1
|
Vetere A, Schrader W. Studying Structural Details in Complex Samples: II. High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Coupled to High Resolution Tandem Mass Spectrometry (MS/MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:34-43. [PMID: 39586315 PMCID: PMC11697342 DOI: 10.1021/jasms.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
The elucidation of structural motifs in extremely complex mixtures is very difficult since the standard methods for structural elucidation are not capable to provide significant information on a single molecule. The best method for the analysis of complex mixtures is ultrahigh resolution mass spectrometry, but the utilization of this method alone does not provide significant information about structural details. Here, a combination with a separation method is necessary. While chromatography is a well-established technique, it has some disadvantages in regard to the separation of complex mixtures, as often no separation of individual isomers is possible. Therefore, here the combination of an ion mobility separation with ultrahigh resolution mass spectrometry is evaluated. As a sample matrix, crude oil is used because it is an excellent matrix to develop new analytical techniques on complex samples. Crude oil is the most complex natural sample known, but only little information is available on the structural identity or functionalities due to a high number of structural isomers or isobars. A lab-built APPI/APLI-FAIMS source was revised to optimize ion transmission and used to follow up on the ion mobility of crude oil constituents after photoionization. An MS/MS approach using collision-induced dissociation (CID) was used to elucidate structural motifs of the transmitted isomers.
Collapse
Affiliation(s)
- Alessandro Vetere
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim (Ruhr), Germany
| | - Wolfgang Schrader
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim (Ruhr), Germany
| |
Collapse
|
2
|
Ibáñez-Ibáñez L, Mollar-Cuni A, Apaloo-Messan E, Sharma AK, Mata JA, Maseras F, Vicent C. Ion mobility mass spectrometry uncovers regioselectivity in the carboxylate-assisted C-H activation of palladium N-heterocyclic carbene complexes. Dalton Trans 2024; 53:656-665. [PMID: 38073605 DOI: 10.1039/d3dt02793g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Carboxylate-assisted Pd-catalyzed C-H bond activation constitutes a mild and versatile synthetic tool to efficiently and selectively cleave inert C-H bonds. Herein, we demonstrate a simple method to experimentally evaluate both reactivity and selectivity in such systems using mass spectrometry (MS) methods. The N-heterocyclic carbene (NHC) cations [(NHC)PdX]+, bearing as X- ligand bases commonly used to promote the C-H activation (carboxylates and bicarbonate), are generated in the gas-phase by ESI-MS. Their C-H bond activation at the N-bound groups of the NHC is then studied using Collision Induced Dissociation (CID) experiments. Ion Mobility Spectrometry (IM)-MS is exploited to identify a number of regioisomers associated with the distinctive site selective C-H activations. It is demonstrated that such C-H activation concomitant with acetic acid release occurs from a mixture of activated [(NHC-H)Pd(CH3CO2H)]+ and non-activated [(NHC)Pd(CH3CO2)]+ complexes. The identity of the X-type ligands (X = Cl-, carboxylates and bicarbonate) has a significant impact on the regioisomer branching ratio upon CID conditions. IM-MS in conjunction with a DFT mechanistic study is presented for the acetate-assisted C-H activation of the [(NHC)Pd(CH3CO2)]+ cation featuring butyl and aryl as N-donor groups.
Collapse
Affiliation(s)
- Laura Ibáñez-Ibáñez
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Andres Mollar-Cuni
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Edmond Apaloo-Messan
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Jose A Mata
- Institute of Advanced Materials (INAM), Net of organometallic chemistry for sustainable solutions (OASIS), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.
| | - Cristian Vicent
- Serveis Centrals d'Instrumentació Científica (SCIC). Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
3
|
Cordova AC, Dodds JN, Tsai HHD, Lloyd DT, Roman-Hubers AT, Wright FA, Chiu WA, McDonald TJ, Zhu R, Newman G, Rusyn I. Application of Ion Mobility Spectrometry-Mass Spectrometry for Compositional Characterization and Fingerprinting of a Library of Diverse Crude Oil Samples. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2336-2349. [PMID: 37530422 PMCID: PMC10592202 DOI: 10.1002/etc.5727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Exposure characterization of crude oils, especially in time-sensitive circumstances such as spills and disasters, is a well-known analytical chemistry challenge. Gas chromatography-mass spectrometry is commonly used for "fingerprinting" and origin tracing in oil spills; however, this method is both time-consuming and lacks the resolving power to separate co-eluting compounds. Recent advances in methodologies to analyze petroleum substances using high-resolution analytical techniques have demonstrated both improved resolving power and higher throughput. One such method, ion mobility spectrometry-mass spectrometry (IMS-MS), is especially promising because it is both rapid and high-throughput, with the ability to discern among highly homologous hydrocarbon molecules. Previous applications of IMS-MS to crude oil analyses included a limited number of samples and did not provide detailed characterization of chemical constituents. We analyzed a diverse library of 195 crude oil samples using IMS-MS and applied a computational workflow to assign molecular formulas to individual features. The oils were from 12 groups based on geographical and geological origins: non-US (1 group), US onshore (3), and US Gulf of Mexico offshore (8). We hypothesized that information acquired through IMS-MS data would provide a more confident grouping and yield additional fingerprint information. Chemical composition data from IMS-MS was used for unsupervised hierarchical clustering, as well as machine learning-based supervised analysis to predict geographic and source rock categories for each sample; the latter also yielded several novel prospective biomarkers for fingerprinting of crude oils. We found that IMS-MS data have complementary advantages for fingerprinting and characterization of diverse crude oils and that proposed polycyclic aromatic hydrocarbon biomarkers can be used for rapid exposure characterization. Environ Toxicol Chem 2023;42:2336-2349. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alexandra C. Cordova
