1
|
Abbas A, Ahmad MS, Cheng YH, AlFaify S, Choi S, Irfan RM, Numan A, Khalid M. A comprehensive review on the enantiomeric separation of chiral drugs using metal-organic frameworks. CHEMOSPHERE 2024; 364:143083. [PMID: 39154761 DOI: 10.1016/j.chemosphere.2024.143083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Chiral drugs play an important role in modern medicine, but obtaining pure enantiomers from racemic mixtures can pose challenges. When a drug is chiral, only one enantiomer (eutomer) typically exhibits the desired pharmacological activity, while the other (distomer) may be biologically inactive or even toxic. Racemic drug formulations introduce additional health risks, as the body must still process the inactive or detrimental enantiomer. Some distomers have also been linked to teratogenic effects and unwanted side effects. Therefore, developing efficient and scalable methods for separating chiral drugs into their pure enantiomers is critically important for improving patient safety and outcomes. Metal-organic frameworks (MOFs) show promise as novel materials for chiral separation due to their highly tunable structures and interactions. This review summarizes recent advancements in using MOFs for chromatographic and spectroscopic resolution of drug enantiomers. Both the opportunities and limitations of MOF-based separation techniques are discussed. A thorough understanding of these methods could aid the continued development of pure enantiomer formulations and help reduce health risks posed by racemic drug mixtures.
Collapse
Affiliation(s)
- Anees Abbas
- Department of Chemistry, University of Mianwali, Mianwali, Punjab, 42200, Pakistan; Graphite Technology, No. 9 Sinosteel Avenue 313100 Changxing, Zhejiang, China
| | - Muhammad Sheraz Ahmad
- Department of Chemistry, University of Mianwali, Mianwali, Punjab, 42200, Pakistan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Yu-Hsiang Cheng
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - S AlFaify
- Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| | - Soohoon Choi
- Department of Environmental Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | | | - Arshid Numan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Department of Applied Physics, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G128QQ, UK; University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
2
|
Zhao LX, Chen LL, Cheng D, Wu TY, Fan YG, Wang ZY. Potential Application Prospects of Biomolecule-Modified Two-Dimensional Chiral Nanomaterials in Biomedicine. ACS Biomater Sci Eng 2024; 10:2022-2040. [PMID: 38506625 DOI: 10.1021/acsbiomaterials.3c01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Chirality, one of the most fundamental properties of natural molecules, plays a significant role in biochemical reactions. Nanomaterials with chiral characteristics have superior properties, such as catalytic properties, optoelectronic properties, and photothermal properties, which have significant potential for specific applications in nanomedicine. Biomolecular modifications such as nucleic acids, peptides, proteins, and polysaccharides are sources of chirality for nanomaterials with great potential for application in addition to intrinsic chirality, artificial macromolecules, and metals. Two-dimensional (2D) nanomaterials, as opposed to other dimensions, due to proper surface area, extensive modification sites, drug loading potential, and simplicity of preparation, are prepared and utilized in diagnostic applications, drug delivery research, and tumor therapy. Current advanced studies on 2D chiral nanomaterials for biomedicine are focused on novel chiral development, structural control, and materials sustainability applications. However, despite the advances in biomedical research, chiral 2D nanomaterials still confront challenges such as the difficulty of synthesis, quality control, batch preparation, chiral stability, and chiral recognition and selectivity. This review aims to provide a comprehensive overview of the origins, synthesis, applications, and challenges of 2D chiral nanomaterials with biomolecules as cargo and chiral modifications and highlight their potential roles in biomedicine.
