1
|
Ma Y, Sella C, Thouin L. Electrochemiluminescence in Microfluidic Channels: Influence of Mass Transport on the Tris(2,2'-bipyridyl)ruthenium(II)/Tripropylamine System at Semitransparent Electrodes. Anal Chem 2024; 96:14650-14659. [PMID: 39180508 DOI: 10.1021/acs.analchem.4c03344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Mass transport in laminar flow can improve the electrochemiluminescence (ECL) performance at the microchannel electrodes, depending on the device geometry and operating regimes. The known Ru(bpy)32+/tripropylamine (TPA) system was selected and studied in continuous microfluidics on semitransparent platinum electrodes. With this electrode material, ECL is mainly generated via a catalytic pathway. This mechanism was characterized under flow conditions by monitoring the ECL emission using linear sweep voltammetry and chronoamperometry. In parallel, ECL imaging of the electrode surface was conducted in order to characterize the ECL profiles above the electrode in the flow direction. Numerical simulations were carried out and then compared to experimental data to both confirm the ECL mechanism and assess the main kinetic parameters. A good agreement was obtained, demonstrating the influence of the operating regimes of the microchannel electrodes on the ECL performances. In the thin-layer regime, due to TPA depletion, ECL is located at the upstream edge of the electrode, while it is homogeneously distributed over the electrode surface in convective regimes. These characteristics will necessarily have to be taken into account in the design of dedicated ECL analytical microfluidic devices operating under continuous flow.
Collapse
Affiliation(s)
- Yumeng Ma
- PASTEUR, Département de chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Catherine Sella
- PASTEUR, Département de chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Laurent Thouin
- PASTEUR, Département de chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
2
|
Clark MJ, Moser HJ, Anand RK. Dielectrophoretic capture and electrochemical enzyme-linked immunosorbent assay of single melanoma cells at an array of interlocked spiral bipolar electrodes. ChemElectroChem 2024; 11:e202400182. [PMID: 39483376 PMCID: PMC11526340 DOI: 10.1002/celc.202400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 11/03/2024]
Abstract
Analysis of single cancer cells is critical to obtain accurate patient diagnosis and prognosis. In this work, we report the selective dielectrophoretic capture and electrochemical analysis of single melanoma cells at an array of interlocked spiral bipolar electrodes (iBPEs). Following dielectrophoretic capture, individual melanoma cells are hydrodynamically transferred into picoliter-scale chambers for subsequent analysis. The interlocked spiral end of the iBPE (the sensing pole) is utilized to read out an electrochemical enzyme-linked immunosorbent assay (eELISA), which quantifies the expression of a cell surface antigen, melanoma cell adhesion marker (MCAM). The opposite pole of each BPE is located in a fluidically isolated compartment containing reagents for electrogenerated chemiluminescence (ECL), such that luminescence reports iBPE current. In a preliminary device design, the ECL intensity was insufficient to detect MCAM expression on single cells. To achieve single-cell analysis, we decreased the gap size between the interlocked spirals tenfold (5.0 μm to 0.5 μm), thereby creating a more sensitive biosensor by enhanced redox cycling of the product of eELISA. This work is significant because it allows for the selective isolation and sensitive analysis of individual melanoma cells in a device amenable to point-of-care (POC) application by combining dielectrophoresis (DEP) with interdigitated bipolar electrodes (IDBPEs).
Collapse
Affiliation(s)
- Morgan J Clark
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| | - Hanna J Moser
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| |
Collapse
|
3
|
Han S, Lee HJ, Kim T, Lim SY, Kim J. Flexible and Dynamic Light-Guided Electrochemiluminescence for Spatiotemporal Imaging of Photoelectrochemical Processes on Hematite. Anal Chem 2024; 96:11146-11154. [PMID: 38917341 DOI: 10.1021/acs.analchem.3c05097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Here, we report an electrochemiluminescence (ECL)-based approach for imaging of local photoelectrochemical processes on hematite in a spatially and temporally controlled manner. The local processes were guided by flexible and dynamic light illumination, not requiring any prepatterned conductive features or photomasks, with a digital micromirror device (DMD). The imaging approach was based on light-addressable electrochemical reactions on hematite, resulting in photoinduced ECL emission for spatiotemporally resolved imaging of photoelectrochemical processes selectively guided by light illumination. After clarifying the capability of hematite as a photosensitive electrode, we validated that the illuminated hematite exhibited stable light-guided ECL emission in correspondence with the illuminated area, with a spatial resolution of 0.8 μm and a temporal resolution of 1 μs, even over a long period of 6 h. More importantly, this study exemplified the simple yet effective ECL-based approach for electrochemical visualization of local photoelectrochemical processes guided by flexible and dynamic adjustment of light illumination in a spatiotemporally controlled way.
Collapse
Affiliation(s)
- Sungeun Han
- Department of Chemistry, Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Joo Lee
- Department of Chemistry, Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Taeyoon Kim
- Department of Chemistry, Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Yul Lim
- Department of Chemistry, Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Qu W, Yang X, Huang X, Guo W, Dai Z. Electrochemiluminescence of iridium(III)/ruthenium(II) complexes with naphthyl tags in solutions and host-guest thin films. Dalton Trans 2024; 53:5284-5290. [PMID: 38410928 DOI: 10.1039/d3dt03922f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Herein we report electrochemiluminescence (ECL) generation from three new iridium(III)/ruthenium(II) (Ir(III)/Ru(II)) complexes with naphthyl (nap) tags in solutions and host-guest thin films. In comparison with its parent structure, the addition of a nap tag to [4-(2-naphthalenyl)-1,10-phenanthroline]bis(2,2'-bipyridine)ruthenium(II) results in a 6.1-fold enhancement in the ECL efficiency. Moreover, the nap tag enables the non-covalent immobilization of Ir(III)/Ru(II) complexes via host-guest interactions. Therefore, a molecular thin film was constructed by hydrophobic effects between the cavity of β-cyclodextrin and the nap tags, which emits stable and strong ECL emission in the presence of tri-n-propylamine (TPrA). These results give a mechanistic insight into ECL generation from (Ir(III)/Ru(II)) complexes with host-guest recognition tags and may help in the development of host-guest thin film-based ECL sensors.