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - James N. Dodds
- Department of Chemistry, UNC Chapel Hill, Chapel Hill, NC 27514, United States
| | - Han-Hsuan D. Tsai
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Dillon T. Lloyd
- Departments of Statistics, Biological Sciences, and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, United States
| | - Alina T. Roman-Hubers
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Fred A. Wright
- Departments of Statistics, Biological Sciences, and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, United States
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Thomas J. McDonald
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, United States
| | - Rui Zhu
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station TX 77843, United States
| | - Galen Newman
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station TX 77843, United States
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
4
|
Wang Y, Zhu G, Wang M, Wu J, Fu D, Xie Q, Shi Q, Xu C, Han Y. Discovery of novel cage compounds of diamondoids using multi-dimensional mass spectrometry. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Acter T, Lee S, Uddin N, Mow KM, Kim S. Characterization of petroleum‐related natural organic matter by ultrahigh‐resolution mass spectrometry. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Thamina Acter
- Department of Mathematical and Physical Sciences East West University Dhaka Bangladesh
| | - Seulgidaun Lee
- Department of Chemistry Kyungpook National University Daegu Republic of Korea
| | - Nizam Uddin
- Department of Nutrition and Food Engineering, Faculty of Allied Health Science Daffodil International University Dhaka Bangladesh
| | - Kamarum Monira Mow
- Department of Computer Science and Engineering East West University Dhaka Bangladesh
| | - Sunghwan Kim
- Department of Chemistry Kyungpook National University Daegu Republic of Korea
- Mass Spectrometry Based Convergence Research Institute Kyungpook National University Daegu Republic of Korea
- Green‐Nano Materials Research Center, Kyungpook National University Daegu Republic of Korea
| |
Collapse
|
6
|
Le Maître J, Maillard JF, Hubert-Roux M, Afonso C, Giusti P. Prediction of Structures of Compounds Encountered in Complex Organic Matter with Highly Flexible Alkyl Chains Using Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2024-2031. [PMID: 36178343 DOI: 10.1021/jasms.2c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chemical structure of an organic molecule has a direct influence on its three-dimensional conformation. One way to obtain information on this conformation is to use ion mobility spectrometry. This technique allows the separation of different isomers according to their collision cross section (CCS) with an inert gas. Smaller or more compact molecules will have lower collision cross section values than larger molecules. The CCS is an intrinsic ion parameter for a specific gas and is thus predictable. Today, calculations of rigid molecules are commonly performed to obtain additional structural information on an ion. However, calculations are more complex with very flexible molecules. In particular, molecules presenting long alkyl chains can yield a high number of conformers. Each conformer is then associated with a CCS value that is specific to it. We report, here, a methodology to predict CCS of flexible molecules. The used approach is based on automatic conformers research followed by geometry optimization and CCS calculations. Determination of theoretical and experimental CCS values for a rigid polycyclic aromatic hydrocarbons (PAHs) standard was used to calibrate the Mobcal software. Then, 13 standard molecules ranging from 4 to 19 carbon alkyl chains, including three long alkyl chain isomers of C22H38, were analyzed on a TWIMS-ToF and calculated using our methodology. CCS deviations between experimental and theoretical values were found to be less than 1.5% over the whole studied CCS range. This method was finally applied for structural analysis of petroleum compounds refractory to the hydro-denitrogenation process.
Collapse
Affiliation(s)
- Johann Le Maître
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- TotalEnergies OneTech R&D, Total Research & Technology Gonfreville, BP 27, 76700Harfleur, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| | - Julien F Maillard
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| | - Marie Hubert-Roux
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| | - Carlos Afonso
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| | - Pierre Giusti
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- TotalEnergies OneTech R&D, Total Research & Technology Gonfreville, BP 27, 76700Harfleur, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| |
Collapse
|
7
|
Weagle CL, Saint-Louis R, Dumas-Lefebvre É, Chavanne C, Dumont D, Chang RYW. Sea-air transfer of a tracer dye observed during the Tracer Release Experiment with implications for airborne contaminant exposure. MARINE POLLUTION BULLETIN 2022; 182:113945. [PMID: 35905703 DOI: 10.1016/j.marpolbul.2022.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Rhodamine water tracer (RWT) released during the 2021 Tracer Release Experiment in the St. Lawrence Estuary provides a proxy for the water-soluble fractions of contaminant spills. Measurements of total and size-resolved aerosols were taken onboard a research vessel throughout the experiment. Size-resolved aerosol measurements show airborne transmission of water-soluble RWT in a bimodal distribution peaking at 5.2 μm and 0.9 μm. Highest aerosol RWT (30.5 pg m-3) was observed in the 12-hour daytime period following the first dye release (Sept. 5), while the lowest (8.8 pg m-3) was observed in the subsequent nighttime sample. Available wind and RWT patch information were used to identify factors contributing to the factor-of-three variation in aerosol RWT concentrations. Negligible correlations were found between aerosol RWT and wind speed and sample time-of-day. Wind direction is isolated as the key variable for consideration in identifying the impact of contaminant spills on coastal and inland communities.
