, Yu Q, Yue X, Wu Y, Ye B. Peptide-conjugated hemin/G-quadruplex as a versatile probe for "signal-on" electrochemical peptide biosensor. Talanta 2019; 209:120611. [PMID: 31892093 DOI: 10.1016/j.talanta.2019.120611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 12/20/2022]
Abstract
In this work, a novel "signal-on" electrochemical peptide biosensor based on peptide-conjugated hemin/G-quadruplex (DNAzyme-peptide) hybrid and rosebud-like MoSe2@reduced graphene oxide (MoSe2@rGO) nanocomposite, was developed for detection of prostate-specific antigen (PSA). Interestingly, the peptide not only served as recognition probe to detect PSA, but also acted as the enhancer to improve the enzyme activity of hemin/G4, which promoted the detection sensitivity. Up addition of PSA, Fe3O4-labeled DNAzyme-peptide probe was cleaved, followed by the magnetic separation. The cleaved DNAzyme-peptide was then captured onto the cysteine-modified electrode via the interaction between carboxyl groups of peptide and amino group of cysteine. A strong electrochemical signal was obtained from hemin and further was amplified by the enhanced electrocatalysis of DNAzyme-peptide. Compared to the original DNAzyme, DNAzyme-peptide exhibited more than 3-fold enhancement in signal amplification. And MoSe2@rGO amplified the electrochemical signal due to its good conductivity and large surface area. So the proposed strategy detected PSA down to 0.3 fg/mL, and it showed the advantages of simplicity, low cost by avoiding the use of expensive protein enzyme and additional electroactive species. Therefore, the proposed biosensor potentially provided a very effective tool for early diagnosis of cancer by the detection of PSA.
Collapse
Affiliation(s)
- Zhuo Ye
- The First Affiliated Hospital, Department of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Gaiping Li
- The First Affiliated Hospital, Department of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Lingling Xu
- The First Affiliated Hospital, Department of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian Yu
- The First Affiliated Hospital, Department of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyue Yue
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yongmei Wu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| | - Baoxian Ye
- The First Affiliated Hospital, Department of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
37
|
Ding C, Wang X, Luo X. Dual-Mode Electrochemical Assay of Prostate-Specific Antigen Based on Antifouling Peptides Functionalized with Electrochemical Probes and Internal References. Anal Chem 2019; 91:15846-15852. [PMID: 31736309 DOI: 10.1021/acs.analchem.9b04206] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sensitive and selective detection of target analytes in complex biological samples is currently a major challenge. Herein we constructed a dual-mode antifouling electrochemical sensing platform for the detection of prostate-specific antigen (PSA) based on two kinds of antifouling peptides functionalized with a graphene oxide-Fe3O4-thionine (GO-Fe3O4-Thi) probe and internal reference ferrocene (Fc), respectively. The longer peptide (Pep1) modified with the GO-Fe3O4-Thi probe was designed to contain a peptide sequence (HSSKLQK) capable of being recognized and cut by PSA. The GO-Fe3O4-Thi probe functions not only as a peroxidase mimick (GO-Fe3O4) but also works as an electrochemical probe due to the presence of thionine (Thi). The concentration of PSA can be measured through both the increase of differential pulse voltammetry (DPV) signal change of Thi and the decrease of chronoamperometry (CA) signal of the reduction of H2O2 electrocatalyzed by GO-Fe3O4. The shorter peptide (Pep2) was tagged with Fc, whose DPV signal remained constant and was independent of the presence of PSA, and it was used as an internal reference to ensure the reliability and accuracy of the measurement. The dual-mode PSA sensor exhibits a wide linear range from 5 pg/mL to 10 ng/mL, with low detection limits of 0.76 and 0.42 pg/mL through DPV and CA modes, respectively. More importantly, owing to the antifouling capability of the designed peptides, the biosensor performances remained operable even in human serum, indicating feasibility of the electrochemical biosensor for practical PSA quantification in complex samples.