Collapse
Affiliation(s)
- Weiyu Qu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xinrui Yang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaojin Huang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
He Z, Wang H, Liu W, Sun J, Huang J, Han J, Li B, Xu R, Zhang Y, Hua J, Guo Y, Lu F, Shi C. A novel self-enhanced electrochemiluminescent aptamer sensor based on ternary nanocomposite PEI/RuSi-MWCNTs for the detection of profenofos residues in vegetables. Heliyon 2024; 10:e25167. [PMID: 38333799 PMCID: PMC10850902 DOI: 10.1016/j.heliyon.2024.e25167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
In this work, a novel ternary nanocomposite of PEI/RuSi-MWCNTs was designed and synthesized for the first time, which an ultrasensitive and self-enhanced electrochemiluminescent (ECL) aptasensor was developed for the detection of profenofos residues in vegetables. The self-enhanced complex PEI-Ru (II) enhanced the emission and stability of ECL, and the multi-walled carbon nanotubes (MWCNTs) acted as an excellent carrier and signal amplification. The PEI/RuSi-MWCNTs were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS). The incorporation of gold nanoparticles (AuNPs) improved the performance of the sensor and provided a platform for the immobilization of the aptamer. The results of the experiment showed that the presence of profenofos significantly suppressed the electrochemiluminescence intensity of the sensor. The detection sensitivity of the aptamer sensor was in the range of 1 × 10-2 to 1 × 103 ng/mL. Under optimal conditions, the limit of detection (LOD) of the sensor for profenofos was 1.482 × 10-3 ng/mL. The sensor had excellent stability, reproducibility and specificity. The recoveries of the sensor ranged from 92.29 % to 106.47 % in real sample tests.
Collapse
Affiliation(s)
- Zhenying He
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Wenzheng Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Baoxin Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Rui Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Yuhao Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jin Hua
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Fangyuan Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
6
|
Lee H, Kim J, Hwang M, Kim J. Galvanic Bipolar Electrode Arrays with Self-Driven Optical Readouts. ACS Sens 2023; 8:4374-4383. [PMID: 37857596 DOI: 10.1021/acssensors.3c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
In this work, we report a bipolar electrode (BPE) array system with self-driven optical readouts of the faradic current flowing through the BPEs. The BPE array system is based on the spontaneous redox reactions that are respectively occurring at opposite poles of the BPEs with appropriate electrocatalysts on the poles; this system is analogous to one consisting of galvanic electrochemical cells. The galvanic BPE array system operates in a self-powered mode that requires there to be neither a direct electrical connection nor external electrical polarization to each BPE. Importantly, the appropriate electrocatalysts on the poles play a critical role in the galvanic BPE array system to induce the spontaneous redox reactions occurring at the poles of BPEs. Moreover, the galvanic BPE array system provides self-driven optical readouts, including fluorometric and colorimetric ones, to report the faradaic current resulting from the spontaneous redox reactions on the BPE poles. Based on the unique benefits that the galvanic BPE array system has over conventional BPEs, we demonstrated the promising potential of galvanic BPE arrays for the simple yet rapid and quantitative screening of electrocatalysts for the oxygen reduction reaction as well as sensitive sensing of H2O2 in parallel.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiwoo Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Misol Hwang
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Feng D, Xiao M, Yang P. A Sensitive Electrochemiluminescence Urea Sensor for Dynamic Monitoring of Urea Transport in Living Cells. Anal Chem 2023; 95:766-773. [PMID: 36525268 DOI: 10.1021/acs.analchem.2c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A multiple signal-amplified electrochemiluminescence (ECL) urea sensor was designed based on a self-enhanced probe and SiO2 photonic crystals for dynamic tracking of urea transmembrane transport. The self-enhanced probe (AuNR@Ru-LA) prepared by loading polyethyleneimine (PEI), lactobionic acid (LA), and Ru(dcbpy)32+ on gold nanorods (AuNRs) generated an initial ECL signal, and then the intensity was multiple-amplified by the enhanced light-scattering effect of SiO2 photonic crystals and the co-reaction with urea. The as-prepared sensor exhibited excellent performance for the detection of urea in the range of 1.0 × 10-10 to 1.0 × 10-4 M with a detection limit of 8.8 × 10-11 M at (3σ)/S. The AuNR@Ru-LA probes were labeled on HepG2 cells to construct a cytosensor with a detection range of 1.0 × 103 to 2.0 × 106 cells mL-1. In addition, the dynamic changes of the extracellular urea concentration were tracked by monitoring the ECL signal of the cytosensor to study urea transmembrane transport. The developed strategy realized the amplification of multiple ECL signals and the tracking of urea transmembrane transport, which provided a novel dynamic detection method for small biomolecules.
Collapse
Affiliation(s)
- Defen Feng
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong511443, China
| | - Mingxing Xiao
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong511443, China
| | - Peihui Yang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong511443, China
| |
Collapse
|
8
|
Lin LH, Wang JY, You CY, Qiu LH, Lin JS, Zhang FL, Yang ZL, Zhang YJ, Chen X, Li JF. Shell-Isolated Nanoparticle-Enhanced Electrochemiluminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203513. [PMID: 36008122 DOI: 10.1002/smll.202203513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Enhanced electrochemiluminescence (ECL) aims to promote higher sensitivity and obtain better detection limit. The core-shell nanostructures, owing to unique surface plasmon resonance (SPR) enabling distance-dependent strong localized electromagnetic field, have attracted rising attention in enhanced ECL research and application. However, the present structures usually with porous shell involve electrocatalytic activity from the metal core and adsorption effect from the shell, which interfere with practical SPR enhancement contribution to ECL signal. Herein, to exclude the interference and unveil exact SPR-enhanced effect, shell-isolated nanoparticles (SHINs) whose shell gets thicker and becomes pinhole-free are developed by modifying pH value and particles concentration. Furthermore, allowing for the distribution of hotspots and stronger enhancement, excitation intensity and ECL reaction layer thickness are mainly investigated, and several types of SHINs-enhanced ECL platforms are prepared to fabricate distinct hotspot distribution via electrostatic attraction (submonolayer) and a layer-by-layer deposition method (monolayer). Consequently, the strongest enhancement up to ≈250-fold is achieved by monolayer SHINs with 10 nm shell, and the platform is applied in a "turn-off" mode sensing for dopamine. The platform provides new guidelines to shell preparation, interface engineering and hotspots fabrication for superior ECL enhancement and analytical application with high performance.
Collapse
Affiliation(s)
- Long-Hui Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Jing-Yu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Chao-Yu You
- Intelligent Wearable Engineering Research Center of Qingdao, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266003, China
| | - Ling-Hang Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Jia-Sheng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Fan-Li Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Zhi-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Xi Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
9
|
Chi H, Li Y, Liu G. Molecularly imprinted sensing platform based on electrochemically modified graphite paper for efficient detection of 3-monochloropropane-1,2-diol. Food Chem 2022; 386:132829. [PMID: 35364492 DOI: 10.1016/j.foodchem.2022.132829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/04/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022]
Abstract
In this study, a molecularly imprinted polymer (MIP) electrochemical sensor based on electrochemically modified graphite paper (EM-GP) was developed for the detection of 3-MCPD for the first time. To this end, Prussian blue (PB) was electrodeposited on EM-GP to yield uniformly distributed PtNPs. The successful preparation of Pt@PB/EM-GP was verified by SEM, Raman spectroscopy, XRD,XPS, and EDS. MIP was then prepared by CV electropolymerization with template molecules (3-MCPD), and density functional theory (DFT) at M06-2X/6-31 + g (d,p) level was used to calculate the molecular-level interaction between 3-MCPD and MIP. Under the optimum conditions, the dynamic linear range of the sensing platform varied from 1 × 10-8mol/L to 5 × 10-5mol/L with a detection limit estimated to 5 × 10-9 mol/L (S/N = 3). Overall, these findings look promising for the construction of selective and quick detection platforms of 3-MCPD in food samples.