Collapse
Affiliation(s)
- Crystal L Weagle
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Richard Saint-Louis
- Département De Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 2Z9, Canada
| | - Élie Dumas-Lefebvre
- Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Cédric Chavanne
- Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Dany Dumont
- Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Rachel Y-W Chang
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
8
|
Wang Y, Zhang X, Hu W, Dong C, Fu D, Habtegabir SG, Han Y. Ultra-fast screening of free fatty acids in human plasma using ion mobility mass spectrometry. J Sep Sci 2022; 45:1818-1826. [PMID: 35340115 DOI: 10.1002/jssc.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Free fatty acids involved in many metabolic regulations in human body. In this work, an ultra-fast screening method was developed for the analysis of free fatty acids using trapped ion mobility spectrometry coupled with mass spectrometry. Thirty-three free fatty acids possessing different unsaturation degrees and different carbon chain lengths were baseline separated and characterized within milliseconds. Saturated, monounsaturated, and polyunsaturated free fatty acids showed different linearities between collision cross section values and m/z. Establishment of correlations between structures and collision cross section values provided additional qualitative information and made it possible to determine free fatty acids which were out of the standards pool but possessed the confirmed linearity. Gas-phase separation made the quantitative analysis reliable and repeatable at a much lower time cost than chromatographic methods. The sensitivity was comparable to and even better than the reported results. The method was validated and applied to profiling free fatty acids in human plasma. Saturated free fatty acids abundance in the fasting state was found to be lower than that in the postprandial state, while unsaturated species abundance was found higher. The method was fast and robust with minimum sample pretreatment, so it was promising in high-throughput screening of free fatty acids. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Xianxie Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chenglong Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Dali Fu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Sara Girmay Habtegabir
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
9
|
Ion Mobility Mass Spectrometry for Structural Elucidation of Petroleum Compounds. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Kösling P, Rüger CP, Schade J, Fort KL, Ehlert S, Irsig R, Kozhinov AN, Nagornov KO, Makarov A, Rigler M, Tsybin YO, Walte A, Zimmermann R. Vacuum Laser Photoionization inside the C-trap of an Orbitrap Mass Spectrometer: Resonance-Enhanced Multiphoton Ionization High-Resolution Mass Spectrometry. Anal Chem 2021; 93:9418-9427. [PMID: 34170684 DOI: 10.1021/acs.analchem.1c01018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
State-of-the-art mass spectrometry with ultraviolet (UV) photoionization is mostly limited to time-of-flight (ToF) mass spectrometers with 1000-10 000 m/Δm mass resolution. However, higher resolution and higher spectral dynamic range mass spectrometry may be indispensable in complex mixture characterization. Here, we present the concept, implementation, and initial evaluation of a compact ultrahigh-resolution mass spectrometer with gas-phase laser ionization. The concept is based on direct laser photoionization in the ion accumulation and ejection trap (C-trap) of an Orbitrap mass spectrometer. Resonance-enhanced multiphoton ionization (REMPI) using 266 nm UV pulses from a frequency-quadrupled Nd:YAG laser was applied for selective and efficient ionization of monocyclic and polycyclic aromatic hydrocarbons. The system is equipped with a gas inlet for volatile compounds and a heated gas chromatography coupling. The former can be employed for rapid system m/z-calibration and performance evaluation, whereas the latter enables analysis of semivolatile and higher-molecular-weight compounds. The capability to evaluate complex mixtures is demonstrated for selected petrochemical materials. In these experiments, several hundred to over a thousand compounds could be attributed with a root-mean-square mass error generally below 1 ppm and a mass resolution of over 140 000 at 200 m/z. Isobaric interferences could be resolved, and narrow mass splits, such as 3.4 mDa (SH4/C3), are determined. Single laser shots provided limits of detection in the 20-ppb range for p-xylene and 1,2,4-trimethylbenzene, similar to compact vacuum REMPI-ToF systems.
Collapse
Affiliation(s)
- Paul Kösling
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany
| | - Julian Schade
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany
| | - Kyle L Fort
- Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany
| | - Sven Ehlert
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany.,Photonion GmbH, 19061 Schwerin, Germany
| | - Robert Irsig
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany.,Photonion GmbH, 19061 Schwerin, Germany
| | | | | | | | | | | | | | - Ralf Zimmermann
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,Department Life, Light & Matter (LLM), University of Rostock, 18059 Rostock, Germany.,Joint Mass Spectrometry Centre, Cooperation Group "Comprehensive Molecular Analytics", Helmholtz Zentrum Muenchen, Neuherberg D-85764, Germany
| |
Collapse
|
11
|
Olanrewaju CA, Ramirez CE, Fernandez-Lima F. Comprehensive Screening of Polycyclic Aromatic Hydrocarbons and Similar Compounds Using GC-APLI-TIMS-TOFMS/GC-EI-MS. Anal Chem 2021; 93:6080-6087. [PMID: 33835784 DOI: 10.1021/acs.analchem.0c04525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present work, a novel workflow based on complementary gas-phase separations for the identification of isomeric PAHs from complex mixtures is described. This is the first report on the coupling of gas chromatography (GC), atmospheric pressure laser ionization (APLI), and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) for the characterization of polycyclic aromatic hydrocarbons. Over a hundred known unknowns are uniquely identified based on the molecular ion retention indices I (5%), mobility (RSD < 0.6% and R = 50-90 with Sr = 0.18 V/ms), mobility-based theoretical candidate assignment (<3%), accurate mass chemical formula assignment (<2 ppm), and electron impact fragmentation pattern and database search. The advantages of theoretical modeling of PAHs and similar compounds were evaluated using candidate structures ranked by retention indices and fragmentation pattern from GC-EI-MS data sets. Over 20 PAH isomeric and deuterated standards were utilized for the GC-APLI-TIMS-TOF MS workflow validation. Noteworthy is the analytical capability for untargeted screening of isomeric and isobaric compounds with additional characterization metrics not available in traditional GC-EI-MSn workflows.