Collapse
Affiliation(s)
- Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Li-Lin Chen
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Di Cheng
- Dalian Gentalker Biological Technology Co., Ltd., Dalian 116699, China
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| |
Collapse
|
3
|
Nan Y, Zheng P, Cheng M, Zhao R, Jia H, Liang Q, Li Y, Bao JJ. Enhancement of chiral drugs separation by a novel adjustable gravity mediated capillary electrophoresis combined with sulfonic propyl ether β-CD polymer. Anal Chim Acta 2023; 1279:341781. [PMID: 37827633 DOI: 10.1016/j.aca.2023.341781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 10/14/2023]
Abstract
A water-soluble negative sulfonic propyl ether β-CD polymer (SPE-β-CDP) to be used as chiral selector in capillary electrophoresis (CE) was polymerized. The sulfonic substitution degree of each β-CD in SPE-β-CDP was statistically homogenized. The only one negative peak in electrophoretogram with indirect ultraviolate method proved its uniformity of electrophoretic behavior. There were 7.12 sulfonic substitution in β-CD unit and 164 μmole β-CD units in each gram of SPE-β-CDP, which corresponded a molecular weight of 7000 or more. Compared with monomer, SPE-β-CDP was lower effect on electrical current of CE, indicating a high concentration of SPE-β-CDP could be added. Its separation ability was verified by 12 chiral drugs. SPE-β-CDP also showed advantages of good water solubility, easy preparation and recovery to reduce the overall cost. However, five of 12 chiral drugs were hardly to be fully separated which was normal for any kind of chiral selector. A newly adjustable gravity mediated capillary electrophoresis (AGM-CE) technology was proposed and combined with SPE-β-CDP to enhance the chiral separation efficiencies of propranolol, salbutamol, omeprazole, ofloxacin and phenoxybenzamine which were markedly improved to 3.02, 1.17, 7.63, 4.14, and 2.81, respectively. Furthermore, its gradient mode (AGMg-CE) was also used to improve resolution through utilizing the zero mobility point, at which the effective apparent mobility of one racemate was zero. Resolutions of five chiral drugs were significantly improved, especially resolution of carvedilol changed from 0.43 to 1.0. These indicated SPE-β-CDP as chiral selector, AGM-CE and AGMg-CE as new CE technologies had a great potential in chiral separation.
Collapse
Affiliation(s)
- Yaqin Nan
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Pingyi Zheng
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Mengqi Cheng
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ran Zhao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Haijiao Jia
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Qinggang Liang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - James J Bao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China; Biomics Inc., DE, 17902, USA.
| |
Collapse
|
4
|
Ozalp O, Gumus ZP, Soylak M. Metal-organic framework functionalized with deep eutectic solvent for solid-phase extraction of Rhodamine 6G in water and cosmetic products. J Sep Sci 2023; 46:e2300190. [PMID: 37496320 DOI: 10.1002/jssc.202300190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
An NH2 -MIL-53(Al)-DES(ChCl-Urea) nanocomposite was synthesized for extraction and determination of Rhodamine (Rh) 6G from environmental and cosmetic samples. The deep eutectic solvent (DES) was prepared by mixing choline chloride and urea in a mole ratio of 1:2. NH2 -MIL-53(Al)-DES(ChCl-Urea) nanocomposite was synthesized using the impregnation method at a ratio of 60:40 (w/w). The optimum conditions were determined after NH2 -MIL-53(Al)-DES(ChCl-Urea) characterization was performed. The optimum conditions were determined as pH 8, adsorbent amount of 15 mg, total adsorption-desorption time of 6 min, and enrichment factor of 20. The recovery values of the solid-phase extraction method for water and cosmetic samples under optimum conditions were between 95% and 106%. NH2 -MIL-53(Al)-DES(ChCl-Urea) nanocomposite was an economically advantageous adsorbent because of its reusability of 15 times. All analyses were performed using the ultraviolet-visible spectrophotometer. The linear range, limit of detection, and limit of quantification of the method were 100-1000, 9.80, and 32.68 μg/L, respectively. The obtained results showed that the synthesized nanocomposite is a suitable adsorbent for the determination of Rh 6G in water and cosmetic samples. The real sample applications were verified with the high-performance liquid chromatography system.