Collapse
Affiliation(s)
- Hai Chi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yujie Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
10
|
Hua Y, Ahmadi Y, Sonne C, Kim KH. Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119218. [PMID: 35364185 DOI: 10.1016/j.envpol.2022.119218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Mycotoxin is toxic secondary metabolite formed by certain filamentous fungi. This toxic compound can enter the food chain through contamination of food (e.g., by colonization of toxigenic fungi on food). In light of the growing concerns on the health hazards posed by mycotoxins, it is desirable to develop reliable analytical tools for their detection in food products in both sensitive and efficient manner. For this purpose, the potential utility of molecularly imprinted polymers (MIPs) has been explored due to their meritful properties (e.g., large number of tailor-made binding sites, sensitive template molecules, high recognition specificity, and structure predictability). This review addresses the recent advances in the application of MIPs toward the sensing of various mycotoxins (e.g., aflatoxins and patulin) along with their fabrication strategies. Then, performance evaluation is made for various types of MIP- and non-MIP-based sensing platforms built for the listed target mycotoxins in terms of quality assurance such as limit of detection (LOD). Further, the present challenges in the MIP-based sensing application of mycotoxins are discussed along with the future outlook in this research field.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
11
|
|
12
|
Woo J, Kim J, Kim J. Indium tin oxide bipolar electrodes modified with Pt nanoparticles encapsulated inside dendrimers as sensitive electrochemiluminescence platforms. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Kim J, Kim J. Electrochemically induced deposition of hydroxyl‐terminated poly(amidoamine) dendrimers encapsulating Pt nanoparticles on indium tin oxide for enhanced electrochemiluminescence. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jiwoo Kim
- Department of Chemistry, Research Institute for Basic Sciences Kyung Hee University Seoul South Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences Kyung Hee University Seoul South Korea
- KHU‐KIST Department of Converging Science and Technology Kyung Hee University Seoul South Korea
| |
Collapse
|
14
|
Borchers JS, Campbell CR, Van Scoy SB, Clark MJ, Anand RK. Redox Cycling at an Array of Interdigitated Bipolar Electrodes for Enhanced Sensitivity in Biosensing**. ChemElectroChem 2021. [DOI: 10.1002/celc.202100523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Janis S. Borchers
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Claire R. Campbell
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Savanah B. Van Scoy
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Morgan J. Clark
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Robbyn K. Anand
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| |
Collapse
|
15
|
Ju Y, Ro HJ, Yi YS, Cho T, Kim SI, Yoon CW, Jun S, Kim J. Three-Dimensional TEM Study of Dendrimer-Encapsulated Pt Nanoparticles for Visualizing Structural Characteristics of the Whole Organic-Inorganic Hybrid Nanostructure. Anal Chem 2021; 93:2871-2878. [PMID: 33455155 DOI: 10.1021/acs.analchem.0c04264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Here, we report three-dimensional (3-D) visualization of dendrimer-encapsulated Pt nanoparticles (Pt DENs) by using 3-D electron tomography to reveal intricate structural characteristics of their whole organic-inorganic hybrid nanostructure. We reconstructed the 3-D spatial volume of Pt DENs by back-projecting a tilt series of two-dimensional (2-D) projections of Pt nanoparticles encapsulated inside dendrimers negatively stained with uranyl acetate. The direct 3-D visualization of Pt DENs elucidated their encapsulation characteristics with the spatial imaging of Pt nanoparticles embraced inside dendrimers in three dimensions. The encapsulation characteristics of Pt DENs were further verified with selective electrochemical poisoning experiments. In addition, quantitative 3-D structural characterization of Pt DENs provided more accurate and precise size distributions of nanoparticles than those obtained from conventional 2-D transmission electron microscopy analysis relying only on a 3-D structure projected on a 2-D plane.
Collapse
Affiliation(s)
- Youngwon Ju
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun-Joo Ro
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yoon-Sun Yi
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Taehoon Cho
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Il Kim
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Chang Won Yoon
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02447, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
16
|
Zhi LJ, Sun AL. Platinum nanozyme-encapsulated poly(amidoamine) dendrimer for voltammetric immunoassay of pro-gastrin-releasing peptide. Anal Chim Acta 2020; 1134:106-114. [DOI: 10.1016/j.aca.2020.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
|
17
|
Huang Z, Li Z, Xu L, Wei C, Zhu C, Deng H, Peng H, Xia X, Chen W. Mechanistic Insight into a Novel Ultrasensitive Nicotine Assay Base on High-Efficiency Quenching of Gold Nanocluster Cathodic Electrochemiluminescence. Anal Chem 2020; 92:11438-11443. [PMID: 32691587 DOI: 10.1021/acs.analchem.0c02500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monitoring nicotine concentrations in human fluids is extremely crucial owing to the harmful effect of nicotine on human health. Herein, it is shown that nicotine could quench the cathodic electrochemiluminescence (ECL) of gold nanoclusters (AuNCs) with high efficiency. The ECL quenching mechanism of nicotine was studied in detail using various experimental tools and theoretical calculations. It was concluded that the strongly oxidizing intermediate SO4•-, produced from K2S2O8, could oxidized nicotine, resulting in ECL emission quenching. On the basis of this high-efficiency ECL quenching of the AuNCs/K2S2O8 system, a recyclable, ultrasensitive, and selective ECL sensing platform for nicotine detection was proposed. Even in the absence of any complex signal amplification techniques, the ECL sensor for nicotine detection showed an unprecedentedly low detection limit of 7.0 × 10-13 M (S/N = 3) and a wide linear range over 8 orders of magnitude. Most remarkably, it could be successfully used for nicotine detection in human urine samples. This is expected to promote the investigations and applications on nicotine-related diseases. We believe that the proposed ECL platform can hold great prospects for commercialization in biomedical fields and tobacco industries.