Collapse
Affiliation(s)
- Clement A Olanrewaju
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Cesar E Ramirez
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Advanced Mass Spectrometry Facility, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.,Advanced Mass Spectrometry Facility, Florida International University, Miami, Florida 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
12
|
Zhang Y, Han Y, Wu J, Wang Y, Li J, Shi Q, Xu C, Hsu CS. Comprehensive Composition, Structure, and Size Characterization for Thiophene Compounds in Petroleum Using Ultrahigh-Resolution Mass Spectrometry and Trapped Ion Mobility Spectrometry. Anal Chem 2021; 93:5089-5097. [PMID: 33734689 DOI: 10.1021/acs.analchem.0c04667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thiophene compounds are the main concern of petroleum desulfurization, and their chemical composition and molecular configuration have critical impacts on thermodynamic and kinetic processes. In this work, atmospheric pressure chemical ionization (APCI) was employed for effective ionization of thiophene compounds in petroleum with complex matrix, in which carbon disulfide was used for generating predominant [M]+• ions without the need of derivatization as for electrospray ionization. APCI coupled with ultrahigh-resolution mass spectrometry (UHRMS) was successfully applied to the composition characterization of thiophene compounds in both a low boiling petroleum fraction and a whole crude oil. APCI coupled with trapped ion mobility spectrometry (TIMS) was developed to determine the shape and size of thiophene compounds, providing configuration information that affects the steric hindrance and diffusion behavior of reactants in the desulfurization reaction, which has not been previously reported. Moreover, the comprehensive experimental structural data, expressed as the collision cross section (CCS) of the ions as surrogates of molecules, provided clues to the factors affecting the desulfurization reactivity of thiophene compounds. Further exploration showed that not only qualitative analysis of thiophene compounds can be achieved from the correlation between m/z and CCS, but also molecular size was found to be correlated with CCS that can be used as structural analysis. Overall, the molecular composition and dimension analysis together can provide substantial information for the desulfurization activity of thiophene compounds, facilitating the desulfurization process studies and catalyst design.
Collapse
Affiliation(s)
- Yanfen Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Jianxun Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Jiayi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China
| | - Chang Samuel Hsu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, People's Republic of China.,Department of Chemical and Biomedical Engineering, Florida A&M University/Florida State University, Tallahassee, Florida 32310, United States.,Petro Bio Oil Consulting, Tallahassee, Florida 32312, United States
| |
Collapse
|
13
|
Rüger CP, Le Maître J, Riches E, Palmer M, Orasche J, Sippula O, Jokiniemi J, Afonso C, Giusti P, Zimmermann R. Cyclic Ion Mobility Spectrometry Coupled to High-Resolution Time-of-Flight Mass Spectrometry Equipped with Atmospheric Solid Analysis Probe for the Molecular Characterization of Combustion Particulate Matter. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:206-217. [PMID: 33237780 DOI: 10.1021/jasms.0c00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anthropogenic air pollution has a severe impact on climate and human health. The immense molecular complexity and diversity of particulate matter (PM) is a result of primary organic aerosol (POA) as well as secondary organic aerosols (SOAs). In this study, a direct inlet probe (DIP), i.e., atmospheric solids analysis probe (ASAP), with ion mobility high-resolution mass spectrometric detection is applied. Primary particulate matter emissions from three sources were investigated. Furthermore, photochemically aged emissions were analyzed. DIP introduction allowed for a direct analysis with almost no sample preparation and resulted in a complex molecular pattern. This pattern shifted through oxidation processes toward heavier species. For diesel emissions, the fuel's chemical characteristic is partially transferred to the particulate matter by incomplete combustion and characteristic alkylated series were found. Polycyclic aromatic hydrocarbons (PAHs) were identified as major contributors. Ion mobility analysis results in drift time profiles used for structural analysis. The apex position was used to prove structural changes, whereas the full-width-at-half-maximum was used to address the isomeric diversity. With this concept, the dominance of one or a few isomers for certain PAHs could be shown. In contrast, a broad isomeric diversity was found for oxygenated species. For the in-depth specification of fresh and aged spruce emissions, the ion mobility resolving power was almost doubled by allowing for three passes in the circular traveling wave design. The results prove that ASAP coupled with ion mobility spectrometry-mass spectrometry (IMS-MS) serves as a promising analytical approach for tackling the vast molecular complexity of PM.