Collapse
Affiliation(s)
- Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P.R. China
| | - Xinyan Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P.R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P.R. China
| |
Collapse
|
38
|
Han D, Qian M, Gao H, Wang B, Qi H, Zhang C. A “switch-on” photoluminescent and electrochemiluminescent multisignal probe for hypochlorite via a cyclometalated iridium complex. Anal Chim Acta 2019; 1074:98-107. [DOI: 10.1016/j.aca.2019.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 01/17/2023]
|
39
|
A novel ECL method for histone acetyltransferases (HATs) activity analysis by integrating HCR signal amplification and ECL silver clusters. Talanta 2019; 198:39-44. [DOI: 10.1016/j.talanta.2019.01.083] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/08/2019] [Accepted: 01/19/2019] [Indexed: 11/22/2022]
|
40
|
Dai L, Li Y, Wang Y, Luo X, Wei D, Feng R, Yan T, Ren X, Du B, Wei Q. A prostate-specific antigen electrochemical immunosensor based on Pd NPs functionalized electroactive Co-MOF signal amplification strategy. Biosens Bioelectron 2019; 132:97-104. [DOI: 10.1016/j.bios.2019.02.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/13/2022]
|
41
|
Nie Y, Yuan X, Zhang P, Chai YQ, Yuan R. Versatile and Ultrasensitive Electrochemiluminescence Biosensor for Biomarker Detection Based on Nonenzymatic Amplification and Aptamer-Triggered Emitter Release. Anal Chem 2019; 91:3452-3458. [PMID: 30667212 DOI: 10.1021/acs.analchem.8b05001] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrochemiluminescence (ECL), as a sensitive and controllable assay, offers a considerable opportunity for multiple types of biomarkers detection. However, constructing such a biosensor remains a significant challenge. Herein, an ultrasensitive and versatile ECL biosensor was constructed to detect multiple types of biomarkers from breast cancer by taking the strategies of nonenzymatic catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) amplification, as well as aptamer-triggered emitter release. Concretely, with the appearance of target 1 microRNA-21 (miRNA-21), abundant double-stranded DNA (dsDNA) polymers were generated on this biosensing surface via amplification circuits of CHA and HCR, which could be intercalated into substantial ([Ru(bpy)2dppz]Cl2) as ECL indicators to obtain an obvious enhancement of ECL signal for target 1 detection with a detection limit (0.1 fM). Furthermore, in the presence of target 2 human mucin 1 (MUC1) protein, the ECL signal had a distinct decrease, because aptamer recognition induced the release of [Ru(bpy)2dppz]Cl2 from the sensing surface, thus, achieving a sensitive detection for MUC1 with a detection limit (2.4 fg·mL-1). Simultaneously, this sensing platform was applied to monitor the biomarkers from MDA-MB-231 breast cancer cells, suggesting that this method was applicable to detect real samples. Therefore, this platform is an applicable and versatile implement for the determination of multiple types of biomarkers to improve diagnostic accuracy and efficiency.
Collapse
Affiliation(s)
- Yamin Nie
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education , College of Chemistry and Chemical Engineering , Southwesongqing 400715 , China
| | - Xiaoding Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education , College of Chemistry and Chemical Engineering , Southwesongqing 400715 , China
| | - Pu Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education , College of Chemistry and Chemical Engineering , Southwesongqing 400715 , China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education , College of Chemistry and Chemical Engineering , Southwesongqing 400715 , China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education , College of Chemistry and Chemical Engineering , Southwesongqing 400715 , China
| |
Collapse
|
42
|
Li Z, Wang S, Fan X, Cao B, Zhou C. A Novel Gold Nanoprobe for a Simple Electrochemiluminescence Determination of a Prostate-specific Antigen Based on a Peptide Cleavage Reaction. ANAL SCI 2019; 35:195-199. [PMID: 30298819 DOI: 10.2116/analsci.18p377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel gold nanoprobe for a sensitive and simple determination of a prostate-specific antigen (PSA) was designed on the basis of homogeneous detection and a peptide cleavage reaction. The gold nanoprobe (AuNPs-peptide-Ru1) consisted of a specific peptide tagged with a ruthenium(II) complex (Ru1) and gold nanoparticles (AuNPs) conjugated with the peptide via the strong Au-S bond between the AuNPs surface and the thiol group of the peptide. The electrochemiluminescence (ECL) enzymatic-cleavage-reaction-based bioanalytic system based on homogeneous detection has overcome shortcomings from a complicated fabrication process of traditional electrodes. In the presence of the target PSA, it specifically cleaved the peptide of the AuNPs-peptide-Ru1, and the ECL signal substance (Ru1) part dissociated from AuNPs-peptide-Ru1. This resulted in an increase in the ECL intensity. The ECL biosensor could detect PSA concentrations in the range from 1.0 × 10-12 to 1.0 × 10-9 g/mL, the detection limit was 4.0 × 10-13 g/mL. The assay with the advantages of a simple method for PSA was selective and fast. It is superior to the immunoassay, and is a promising strategy to develop biosensors based on enzymatic cleavage including electrochemistry and optics.