Collapse
Affiliation(s)
- Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Zhenglian Li
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Luyao Xu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Chaoguo Wei
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Chenting Zhu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Xinghua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
18
|
Ding H, Guo W, Zhou P, Su B. Nanocage-confined electrochemiluminescence for the detection of dopamine released from living cells. Chem Commun (Camb) 2020; 56:8249-8252. [PMID: 32558869 DOI: 10.1039/d0cc03370g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein we report an electrochemiluminescent nanocage array (ENA) in which luminophores are physically confined. The ENA can function as a solid sensor for the detection of dopamine released from living cells on the basis of its quenching effect on the ECL signal.
Collapse
Affiliation(s)
- Hao Ding
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|
19
|
Pan D, Fang Z, Yang E, Ning Z, Zhou Q, Chen K, Zheng Y, Zhang Y, Shen Y. Facile Preparation of WO 3-x Dots with Remarkably Low Toxicity and Uncompromised Activity as Co-reactants for Clinical Diagnosis by Electrochemiluminescence. Angew Chem Int Ed Engl 2020; 59:16747-16754. [PMID: 32524717 DOI: 10.1002/anie.202007451] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 01/26/2023]
Abstract
The exceptional nature of WO3-x dots has inspired widespread interest, but it is still a significant challenge to synthesize high-quality WO3-x dots without using unstable reactants, expensive equipment, and complex synthetic processes. Herein, the synthesis of ligand-free WO3-x dots is reported that are highly dispersible and rich in oxygen vacancies by a simple but straightforward exfoliation of bulk WS2 and a mild follow-up chemical conversion. Surprisingly, the WO3-x dots emerged as co-reactants for the electrochemiluminescence (ECL) of Ru(bpy)3 2+ with a comparable ECL efficiency to the well-known Ru(bpy)3 2+ /tripropylamine (TPrA) system. Moreover, compared to TPrA, whose toxicity remains a critical issue of concern, the WO3-x dots were ca. 300-fold less toxic. The potency of WO3-x dots was further explored in the detection of circulating tumor cells (CTCs) with the most competitive limit of detection so far.
Collapse
Affiliation(s)
- Deng Pan
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China.,Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhengzou Fang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Erli Yang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Zhenqiang Ning
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Qing Zhou
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Kaiyang Chen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yongjun Zheng
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
20
|
Pan D, Fang Z, Yang E, Ning Z, Zhou Q, Chen K, Zheng Y, Zhang Y, Shen Y. Facile Preparation of WO
3−
x
Dots with Remarkably Low Toxicity and Uncompromised Activity as Co‐reactants for Clinical Diagnosis by Electrochemiluminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Deng Pan
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Zhengzou Fang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Erli Yang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Zhenqiang Ning
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Qing Zhou
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Kaiyang Chen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yongjun Zheng
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yuanjian Zhang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yanfei Shen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| |
Collapse
|
21
|
Xiao Y, Chen S, Zhang G, Li Z, Xiao H, Chen C, He C, Zhang R, Yang X. Simple and rapid nicotine analysis using a disposable silica nanochannel-assisted electrochemiluminescence sensor. Analyst 2020; 145:4806-4814. [PMID: 32588848 DOI: 10.1039/d0an00588f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nicotine analysis is essential to medicine, toxicology and the tobacco industry. However, no simple, portable and disposable method was developed to meet their demands. Here, we report a simple, rapid and disposable silica nanochannel (SAN)-based electrochemiluminescence (ECL) sensor for nicotine analysis by simply assembling a SAN electrode with a paper cover. The sensing principle of the disposable sensor is based on the size exclusion effect and charge selectivity, which obviously prolong the sensor service time. We find that the sensor exhibits good specificity to nicotine, and most of the complex matrices are unlikely to impact the detection. The performance of the disposable sensor in cigarettes, e-cigarettes, nicotine gums, and lozenges is fully validated, showing satisfactory linearity, sensitivity (a limit of detection of 27.82 nM), and accuracy (a recovery between 96.00% and 106.51%). The disposable sensor can be potentially applied for on-site nicotine analysis.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China. and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, China
| | - Suhua Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China. and Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, China
| | - Guocan Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Zhimao Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Han Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Chunlian He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Ran Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| |
Collapse
|
22
|
Defnet PA, Zhang B. Detection of Transient Nanoparticle Collision Events Using Electrochemiluminescence on a Closed Bipolar Microelectrode. ChemElectroChem 2020. [DOI: 10.1002/celc.201901734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Peter A. Defnet
- Department of Chemistry University of Washington Seattle, Washington 98195 United States
| | - Bo Zhang
- Department of Chemistry University of Washington Seattle, Washington 98195 United States
| |
Collapse
|
23
|
Recent advances in electrochemiluminescence imaging analysis based on nanomaterials and micro-/nanostructures. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Ju Y, Park HJ, Shin IS, Chung YK, Kim J. Highly efficient low-oxidation-potential electrochemiluminescence of ruthenium(II) complex containing selone moiety. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Nakamura R, Narikiyo H, Gon M, Tanaka K, Chujo Y. Oxygen-Resistant Electrochemiluminescence System with Polyhedral Oligomeric Silsesquioxane. Polymers (Basel) 2019; 11:polym11071170. [PMID: 31295820 PMCID: PMC6680606 DOI: 10.3390/polym11071170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022] Open
Abstract
We report the oxygen-resistant electrochemiluminescence (ECL) system from the polyhedral oligomeric silsesquioxane (POSS)-modified tris(2,2'-bipyridyl)ruthenium(II) complex (Ru-POSS). In electrochemical measurements, including cyclic voltammetry (CV), it is shown that electric current and ECL intensity increase in the mixture system containing Ru-POSS and tripropylamine (TPrA) on the indium tin oxide (ITO) working electrode. The lower onset potential (Eonset) in CV is observed with Ru-POSS compared to tris(2,2'-bipyridyl)ruthenium(II) complex (Ru(bpy)32+). From the series of mechanistic studies, it was shown that adsorption of Ru-POSS onto the ITO electrode enhances TPrA oxidation and subsequently the efficiency of ECL with lower voltage. Moreover, oxygen quenching of ECL was suppressed, and it is proposed that the enhancement to the production of the TPrA radical could contribute to improving oxygen resistance. Finally, the ECL-based detection for water pollutant is demonstrated without the degassing treatment. The commodity system with Ru(bpy)32+ is not applicable in the absence of degassing with the sample solutions due to critical signal suppression, meanwhile the present system based on Ru-POSS was feasible for estimating the amount of the target even under aerobic conditions by fitting the ECL intensity to the standard curve. One of critical disadvantages of ECL can be solved by the hybrid formation with POSS.