Collapse
Affiliation(s)
- Christopher P Rüger
- Joint Mass Spectrometry Centre/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, Total Research and Technology Gonfreville (TRTG), 76700 Harfleur, France
| | - Johann Le Maître
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, Total Research and Technology Gonfreville (TRTG), 76700 Harfleur, France
- TOTAL Refining and Chemicals, Gonfreville, 76700 Harfleur, France
| | | | - Martin Palmer
- Waters Corporation, SK9 4AX Wilmslow, United Kingdom
| | - Jürgen Orasche
- Joint Mass Spectrometry Centre (JMSC)/Helmholtz Zentrum München, Comprehensive Molecular Analytics, 85764 Neuherberg, Germany
| | - Olli Sippula
- University of Eastern Finland, 70211 Kuopio, Finland
| | | | - Carlos Afonso
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, Total Research and Technology Gonfreville (TRTG), 76700 Harfleur, France
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen-Normandie, INSA de Rouen, CNRS, IRCOF, 76130 Mont Saint Aignan, France
| | - Pierre Giusti
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, Total Research and Technology Gonfreville (TRTG), 76700 Harfleur, France
- TOTAL Refining and Chemicals, Gonfreville, 76700 Harfleur, France
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- Joint Mass Spectrometry Centre (JMSC)/Helmholtz Zentrum München, Comprehensive Molecular Analytics, 85764 Neuherberg, Germany
| |
Collapse
|
14
|
Cho E, Riches E, Palmer M, Giles K, Ujma J, Kim S. Isolation of Crude Oil Peaks Differing by m/z ∼0.1 via Tandem Mass Spectrometry Using a Cyclic Ion Mobility-Mass Spectrometer. Anal Chem 2019; 91:14268-14274. [DOI: 10.1021/acs.analchem.9b02255] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eunji Cho
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Eleanor Riches
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Martin Palmer
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Kevin Giles
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Jakub Ujma
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Green-Nano Materials Research Center, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Gao Y, Wang W, He C, Fang Z, Zhang Y, Shi Q. Fractionation and molecular characterization of natural organic matter (NOM) by solid-phase extraction followed by FT-ICR MS and ion mobility MS. Anal Bioanal Chem 2019; 411:6343-6352. [DOI: 10.1007/s00216-019-01943-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/05/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
|
16
|
Lim D, Park Y, Chang R, Ahmed A, Kim S. Application of molecular dynamics simulation to improve the theoretical prediction for collisional cross section of aromatic compounds with long alkyl chains in crude oils. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:650-656. [PMID: 30710409 DOI: 10.1002/rcm.8400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Molecular dynamics (MD) simulations with finite temperature were performed to improve the theoretical prediction of collisional cross section (CCS) values, especially for aromatic compounds containing long alkyl chains. METHODS In this study, the CCS values of 11 aromatic compounds with long alkyl chains were calculated by MD simulations while considering internal energy at 300, 500, and 700 K, and the results were compared with experimentally determined values. RESULTS The CCS values calculated at higher energies showed better agreement with the experimental values. Polycyclic aromatic hydrocarbons (PAHs) such as pentacene and benz[b]anthracene were also investigated, and better agreement between the theoretical and experimental results was observed when higher temperature (or higher internal energy) was considered. CONCLUSIONS The data presented in this study show that the internal degrees of freedom of ions must be considered to accurately predict the CCS values of aromatic compounds with a flexible structure measured by ion mobility mass spectrometry.
Collapse
Affiliation(s)
- Dongwan Lim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yunjae Park
- Department of Chemistry, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Rakwoo Chang
- Department of Chemistry, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Arif Ahmed
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
- Green Nano Center, Department of Chemistry, Daegu, 41566, Republic of Korea
| |
Collapse
|
17
|
Lim D, Davidson KL, Son S, Ahmed A, Bush MF, Kim S. Determining Collision Cross‐Sections of Aromatic Compounds in Crude Oil by Using Aromatic Compound Mixture as Calibration Standard. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dongwan Lim
- Department of ChemistryKyungpook National University Daegu 41566 Republic of Korea
| | | | - Seungwoo Son
- Department of ChemistryKyungpook National University Daegu 41566 Republic of Korea
| | - Arif Ahmed
- Department of ChemistryKyungpook National University Daegu 41566 Republic of Korea
| | - Matthew F. Bush
- Department of ChemistryUniversity of Washington Seattle WA, 98195‐1700 USA
| | - Sunghwan Kim
- Department of ChemistryKyungpook National University Daegu 41566 Republic of Korea
- Green‐Nano Materials Research Center Daegu 41566 Republic of Korea
| |
Collapse
|
18
|
Niyonsaba E, Manheim JM, Yerabolu R, Kenttämaa HI. Recent Advances in Petroleum Analysis by Mass Spectrometry. Anal Chem 2018; 91:156-177. [PMID: 30428670 DOI: 10.1021/acs.analchem.8b05258] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Edouard Niyonsaba
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeremy M. Manheim
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ravikiran Yerabolu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hilkka I. Kenttämaa
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
19
|
Yassine MM, Dabek-Zlotorzynska E. Investigation of isomeric structures in a commercial mixture of naphthenic acids using ultrahigh pressure liquid chromatography coupled to hybrid traveling wave ion mobility-time of flight mass spectrometry. J Chromatogr A 2018; 1572:90-99. [DOI: 10.1016/j.chroma.2018.08.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 12/23/2022]
|
20
|
Lim D, Ahmed A, Kim S. Comparison of Theoretical Calculation Methods for Obtaining Collisional Cross-Section of Aromatic Compounds. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dongwan Lim
- Kyungpook National University; Department of Chemistry; Daegu 41566 Republic of Korea
| | - Arif Ahmed
- Kyungpook National University; Department of Chemistry; Daegu 41566 Republic of Korea
| | - Sunghwan Kim
- Kyungpook National University; Department of Chemistry; Daegu 41566 Republic of Korea
- Green Nano Center; Department of Chemistry; Daegu 41566 Republic of Korea
| |
Collapse
|
21
|
Parulkar A, Thompson JA, Hurt M, Zhan BZ, Brunelli NA. Improving Hydrodenitrogenation Catalyst Performance through Analyzing Hydrotreated Vacuum Gas Oil Using Ion Mobility–Mass Spectrometry. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aamena Parulkar
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Joshua A. Thompson
- Chevron Energy Technology Company, 100 Chevron Way, Richmond, California 94801, United States