Collapse
Affiliation(s)
- Zhejian Li
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University
| | - Shumin Wang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University
| | - Xuemei Fan
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University
| | - Baoyue Cao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University
| | - Chunsheng Zhou
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University
| |
Collapse
|
43
|
Yazdani Z, Yadegari H, Heli H. A molecularly imprinted electrochemical nanobiosensor for prostate specific antigen determination. Anal Biochem 2019; 566:116-125. [DOI: 10.1016/j.ab.2018.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 11/30/2022]
|
44
|
Huo XL, Zhang N, Xu JJ, Chen HY. Ultrasensitive electrochemiluminescence immunosensor with wide linear range based on a multiple amplification approach. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
45
|
Zou Y, Wang Z, Zhang H, Liu Y. A novel electrogenerated chemiluminescence biosensor for histone acetyltransferases activity analysis and inhibition based on mimetic superoxide dismutase of tannic acid assembled nanoprobes. Biosens Bioelectron 2018; 122:205-210. [DOI: 10.1016/j.bios.2018.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
|
46
|
Zhang Y, Zhang R, Yang X, Qi H, Zhang C. Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J Pharm Anal 2018; 9:9-19. [PMID: 30740252 PMCID: PMC6355466 DOI: 10.1016/j.jpha.2018.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
Electrogenerated chemiluminescence (electrochemiluminescence, ECL) generates species at electrode surfaces, which undergoes electron-transfer reactions and forms excited states to emit light. It has become a very powerful analytical technique and has been widely used in such as clinical testing, biowarfare agent detection, and pharmaceutical analysis. This review focuses on the current trends of molecular recognition-based biosensing methods for pharmaceutical analysis since 2010. It introduces a background of ECL and presents the recent ECL developments in ECL immunoassay (ECLIA), immunosensors, enzyme-based biosensors, aptamer-based biosensors, and molecularly imprinted polymers (MIP)-based sensors. At last, the future perspective for these analytical methods is briefly discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Medpace Bioanalytical Laboratories, 5365 Medpace Way, Cincinnati, OH 45227, USA
| | - Rui Zhang
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47405, USA
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
47
|
|
48
|
Xia N, Deng D, Wang Y, Fang C, Li SJ. Gold nanoparticle-based colorimetric method for the detection of prostate-specific antigen. Int J Nanomedicine 2018; 13:2521-2530. [PMID: 29731627 PMCID: PMC5923276 DOI: 10.2147/ijn.s154046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Prostate-specific antigen (PSA), a serine protease, is a biomarker for preoperative diagnosis and screening of prostate cancer and monitoring of its posttreatment. Methods In this work, we reported a colorimetric method for clinical detection of PSA using gold nanoparticles (AuNPs) as the reporters. The method is based on ascorbic acid (AA)-induced in situ formation of AuNPs and Cu2+-catalyzed oxidation of AA. Specifically, HAuCl4 can be reduced into AuNPs by AA; Cu2+ ion can catalyze the oxidation of AA by O2 to inhibit the formation of AuNPs. In the presence of the PSA-specific peptide (DAHSSKLQLAPP)-modified gold-coated magnetic microbeads (MMBs; denoted as DAHSSKLQLAPP-MMBs), complexation of Cu2+ by the MMBs through the DAH-Cu2+ interaction depressed the catalyzed oxidation of AA and thus allowed for the formation of red AuNPs. However, once the peptide immobilized on the MMB surface was cleaved by PSA, the DAHSSKLQ segment would be released. The resultant LAPP fragment remaining on the MMB surface could not sequestrate Cu2+ to depress its catalytic activity toward AA oxidation. Consequently, no or less AuNPs were generated. Results The linear range for PSA detection was found to be 0~0.8 ng/mL with a detection limit of 0.02 ng/mL. Because of the separation of cleavage step and measurement step, the interference of matrix components in biological samples was avoided. Conclusion The high extinction coefficient of AuNPs facilitates the colorimetric analysis of PSA in serum samples. This work is helpful for designing of other protease biosensors by matching specific peptide substrates.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China
| | - Dehua Deng
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China.,College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, People's Republic of China
| | - Yiru Wang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China
| | - Chao Fang
- School of Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Su-Juan Li
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People's Republic of China
| |
Collapse
|
49
|
Yu Q, Wu Y, Liu Z, Lei S, Li G, Ye B. Novel electrochemical biosensor based on cationic peptide modified hemin/G-quadruples enhanced peroxidase-like activity. Biosens Bioelectron 2018; 107:178-183. [PMID: 29455028 DOI: 10.1016/j.bios.2018.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022]
Abstract
This work designed an artificial substrate peptide to synthesize peptide-hemin/G-quadruplex (peptide-DNAzyme) conjugates. In addition to enhancing catalytic activity of hemin/G-quadruplex, the peptide could also be induced and cleaved by prostate specific antigen (PSA). It was the first report on peptide-DNAzyme conjugates in application of the peptide biosensor. The polyethyleneimine-reduced graphene oxide@hollow platinum nanotubes (PEI-rGO@PtNTs) nanocomposites were cast on the glassy carbon electrode in order to form the interface of biocompatibility and huge surface area for bioprobes immobilization. In absence of PSA, the peptide-DNAzyme conjugates retained intact on the surface of the electrode to produce a strong response signal. But in presence of PSA, the peptide-DNAzyme conjugates were destroyed to release electron mediators, resulting in dramatical decrease of the electrochemicl signal. Therefore, the method had high sensitivity and super selectivity with the limit of detection calculated as 2.0 fg/mL. Furthermore, the strategy would be promising to apply for other proteases by transforming the synthetic peptide module of target.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongmei Wu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Sheng Lei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
50
|
Gao H, Wang X, Li M, Qi H, Gao Q, Zhang C. Proximity hybridization-regulated electrogenerated chemiluminescence bioassay of α-fetoprotein via target-induced quenching mechanism. Biosens Bioelectron 2017. [DOI: 10.1016/j.bios.2017.06.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|