Collapse
Affiliation(s)
- Ryota Nakamura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hayato Narikiyo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
26
|
Highly stable Ru-complex-grafted 2D metal-organic layer with superior electrochemiluminescent efficiency as a sensing platform for simple and ultrasensitive detection of mucin 1. Biosens Bioelectron 2019; 135:95-101. [DOI: 10.1016/j.bios.2019.03.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
|
27
|
Han Z, Yang Z, Sun H, Xu Y, Ma X, Shan D, Chen J, Huo S, Zhang Z, Du P, Lu X. Electrochemiluminescence Platforms Based on Small Water‐Insoluble Organic Molecules for Ultrasensitive Aqueous‐Phase Detection. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814507] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zhaofan Yang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Heshui Sun
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Yali Xu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Xiaofang Ma
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Duoliang Shan
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Jing Chen
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Shuhui Huo
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
28
|
Han Z, Yang Z, Sun H, Xu Y, Ma X, Shan D, Chen J, Huo S, Zhang Z, Du P, Lu X. Electrochemiluminescence Platforms Based on Small Water‐Insoluble Organic Molecules for Ultrasensitive Aqueous‐Phase Detection. Angew Chem Int Ed Engl 2019; 58:5915-5919. [DOI: 10.1002/anie.201814507] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/01/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zhaofan Yang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Heshui Sun
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Yali Xu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Xiaofang Ma
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Duoliang Shan
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Jing Chen
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Shuhui Huo
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
29
|
Shin W, Wu A, Massidda MW, Foster C, Thomas N, Lee DW, Koh H, Ju Y, Kim J, Kim HJ. A Robust Longitudinal Co-culture of Obligate Anaerobic Gut Microbiome With Human Intestinal Epithelium in an Anoxic-Oxic Interface-on-a-Chip. Front Bioeng Biotechnol 2019; 7:13. [PMID: 30792981 PMCID: PMC6374617 DOI: 10.3389/fbioe.2019.00013] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/18/2019] [Indexed: 01/01/2023] Open
Abstract
The majority of human gut microbiome is comprised of obligate anaerobic bacteria that exert essential metabolic functions in the human colon. These anaerobic gut bacteria constantly crosstalk with the colonic epithelium in a mucosal anoxic-oxic interface (AOI). However, in vitro recreation of the metabolically mismatched colonic AOI has been technically challenging. Furthermore, stable co-culture of the obligate anaerobic commensal microbiome and epithelial cells in a mechanically dynamic condition is essential for demonstrating the host-gut microbiome crosstalk. Here, we developed an anoxic-oxic interface-on-a-chip (AOI Chip) by leveraging a modified human gut-on-a-chip to demonstrate a controlled oxygen gradient in the lumen-capillary transepithelial interface by flowing anoxic and oxic culture medium at various physiological milieus. Computational simulation and experimental results revealed that the presence of the epithelial cell layer and the flow-dependent conditioning in the lumen microchannel is necessary and sufficient to create the steady-state vertical oxygen gradient in the AOI Chip. We confirmed that the created AOI does not compromise the viability, barrier function, mucin production, and the expression and localization of tight junction proteins in the 3D intestinal epithelial layer. Two obligate anaerobic commensal gut microbiome, Bifidobacterium adolescentis and Eubacterium hallii, that exert metabolic cross-feeding in vivo, were independently co-cultured with epithelial cells in the AOI Chip for up to a week without compromising any cell viability. Our new protocol for creating an AOI in a microfluidic gut-on-a-chip may enable to demonstrate the key physiological interactions of obligate anaerobic gut microbiome with the host cells associated with intestinal metabolism, homeostasis, and immune regulation.
Collapse
Affiliation(s)
- Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin Austin, TX, United States
| | - Alexander Wu
- Department of Biomedical Engineering, The University of Texas at Austin Austin, TX, United States
| | - Miles W Massidda
- Department of Biomedical Engineering, The University of Texas at Austin Austin, TX, United States
| | - Charles Foster
- Department of Biomedical Engineering, The University of Texas at Austin Austin, TX, United States
| | - Newin Thomas
- Department of Biomedical Engineering, The University of Texas at Austin Austin, TX, United States
| | - Dong-Woo Lee
- Department of Biotechnology, College of Life Science and Technology, Yonsei University, Seoul, South Korea
| | - Hong Koh
- Department of Pediatrics, Severance Fecal Microbiota Transplantation Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Youngwon Ju
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul, South Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin Austin, TX, United States.,Department of Medical Engineering, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
30
|
Ma L, Wu N, Liu Y, Ran X, Xiao D. Self-electrochemiluminescence of poly[9,9-bis(3‘-(N,N- dimethyl amino)propyl)-2,7-fluorene]-alt- 2,7-(9,9- dioctylfluorene)] and resonance energy transfer to aluminum tris(8-quinolinolate). Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Kotte MR, Kuvarega AT, Talapaneni SN, Cho M, Coskun A, Diallo MS. A Facile and Scalable Route to the Preparation of Catalytic Membranes with in Situ Synthesized Supramolecular Dendrimer Particle Hosts for Pt(0) Nanoparticles Using a Low-Generation PAMAM Dendrimer (G1-NH 2) as Precursor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33238-33251. [PMID: 30199628 DOI: 10.1021/acsami.8b11351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Since the first reports of Cu dendrimer-encapsulated nanoparticles (DENs) published in 1998, the dendrimer-templating method has become the best and most versatile method for preparing ultrafine metallic and bimetallic nanoparticles (1-3 nm) with well-defined compositions, high catalytic activity, and tunable selectivity. However, DENs have remained for the most part model systems with limited prospects for scale up and integration into high-performance and reusable catalytic modules and systems for industrial-scale applications. Here, we describe a facile and scalable route to the preparation of catalytic polyvinylidene fluoride (PVDF) membranes with in situ synthesized supramolecular dendrimer particles (SDPs) that can serve as hosts and containers for Pt(0) nanoparticles (2-3 nm). These new catalytic membranes were prepared using a reactive encapsulation process similar to that utilized to prepare Pt DENs by addition of a reducing agent (sodium borohydride) to aqueous complexes of Pt(II) + G4-OH/G6-OH polyamidoamine (PAMAM) dendrimers. However, the SDPs (2.4 μm average diameter) of our new mixed matrix PVDF-PAMAM membranes were synthesized in the dope dispersion without purification prior to film casting using (i) a low-generation PAMAM dendrimer (G1-NH2) as particle precursor and (ii) epichlorohydrin, an inexpensive functional reagent, as cross-linker. In addition, the membrane PAMAM particles contain secondary amine groups (∼1.9 mequiv per gram of dry membrane), which are more basic and thus have higher Pt binding affinity than the tertiary amine groups of the G4-OH and G6-OH PAMAM dendrimers. Proof-of-concept experiments show that our new PVDF-PAMAM-G1-Pt/membranes can serve as highly active and reusable catalysts for the hydrogenation of alkenes and alkynes to the corresponding alkanes using (i) H2 at room temperature and a pressure of 1 bar and (ii) low catalyst loadings of ∼1.4-1.6 mg of Pt. Using cyclohexene as model substrate, we observed near quantitative conversion to cyclohexane (∼98%). The regeneration studies showed that our new Pt/membrane catalysts are stable and can be reused for five consecutive reaction cycles for a total duration of 120 h including 60 h of heating at 100 °C under vacuum for substrate, product, and solvent removal with no detectable loss of cyclohexene hydrogenation activity. The overall results of our study point to a promising, versatile, and scalable path for the integration of catalytic membranes with in situ synthesized SDP hosts for Pt(0) nanoparticles into high-throughput modules and systems for heterogeneous catalytic hydrogenations, an important class of reactions that are widely utilized in industry to produce pharmaceuticals, agrochemicals, and specialty chemicals.