Collapse
Affiliation(s)
- Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - Zinar Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, Izmir, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center (ERU-TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, Turkey
| |
Collapse
|
5
|
Liu C, Guo P, Lu YR, Zhu YL, Ran XY, Wang BJ, Zhang JH, Xie SM, Yuan LM. In situ growth preparation of a new chiral covalent triazine framework core-shell microspheres used for HPLC enantioseparation. Mikrochim Acta 2023; 190:238. [PMID: 37222823 DOI: 10.1007/s00604-023-05806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
The manufacturing of chiral covalent triazine framework core-shell microspheres CC-MP CCTF@SiO2 composite is reported as stationary phase for HPLC enantioseparation. The CC-MP CCTF@SiO2 core-shell microspheres were prepared by immobilizing chiral COF CC-MP CCTF constructed using cyanuric chloride and (S)-2-methylpiperazine on the surface of activated SiO2 through an in-situ growth approach. Various racemates as analytes were separated on the CC-MP CCTF@SiO2-packed column. The experimental results indicate that 19 pairs of enantiomers were well separated on the CC-MP CCTF@SiO2-packed column, including alcohols, phenols, amines, ketones, and organic acids. Among them, there are 17 pairs of enantiomers that can achieve baseline separation with good peak shapes. Their resolution values on this chiral column are between 0.4 and 5.61. The influences of analyte mass, column temperature, and composition of the mobile phase on the resolution of enantiomers were studied. In addition, the chiral resolution ability of CC-MP CCTF@SiO2-packed column was compared with the commercial chiral chromatographic columns (Chiralpak AD-H and Chiralcel OD-H columns) and some CCOF@SiO2 chiral columns (β-CD-COF@SiO2, CTpBD@SiO2, and MDI-β-CD-modified COF@SiO2). The CC-MP CCTF@SiO2-packed column exhibited some unique advantages and can complement these chiral columns in chiral separations. The research results show that the CC-MP CCTF@SiO2 chiral column offered high column efficiency (e.g., 17680 plates m-1 for ethyl mandelate), low column backpressure (5-9 bar), high enantioselectivity, and excellent chiral resolution ability for HPLC enantioseparation with good stability and reproducibility. The relative standard deviations (RSD) (n = 5) of the retention time, and peak areas by repeated separation of ethyl mandelate are 0.23% and 0.67%, respectively. It demonstrates that the CC-MP CCTF@SiO2 core-shell microsphere composite has great potential in enantiomeric separation by HPLC.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Ping Guo
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Yan-Rui Lu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Yu-Lan Zhu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Xiao-Yan Ran
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China.
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China.
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, People's Republic of China
| |
Collapse
|
6
|
Lu X, Li Y, Yang J, Wang Y. A quasi-dual-chiral-channel specific enantioseparation material. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Copper-Based Metal–Organic Frameworks (MOFs) as an Emerging Catalytic Framework for Click Chemistry. Catalysts 2023. [DOI: 10.3390/catal13010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the extensive terrain of catalytic procedures for the synthesis of organic molecules, metal–organic frameworks (MOFs) as heterogenous catalysts have been investigated in a variety of chemical processes, including Friedel–Crafts reactions, condensation reactions, oxidations, and coupling reactions, and utilized owing to their specific properties such as high porosity, tuneability, extraordinary catalytic activity, and recyclability. The eminent copper-tailored MOF materials can be exceptionally dynamic and regioselective catalysts for click reactions (1,3-dipolar cycloaddition reaction). Considering the fact that Cu(I)-catalyzed alkyne–azide cycloaddition (CuAAC) reactions can be catalyzed by several other copper catalysts such as Cu (II)-β-cyclodextrin, Cu(OAc)2, Fe3O4@SiO2, picolinimidoamide–Cu(II) complex, and Cu(II) porphyrin graphene, the properties of sorption and reusability, as well as the high density of copper-MOFs, open an efficient and robust pathway for regimented catalysis of this reaction. This review provides a comprehensive description and analysis of the relevant literature on the utilization of Cu-MOFs as catalysts for CuAAC ‘click’ reactions published in the past decade.