| | - Matt Hurt
- Chevron Energy Technology Company, 100 Chevron Way, Richmond, California 94801, United States
| | - Bi-Zeng Zhan
- Chevron Energy Technology Company, 100 Chevron Way, Richmond, California 94801, United States
| | - Nicholas A. Brunelli
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Maleki H, Karanji AK, Majuta S, Maurer MM, Valentine SJ. Ion Mobility Spectrometry-Mass Spectrometry Coupled with Gas-Phase Hydrogen/Deuterium Exchange for Metabolomics Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:230-241. [PMID: 28956290 PMCID: PMC5942887 DOI: 10.1007/s13361-017-1798-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/22/2017] [Accepted: 08/26/2017] [Indexed: 05/11/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate (in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Hossein Maleki
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Ahmad K Karanji
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Sandra Majuta
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Megan M Maurer
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
23
|
Farenc M, Paupy B, Marceau S, Riches E, Afonso C, Giusti P. Effective Ion Mobility Peak Width as a New Isomeric Descriptor for the Untargeted Analysis of Complex Mixtures Using Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2476-2482. [PMID: 28721674 DOI: 10.1007/s13361-017-1749-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/10/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Ion mobility coupled with mass spectrometry was proven to be an efficient way to characterize complex mixtures such as petroleum samples. However, the identification of isomeric species is difficult owing to the molecular complexity of petroleum and no availability of standard molecules. This paper proposes a new simple indicator to estimate the isomeric content of highly complex mixtures. This indicator is based on the full width at half maximum (FWHM) of the extracted ion mobility peak measured in millisecond or square angstrom that is corrected for instrumental factors such as ion diffusion. This value can be easily obtained without precisely identifying the number of isomeric species under the ion mobility peaks. Considering the Boduszynski model, the ion mobility profile for a particular elemental composition is expected to be a continuum of various isomeric species. The drift time-dependent fragmentation profile was studied and confirmed this hypothesis, a continuous evolution of the fragmentation profile showing that the larger alkyl chain species were detected at higher drift time values. This new indicator was proven to be a fast and efficient method to compare vacuum gas oils for which no difference was found using other analytical techniques. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Mathilde Farenc
- TOTAL Refining and Chemicals, TRTG Gonfreville l'Orcher, Rogerville, France
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA, 76000, Rouen, France
- TOTAL RC - CNRS Joint Laboratory C2MC: Complex Matrices Molecular Characterization, Pau, France
| | - Benoit Paupy
- TOTAL Refining and Chemicals, TRTG Gonfreville l'Orcher, Rogerville, France
- TOTAL RC - CNRS Joint Laboratory C2MC: Complex Matrices Molecular Characterization, Pau, France
| | - Sabrina Marceau
- TOTAL Refining and Chemicals, TRTG Gonfreville l'Orcher, Rogerville, France
- TOTAL RC - CNRS Joint Laboratory C2MC: Complex Matrices Molecular Characterization, Pau, France
| | - Eleanor Riches
- Waters Corporation, Stamford Ave., Altrincham Rd, Wilmslow, SK9 4AX, UK
| | - Carlos Afonso
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA, 76000, Rouen, France.
- TOTAL RC - CNRS Joint Laboratory C2MC: Complex Matrices Molecular Characterization, Pau, France.
| | - Pierre Giusti
- TOTAL Refining and Chemicals, TRTG Gonfreville l'Orcher, Rogerville, France
- TOTAL RC - CNRS Joint Laboratory C2MC: Complex Matrices Molecular Characterization, Pau, France
| |
Collapse
|
24
|
Benigni P, Sandoval K, Thompson CJ, Ridgeway ME, Park MA, Gardinali P, Fernandez-Lima F. Analysis of Photoirradiated Water Accommodated Fractions of Crude Oils Using Tandem TIMS and FT-ICR MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5978-5988. [PMID: 28457132 PMCID: PMC5661887 DOI: 10.1021/acs.est.7b00508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For the first time, trapped ion mobility spectrometry (TIMS) in tandem with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is applied to the analysis of the low energy water accommodated fraction (WAF) of a crude oil as a function of the exposure to light. The TIMS-FT-ICR MS analysis provided, in addition to the heteroatom series identification, new insights into the WAF isomeric complexity (e.g., [m/z; chemical formula; collision cross section] data sets) for a better evaluation of the degree of chemical and structural photoinduced transformations. Inspection of the [m/z; chemical formula; collision cross section] data sets shows that the WAF composition changes as a function of the exposure to light in the first 115 h by initial photosolubilization of HC components and their photo-oxidation up to O4-5 of mainly high double bond equivalence species (DBE > 9). The addition of high resolution TIMS (resolving power of 90-220) to ultrahigh resolution FT-ICR MS (resolving power over 400k) permitted the identification of a larger number of molecular components in a single analysis (e.g., over 47k using TIMS-MS compared to 12k by MS alone), with instances of over 6-fold increase in the number of molecular features per nominal mass due to the WAF isomeric complexity. This work represents a stepping stone toward a better understanding of the WAF components and highlights the need for better experimental and theoretical approaches to characterize the WAF structural diversity.
Collapse
Affiliation(s)
- Paolo Benigni
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Kathia Sandoval
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | | | | | - Melvin A. Park
- Bruker Daltonics, Inc., Billerica, Massachusetts 01821, USA
| | - Piero Gardinali
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Southeast Environmental Research Center, Florida International University, Miami, Florida 33199, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
| |
Collapse
|
25
|
Kauppila TJ, Syage JA, Benter T. Recent developments in atmospheric pressure photoionization-mass spectrometry. MASS SPECTROMETRY REVIEWS 2017; 36:423-449. [PMID: 25988849 DOI: 10.1002/mas.21477] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/29/2015] [Indexed: 05/28/2023]
Abstract
Recent developments in atmospheric pressure photoionization (APPI), which is one of the three most important ionization techniques in liquid chromatography-mass spectrometry, are reviewed. The emphasis is on the practical aspects of APPI analysis, its combination with different separation techniques, novel instrumental developments - especially in gas chromatography and ambient mass spectrometry - and the applications that have appeared in 2009-2014. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:423-449, 2017.