Collapse
Affiliation(s)
- Madhusudhana Rao Kotte
- Graduate School of EEWS (Energy, Environment, Water and Sustainability) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Alex T Kuvarega
- Nanotechnolgy and Water Sustainability Research Unit, College of Science, Engineering and Technology , University of South Africa (UNISA), UNISA Science Campus , 1709 Johannesburg , Republic of South Africa
| | - Siddulu N Talapaneni
- Graduate School of EEWS (Energy, Environment, Water and Sustainability) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Manki Cho
- Graduate School of EEWS (Energy, Environment, Water and Sustainability) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Ali Coskun
- Graduate School of EEWS (Energy, Environment, Water and Sustainability) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Mamadou S Diallo
- Graduate School of EEWS (Energy, Environment, Water and Sustainability) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
- Division of Chemistry and Chemical Engineering California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125 , United States
| |
Collapse
|
32
|
Zhang G, Shan D, Dong H, Cosnier S, Al-Ghanim KA, Ahmad Z, Mahboob S, Zhang X. DNA-Mediated Nanoscale Metal–Organic Frameworks for Ultrasensitive Photoelectrochemical Enzyme-Free Immunoassay. Anal Chem 2018; 90:12284-12291. [DOI: 10.1021/acs.analchem.8b03762] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | | | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Khalid Abdullah Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zubair Ahmad
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
33
|
Cho T, Yoon CW, Kim J. Repetitively Coupled Chemical Reduction and Galvanic Exchange as a Synthesis Strategy for Expanding Applicable Number of Pt Atoms in Dendrimer-Encapsulated Pt Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7436-7444. [PMID: 29856918 DOI: 10.1021/acs.langmuir.8b01169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we report the controllable synthesis of dendrimer-encapsulated Pt nanoparticles (Pt DENs) utilizing repetitively coupled chemical reduction and galvanic exchange reactions. The synthesis strategy allows the expansion of the applicable number of Pt atoms encapsulated inside dendrimers to more than 1000 without being limited by the fixed number of complexation sites for Pt2+ precursor ions in the dendrimers. The synthesis of Pt DENs is achieved in a short period of time (i.e., ∼10 min) simply by the coaddition of appropriate amounts of Cu2+ and Pt2+ precursors into aqueous dendrimer solution and subsequent addition of reducing agents such as BH4-, resulting in fast and selective complexation of Cu2+ with the dendrimers and subsequent chemical reduction of the complexed Cu2+ while uncomplexed Pt2+ precursors remain oxidized. Interestingly, the chemical reduction of Cu2+, leading to the formation of Cu nanoparticles encapsulated inside the dendrimers, is coupled with the galvanic exchange of the Cu nanoparticles with the nearby Pt2+. This coupling repetitively proceeds until all of the added Pt2+ ions form into Pt nanoparticles encapsulated inside the dendrimers. In contrast to the conventional method utilizing direct chemical reduction, this repetitively coupled chemical reduction and galvanic exchange enables a substantial increase in the applicable number of Pt atoms up to 1320 in Pt DENs while maintaining the unique features of DENs.
Collapse
Affiliation(s)
| | - Chang Won Yoon
- Fuel Cell Research Center , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | | |
Collapse
|
34
|
Hu GB, Xiong CY, Liang WB, Zeng XS, Xu HL, Yang Y, Yao LY, Yuan R, Xiao DR. Highly Stable Mesoporous Luminescence-Functionalized MOF with Excellent Electrochemiluminescence Property for Ultrasensitive Immunosensor Construction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15913-15919. [PMID: 29676561 DOI: 10.1021/acsami.8b05038] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this work, a novel mesoporous luminescence-functionalized metal-organic framework (Ru-PCN-777) with high stability and excellent electrochemiluminescence (ECL) performance was synthesized by immobilizing Ru(bpy)2(mcpbpy)2+ on the Zr6 cluster of PCN-777 via a strong coordination bond between Zr4+ and -COO-. Consequently, the Ru(bpy)2(mcpbpy)2+ could not only cover the surface of PCN-777 but also graft into the interior of PCN-777, which greatly increased the loading amount of Ru(bpy)2(mcpbpy)2+ and effectively prevented the leaching of the Ru(bpy)2(mcpbpy)2+ resulting in a stable and high ECL response. Considering the above merits, we utilized the mesoporous Ru-PCN-777 to construct an ECL immunosensor to detect mucin 1 (MUC1) based on proximity-induced intramolecular DNA strand displacement (PiDSD). The ECL signal was further enhanced by the enzyme-assisted DNA recycling amplification strategy. As expected, the immunosensor had excellent sensitivity, specificity, and responded wide linearly to the concentration of MUC1 from 100 fg/mL to 100 ng/mL with a low detection limit of 33.3 fg/mL (S/N = 3). It is the first time that mesoporous Zr-MOF was introduced into ECL system to assay biomolecules, which might expand the application of mesoporous metal-organic frameworks (MOFs) in bioanalysis. This work indicates that the use of highly stable mesoporous luminescence-functionalized MOFs to enhance the ECL intensity and stability is a feasible strategy for designing and constructing high-performance ECL materials, and therefore may shed light on new ways to develop highly sensitive and selective ECL sensors.
Collapse
Affiliation(s)
- Gui-Bing Hu
- College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Cheng-Yi Xiong
- College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Wen-Bin Liang
- College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Xiao-Shan Zeng
- College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Hui-Ling Xu
- College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Yang Yang
- College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Li-Ying Yao
- College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Ruo Yuan
- College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Dong-Rong Xiao
- College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| |
Collapse
|
35
|
Zhu MJ, Pan JB, Wu ZQ, Gao XY, Zhao W, Xia XH, Xu JJ, Chen HY. Electrogenerated Chemiluminescence Imaging of Electrocatalysis at a Single Au-Pt Janus Nanoparticle. Angew Chem Int Ed Engl 2018; 57:4010-4014. [DOI: 10.1002/anie.201800706] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Meng-Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Zeng-Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Xiao-Yu Gao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| |
Collapse
|
36
|
Zhu MJ, Pan JB, Wu ZQ, Gao XY, Zhao W, Xia XH, Xu JJ, Chen HY. Electrogenerated Chemiluminescence Imaging of Electrocatalysis at a Single Au-Pt Janus Nanoparticle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800706] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Meng-Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Zeng-Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Xiao-Yu Gao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| |
Collapse
|
37
|
Kudruk S, Villani E, Polo F, Lamping S, Körsgen M, Arlinghaus HF, Paolucci F, Ravoo BJ, Valenti G, Rizzo F. Solid state electrochemiluminescence from homogeneous and patterned monolayers of bifunctional spirobifluorene. Chem Commun (Camb) 2018; 54:4999-5002. [DOI: 10.1039/c8cc02066c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrochemiluminescence (ECL) from self-assembled monolayers of a spirobifluorene dye covalently linked to a transparent ITO surface is reported.