Collapse
Affiliation(s)
- Tiina J Kauppila
- Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Jack A Syage
- Morpho Detection, 1251 E. Dyer Rd., Santa Ana, CA 92705, USA
| | - Thorsten Benter
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
26
|
|
27
|
Acter T, Kim D, Ahmed A, Jin JM, Yim UH, Shim WJ, Kim YH, Kim S. Optimization and application of atmospheric pressure chemical and photoionization hydrogen–deuterium exchange mass spectrometry for speciation of oxygen-containing compounds. Anal Bioanal Chem 2016; 408:3281-93. [DOI: 10.1007/s00216-016-9399-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/30/2015] [Accepted: 02/08/2016] [Indexed: 01/01/2023]
|
28
|
Benigni P, DeBord JD, Thompson CJ, Gardinali P, Fernandez-Lima F. Increasing Polyaromatic Hydrocarbon (PAH) Molecular Coverage during Fossil Oil Analysis by Combining Gas Chromatography and Atmospheric-Pressure Laser Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2016; 30:196-203. [PMID: 27212790 PMCID: PMC4869715 DOI: 10.1021/acs.energyfuels.5b02292] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Thousands of chemically distinct compounds are encountered in fossil oil samples that require rapid screening and accurate identification. In the present paper, we show for the first time, the advantages of gas chromatography (GC) separation in combination with atmospheric-pressure laser ionization (APLI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the screening of polyaromatic hydrocarbons (PAHs) in fossil oils. In particular, reference standards of organics in shale oil, petroleum crude oil, and heavy sweet crude oil were characterized by GC-APLI-FT-ICR MS and APLI-FT-ICR MS. Results showed that, while APLI increases the ionization efficiency of PAHs, when compared to other ionization sources, the complexity of the fossil oils reduces the probability of ionizing lower-concentration compounds during direct infusion. When gas chromatography precedes APLI-FT-ICR MS, an increase (more than 2-fold) in the ionization efficiency and an increase in the signal-to-noise ratio of lower-concentration fractions are observed, giving better molecular coverage in the m/z 100-450 range. That is, the use of GC prior to APLI-FT-ICR MS resulted in higher molecular coverage, higher sensitivity, and the ability to separate and characterize molecular isomers, while maintaining the ultrahigh resolution and mass accuracy of the FT-ICR MS separation.
Collapse
Affiliation(s)
- Paolo Benigni
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - J. Daniel DeBord
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | | | - Piero Gardinali
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Southeast Environmental Research Center (SERC), Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
29
|
Guo S, Zhang F, Wang H, Zhang M, Zhang Z, Zhang X, Guo Y. Behaviors of Leucine and Isoleucine in Ion Mobility-Quadrupole Time of Flight Mass Spectrometry. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201500670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
30
|
Thevis M, Dib J, Thomas A, Höppner S, Lagojda A, Kuehne D, Sander M, Opfermann G, Schänzer W. Complementing the characterization ofin vivogeneratedN-glucuronic acid conjugates of stanozolol by collision cross section computation and analysis. Drug Test Anal 2015; 7:1050-6. [DOI: 10.1002/dta.1907] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA); Cologne/Bonn Germany
| | - Josef Dib
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| | - Andreas Thomas
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| | - Sebastian Höppner
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| | - Andreas Lagojda
- Bayer CropScience AG; Alfred-Nobel-Str. 50 40789 Monheim Germany
| | - Dirk Kuehne
- Bayer CropScience AG; Alfred-Nobel-Str. 50 40789 Monheim Germany
| | - Mark Sander
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| | - Georg Opfermann
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| |
Collapse
|
31
|
Islam A, Kim D, Yim UH, Shim WJ, Kim S. Structure-dependent degradation of polar compounds in weathered oils observed by atmospheric pressure photo-ionization hydrogen/deuterium exchange ultrahigh resolution mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2015; 296:93-100. [PMID: 25913675 DOI: 10.1016/j.jhazmat.2015.04.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/01/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
The resin fractions of fresh mixtures of three oils spilled during the M/V Hebei Spirit oil spill, as well as weathered oils collected at weathering stages II and IV from the oil spill site were analyzed and compared by atmospheric pressure photo-ionization hydrogen/deuterium exchange mass spectrometry (HDX MS). The significantly decreased abundance of N(+) and [N-H+D](+) ions suggested that secondary and tertiary amine-containing compounds were preferentially degraded during the early stage of weathering. [N+H](+) and [N+D](+) ions previously attributed to pyridine-type compounds degraded more slowly than secondary and tertiary amine-containing compounds. The preferential degradation of nitrogen-containing compounds was confirmed by photo-degradation experiments using 15 standard compounds. In addition, significant increases of [S1O1+H](+) and [S1O1+D](+) ions with higher DBE values were observed from fresh oil mixtures as compared to stages II and IV samples, and that could be linked with the decrease of higher DBE compounds of the S1 class. This study presented convincing arguments and evidence demonstrating that secondary and tertiary amines were more vulnerable to photo-degradation than compounds containing pyridine, and hence, preferential degradation depending on chemical structures must be considered in the production of hazardous or toxic components.