Collapse
Affiliation(s)
- Sergej Kudruk
- Organic Chemistry Institute and CeNTech
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Elena Villani
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
| | - Federico Polo
- National Cancer Institute-CRO Aviano
- 33081 Aviano
- Italy
| | - Sebastian Lamping
- Organic Chemistry Institute and CeNTech
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Martin Körsgen
- Physics Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | | | - Francesco Paolucci
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
| | - Bart Jan Ravoo
- Organic Chemistry Institute and CeNTech
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Giovanni Valenti
- Department of Chemistry “G. Ciamician”
- University of Bologna
- 40126 Bologna
- Italy
| | - Fabio Rizzo
- Organic Chemistry Institute and CeNTech
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
- Institute of Molecular Science and Technologies (ISTM)
| |
Collapse
|
38
|
Kim JM, Jeong S, Song JK, Kim J. Near-infrared electrochemiluminescence from orange fluorescent Au nanoclusters in water. Chem Commun (Camb) 2018; 54:2838-2841. [DOI: 10.1039/c7cc09394b] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the unusual generation of near-IR electrochemiluminescence from orange fluorescent Au nanoclusters soluble in water.
Collapse
Affiliation(s)
- Jun Myung Kim
- Department of Chemistry
- Research Institute for Basic Sciences
- KHU-KIST Department of Converging Science and Technology
- Kyung Hee University
- Seoul 02447
| | - Seonghyun Jeong
- Department of Chemistry
- Research Institute for Basic Sciences
- KHU-KIST Department of Converging Science and Technology
- Kyung Hee University
- Seoul 02447
| | - Jae Kyu Song
- Department of Chemistry
- Research Institute for Basic Sciences
- KHU-KIST Department of Converging Science and Technology
- Kyung Hee University
- Seoul 02447
| | - Joohoon Kim
- Department of Chemistry
- Research Institute for Basic Sciences
- KHU-KIST Department of Converging Science and Technology
- Kyung Hee University
- Seoul 02447
| |
Collapse
|
39
|
Valenti G, Scarabino S, Goudeau B, Lesch A, Jović M, Villani E, Sentic M, Rapino S, Arbault S, Paolucci F, Sojic N. Single Cell Electrochemiluminescence Imaging: From the Proof-of-Concept to Disposable Device-Based Analysis. J Am Chem Soc 2017; 139:16830-16837. [PMID: 29064235 DOI: 10.1021/jacs.7b09260] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report here the development of coreactant-based electrogenerated chemiluminescence (ECL) as a surface-confined microscopy to image single cells and their membrane proteins. Labeling the entire cell membrane allows one to demonstrate that, by contrast with fluorescence, ECL emission is only detected from fluorophores located in the immediate vicinity of the electrode surface (i.e., 1-2 μm). Then, to present the potential diagnostic applications of our approach, we selected carbon nanotubes (CNT)-based inkjet-printed disposable electrodes for the direct ECL imaging of a labeled plasma receptor overexpressed on tumor cells. The ECL fluorophore was linked to an antibody and enabled to localize the ECL generation on the cancer cell membrane in close proximity to the electrode surface. Such a result is intrinsically associated with the unique ECL mechanism and is rationalized by considering the limited lifetimes of the electrogenerated coreactant radicals. The electrochemical stimulus used for luminescence generation does not suffer from background signals, such as the typical autofluorescence of biological samples. The presented surface-confined ECL microscopy should find promising applications in ultrasensitive single cell imaging assays.
Collapse
Affiliation(s)
- Giovanni Valenti
- Department of Chemistry ''G. Ciamician'', University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Sabina Scarabino
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Bertrand Goudeau
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Andreas Lesch
- Laboratory of Physical and Analytical Electrochemistry, EPFL Valais Wallis , Rue de l'Industrie 17, CP 440, CH-1951 Sion, Switzerland
| | - Milica Jović
- Laboratory of Physical and Analytical Electrochemistry, EPFL Valais Wallis , Rue de l'Industrie 17, CP 440, CH-1951 Sion, Switzerland
| | - Elena Villani
- Department of Chemistry ''G. Ciamician'', University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Milica Sentic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Stefania Rapino
- Department of Chemistry ''G. Ciamician'', University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Stéphane Arbault
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Francesco Paolucci
- Department of Chemistry ''G. Ciamician'', University of Bologna , Via Selmi 2, 40126 Bologna, Italy.,ICMATE-CNR Bologna Associate Unit, University of Bologna , via Selmi 2, 40126 Bologna, Italy
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| |
Collapse
|
40
|
Hong LR, Zhao J, Lei YM, Yuan R, Zhuo Y. Efficient Electrochemiluminescence from Ru(bpy) 3 2+ Enhanced by Three-Layer Porous Fe 3 O 4 @SnO 2 @Au Nanoparticles for Label-Free and Sensitive Bioanalysis. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.139] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Feng Y, Sun F, Wang N, Lei J, Ju H. Ru(bpy)32+ Incorporated Luminescent Polymer Dots: Double-Enhanced Electrochemiluminescence for Detection of Single-Nucleotide Polymorphism. Anal Chem 2017. [DOI: 10.1021/acs.analchem.7b01603] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yaqiang Feng
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Feng Sun
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ningning Wang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
42
|
Cho YS, Kim SM, Ju Y, Kim J, Jeon KW, Cho SH, Kim J, Lee IS. Spontaneous Pt Deposition on Defective Surfaces of In 2O 3 Nanocrystals Confined within Cavities of Hollow Silica Nanoshells: Pt Catalyst-Modified ITO Electrode with Enhanced ECL Performance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20728-20737. [PMID: 28594160 DOI: 10.1021/acsami.7b02757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although the deposition of metallic domains on a preformed semiconductor nanocrystal provides an effective pathway to access diverse hybrid nanocrystals with synergistic metal/semiconductor heterojunction interface, those reactions that take place on the surface of semiconductor nanoscrystals have not been investigated thoroughly, because of the impediments caused by the surface-capping organic surfactants. By exploiting the interfacial reactions occurring between the solution and nanoparticles confined with the cavities of hollow nanoparticles, we propose a novel nanospace-confined strategy for assessing the innate reactivity of surfaces of inorganic semiconductor nanoparticles. This strategy was adopted to investigate the newly discovered process of spontaneous Pt deposition on In2O3 nanocrystals. Through an in-depth examination involving varying key reaction parameters, the Pt deposition process was identified to be templated by the defective In2O3 surface via a unique redox process involving the oxygen vacancies in the In2O3 lattice, whose density can be controlled by high-temperature annealing. The product of the Pt-deposition reaction inside the hollow silica nanoparticle, bearing In2O3-supported Pt catalysts inside the cavity protected by a porous silica shell, was proved to be an effective nanoreactor system which selectively and sustainably catalyzed the reduction reaction of small-sized aromatic nitro-compounds. Moreover, the surfactant-free and electroless Pt deposition protocol, which was devised based on the surface chemistry of the In2O3 nanoparticles, was successfully employed to fabricate Pt-catalyst-modified ITO electrodes with enhanced electrogenerated chemiluminescece (ECL) performance.
Collapse
Affiliation(s)
| | | | - Youngwon Ju
- Department of Chemistry, Research Institute for Basic Sciences, KHU-KIST Department of Converging Science and Technology, Kyung Hee University , Seoul 130-701, Korea
| | | | | | | | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, KHU-KIST Department of Converging Science and Technology, Kyung Hee University , Seoul 130-701, Korea
| | | |
Collapse
|
43
|
Lee H, Kim J. Electrochemiluminescence of Water-Soluble Poly(amidoamine) Dendrimers Conjugated with Multiple Ru(II) Tris(bipyridine) Moieties. ChemElectroChem 2017. [DOI: 10.1002/celc.201700101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences; Kyung Hee University; 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, KHU-KIST Department of Converging Science and Technology; Kyung Hee University; 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447 Korea
| |
Collapse
|
44
|
Chandra S, Mayer M, Baeumner AJ. PAMAM dendrimers: A multifunctional nanomaterial for ECL biosensors. Talanta 2017; 168:126-129. [PMID: 28391831 DOI: 10.1016/j.talanta.2017.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 10/20/2022]
Abstract
Polyamido amine (PAMAM) dendrimers have been shown to function as electrochemiluminescence (ECL) co-reactant and have the inherent capability of improving immobilization of molecules on surfaces due to their dendritic structure. Here, we investigated the combination of both of these properties as the basis for biosensor development. Dendrimers with 5, 8, 10 and 16 terminal amine groups, respectively, were used. These were covalently coupled to biotin as model recognition site, and tagged with Ru(bpy)32+ via adsorption. Due to their hydrophilicity, Ru-dendrimers showed significantly improved electrochemical activity in comparison to the standard tripropylamine (TPA) assisted ECL and similar luminescence yields even though 10 fold less dendrimer concentration was required in comparison to TPA. Best signals were obtained for D8 and D10 dendrimers. These Ru-dendrimers were subsequently used for the quantification of streptavidin, as its binding to the biotin-tag caused a proportional decrease in ECL signal with a dynamic range of 5nM to 1μM. These preliminary studies demonstrate that PAMAM dendrimers can function as responsive signal generators in solution-based ECL-bioassays with an assumed even higher impact when being immobilized directly on the electrode-surface.
Collapse
Affiliation(s)
- Sudeshna Chandra
- Department of Chemistry, Sunandan Divatia School of Science, NMIMS University, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India.
| | - Michael Mayer
- Universität Regensburg, Institut für Analytische Chemie, Chemo- und Biosensorik, 93040 Regensburg, Germany
| | - Antje J Baeumner
- Universität Regensburg, Institut für Analytische Chemie, Chemo- und Biosensorik, 93040 Regensburg, Germany.
| |
Collapse
|
45
|
Guo W, Cao Z, Liu Y, Su B. Electrochemiluminescence of a Vinyl-Functionalized Ruthenium Complex and Its Monolayer Formed through the Photoinduced Thiol-Ene Click Reaction. ChemElectroChem 2017. [DOI: 10.1002/celc.201600905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weiliang Guo
- Institute of Analytical Chemistry, Department of Chemistry; Zhejiang University; Hangzhou 310058 P.R. China
| | - Zhiyuan Cao
- Institute of Analytical Chemistry, Department of Chemistry; Zhejiang University; Hangzhou 310058 P.R. China
| | - Yanhuan Liu
- Institute of Analytical Chemistry, Department of Chemistry; Zhejiang University; Hangzhou 310058 P.R. China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry; Zhejiang University; Hangzhou 310058 P.R. China
| |
Collapse
|
46
|
Tailoring chemically converted graphenes using a water-soluble pyrene derivative with a zwitterionic arm for sensitive electrochemiluminescence-based analyses. Biosens Bioelectron 2017; 87:89-95. [DOI: 10.1016/j.bios.2016.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 11/17/2022]
|
47
|
Ren LL, Dong H, Han TT, Chen Y, Ding SN. Enhanced anodic electrochemiluminescence of CdTe quantum dots based on electrocatalytic oxidation of a co-reactant by dendrimer-encapsulated Pt nanoparticles and its application for sandwiched immunoassays. Analyst 2017; 142:3934-3941. [DOI: 10.1039/c7an01231d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A first immunosensor using Fe3O4@SiO2-Pt DENs for carrier separation and signal amplification in the CdTe QD-TPrA anodic ECL system.
Collapse
Affiliation(s)
- Lu-Lu Ren
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Hao Dong
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Ting-Ting Han
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Yun Chen
- Department of Immunology
- Nanjing Medical University
- Nanjing
- China
| | - Shou-Nian Ding
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| |
Collapse
|
48
|
Wu MS, Chen RN, Xiao Y, Lv ZX. Novel “signal-on” electrochemiluminescence biosensor for the detection of PSA based on resonance energy transfer. Talanta 2016; 161:271-277. [DOI: 10.1016/j.talanta.2016.08.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/14/2016] [Accepted: 08/21/2016] [Indexed: 12/29/2022]
|
49
|
Chikhaliwala P, Chandra S. Dendrimers: New tool for enhancement of electrochemiluminescent signal. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Sun Q, Yan F, Yao L, Su B. Anti-Biofouling Isoporous Silica-Micelle Membrane Enabling Drug Detection in Human Whole Blood. Anal Chem 2016; 88:8364-8. [DOI: 10.1021/acs.analchem.6b02091] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Qinqin Sun
- Institute of Analytical Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fei Yan
- Institute of Analytical Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lina Yao
- Institute of Analytical Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Institute of Analytical Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|