Collapse
Affiliation(s)
- Ananna Islam
- Kyungpook National University, Department of Chemistry, Daegu 702-701, Republic of Korea
| | - Donghwi Kim
- Kyungpook National University, Department of Chemistry, Daegu 702-701, Republic of Korea
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, KIOST, Geoje 656-834, Republic of Korea
| | - Won Joon Shim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, KIOST, Geoje 656-834, Republic of Korea
| | - Sunghwan Kim
- Kyungpook National University, Department of Chemistry, Daegu 702-701, Republic of Korea; Green Nano Center, Department of Chemistry, Daegu 702-701, Republic of Korea.
| |
Collapse
|
32
|
Acter T, Cho Y, Kim S, Ahmed A, Kim B, Kim S. Optimization and Application of APCI Hydrogen-Deuterium Exchange Mass Spectrometry (HDX MS) for the Speciation of Nitrogen Compounds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1522-31. [PMID: 26115964 DOI: 10.1007/s13361-015-1166-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 05/26/2023]
Abstract
A systematic study was performed to investigate the utility of atmospheric pressure chemical ionization hydrogen-deuterium exchange mass spectrometry (APCI HDX MS) to identify the structures of nitrogen-containing aromatic compounds. First, experiments were performed to determine the optimized experimental conditions, with dichloromethane and CH(3)OD found to be good cosolvents for APCI HDX. In addition, a positive correlation between the heated capillary temperature and the observed HDX signal was observed, and it was suggested that the HDX reaction occurred when molecules were contained in the solvent cluster. Second, 20 standard nitrogen-containing compounds were analyzed to investigate whether speciation could be determined based on the different types of ions produced from nitrogen-containing compounds with various functional groups. The number of exchanges occurring within the compounds correlated well with the number of active hydrogen atoms attached to nitrogen, and it was confirmed that APCI HDX MS could be used to determine speciation. The results obtained by APCI HDX MS were combined with the subsequent investigation of the double bond equivalence distribution and indicated that resins of shale oil extract contained mostly pyridine type nitrogen compounds. This study confirmed that APCI HDX MS can be added to previously reported chemical ionization, electrospray ionization, and atmospheric pressure photo ionization-based HDX methods, which can be used for structural elucidation by mass spectrometry.
Collapse
Affiliation(s)
- Thamina Acter
- Department of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
33
|
Cho Y, Ahmed A, Islam A, Kim S. Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics. MASS SPECTROMETRY REVIEWS 2015; 34:248-263. [PMID: 24942384 DOI: 10.1002/mas.21438] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 11/25/2013] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
Because of the increasing importance of heavy and unconventional crude oil as an energy source, there is a growing need for petroleomics: the pursuit of more complete and detailed knowledge of the chemical compositions of crude oil. Crude oil has an extremely complex nature; hence, techniques with ultra-high resolving capabilities, such as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), are necessary. FT-ICR MS has been successfully applied to the study of heavy and unconventional crude oils such as bitumen and shale oil. However, the analysis of crude oil with FT-ICR MS is not trivial, and it has pushed analysis to the limits of instrumental and methodological capabilities. For example, high-resolution mass spectra of crude oils may contain over 100,000 peaks that require interpretation. To visualize large data sets more effectively, data processing methods such as Kendrick mass defect analysis and statistical analyses have been developed. The successful application of FT-ICR MS to the study of crude oil has been critically dependent on key developments in FT-ICR MS instrumentation and data processing methods. This review offers an introduction to the basic principles, FT-ICR MS instrumentation development, ionization techniques, and data interpretation methods for petroleomics and is intended for readers having no prior experience in this field of study.
Collapse
Affiliation(s)
- Yunju Cho
- Department of Chemistry, Kyungpook National University, Daegu, 702-701, Korea
| | | | | | | |
Collapse
|
34
|
Maurer MM, Donohoe GC, Valentine SJ. Advances in ion mobility-mass spectrometry instrumentation and techniques for characterizing structural heterogeneity. Analyst 2015; 140:6782-98. [PMID: 26114255 DOI: 10.1039/c5an00922g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enabling IM-MS instrumentation and techniques for characterizing sample structural heterogeneity have developed rapidly over the last five years.
Collapse
Affiliation(s)
- Megan M. Maurer
- C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | - Gregory C. Donohoe
- C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | | |
Collapse
|
35
|
Castellanos A, Benigni P, Hernandez DR, DeBord JD, Ridgeway ME, Park MA, Fernandez-Lima F. Fast Screening of Polycyclic Aromatic Hydrocarbons using Trapped Ion Mobility Spectrometry - Mass Spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:9328-9332. [PMID: 25558291 PMCID: PMC4280789 DOI: 10.1039/c4ay01655f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the present paper, we showed the advantages of trapped ion mobility spectrometry coupled too mass spectrometry (TIMS-MS) combined with theoretical calculations for fast identification (millisecond timescale) of polycyclic aromatic hydrocarbons (PAH) compounds from complex mixtures. Accurate PAH collision cross sections (CCS, in nitrogen as a bath gas) are reported for the most commonly encountered PAH compounds and the ability to separate PAH geometric isomers is shown for three isobaric pairs with mobility resolution exceeding 150 (3-5 times higher than conventional IMS devices). Theoretical candidate structures (optimized at the DFT/B3LYP level) are proposed for the most commonly encountered PAH compounds showing good agreement with the experimental CCS values (<5%). The potential of TIMS-MS for the separation and identification of PAH compounds from complex mixtures without the need of lengthy pre-separation steps is illustrated for the case of a complex soil mixture.
Collapse
Affiliation(s)
- A Castellanos
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - P Benigni
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - D R Hernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - J D DeBord
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - M E Ridgeway
- Bruker Daltonics, Inc., Billerica, Massachusetts 01821, USA
| | - M A Park
- Bruker Daltonics, Inc., Billerica, Massachusetts 01821, USA
| | - F Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|