Collapse
|
8
|
Li K, Xiong LX, Wang Y, Zhang YP, Wang BJ, Xie SM, Zhang JH, Yuan LM. Preparation and evaluation of a chiral porous organic cage based chiral stationary phase for enantioseparation in high performance liquid chromatography. J Chromatogr A 2022; 1679:463415. [PMID: 35977455 DOI: 10.1016/j.chroma.2022.463415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Porous organic cages (POCs) are a new kind of porous molecular materials, which have gained widespread interest in many fields due to their intriguing properties, including excellent molecular solubility, inherent molecular cavity and rich host-guest chemistry. To date, many chiral POCs have been explored as chiral stationary phases (CSPs) for gas chromatographic (GC) separation of enantiomers. However, the applications of chiral POCs for high performance liquid chromatography (HPLC) enantiomeric separation is extremely rare. In this study, we report the construction of thiol-ene click reaction for the preparation of CSP for HPLC by using a [4+8]-type chiral POC NC4-R as chiral selector. The fabricated CSP showed good chiral resolution performance not only in normal-phase HPLC (NP-HPLC) but also in reversed-phase HPLC (RP-HPLC). Seventeen and ten racemates were well resolved in the two separation modes, respectively, including ketones, esters, alcohols, phenols, amines, ethers, organic acids, and amino acids. Moreover, the fabricated column also shows good chiral recognition complementarity to two popular chiral HPLC columns (Chiralpak AD-H and Chiralcel OD-H columns) and previously reported chiral POC NC1-R-based HPLC column, which can resolve some racemates that unable to be resolved by the two commercially available chiral HPLC columns and NC1-R-based column. The relative standard deviation (RSD) values (n = 4) of retention time and resolution (Rs) of analytes separated on the column were less than 0.3 % and 0.5 % after it was subjected to different injections, showing the good reproducibility and stability of the NC4-R-based column. This work demonstrated high potentials of chiral POCs for HPLC enantioseparation and the applicability of chiral POC-based HPLC columns can be broadened by developing more chiral POCs with diverse structures as chiral selector for HPLC.
Collapse
Affiliation(s)
- Kuan Li
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Ling-Xiao Xiong
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Ying Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - You-Ping Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China.
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China.
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China
| |
Collapse
|
9
|
Dhurjad P, Dhalaram CS, Ali N, Kumari N, Sonti R. Metal-organic frameworks in chiral separation of pharmaceuticals. Chirality 2022; 34:1419-1436. [PMID: 35924487 DOI: 10.1002/chir.23499] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022]
Abstract
Stereoselective chiral molecules are responsible for specific biological functions in nature. At present, more than half of the prescribed drugs are chiral. Living organisms display divergent pharmacological responses to the enantiomers, leading to altered toxicity, pharmacokinetics, and pharmacodynamics. Thus, chiral analysis, separation, and extraction are crucial for ensuring enantiomeric purity to develop safe and effective medication. In recent times, metal-organic frameworks (MOFs) with appealing structures are gaining importance because of their fascinating properties as a sorbent and stationary phase. MOFs are crystalline porous solid materials built by interconnecting metal ions or clusters and organic linkers. This review explores the advancements in MOFs for the isolation and separation of chiral active pharmaceutical drugs.
Collapse
Affiliation(s)
- Pooja Dhurjad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Choudhary Sampat Dhalaram
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Nazish Ali
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Nikita Kumari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
10
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
11
|
Lu YR, Yu YY, Chen JK, Guo P, Yang YP, Liu CF, Zhang JH, Wang BJ, Xie SM, Yuan LM. Superficial chiral etching on achiral metal-organic framework for HPLC enantioseparations. J Sep Sci 2022; 45:3510-3519. [PMID: 35880615 DOI: 10.1002/jssc.202200366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2022]
Abstract
Chiral metal-organic frameworks have shown great potential in enantioselective separation and asymmetric catalysis due to their diverse and adjustable structures with abundant chiral recognition sites. Herein, a new chiral postsynthetic modification was used for preparing an achiral@chiral metal-organic frameworks core-shell composite [Cu3 (Btc)2 ]@[Cu2 ((+)-Cam)2 Dabco] by a superficial chiral etching method. The [Cu3 (Btc)2 ]@[Cu2 ((+)-Cam)2 Dabco] composite was utilized as a novel chiral stationary phase for HPLC enantioseparation. Various racemates were separated on the [Cu3 (Btc)2 ]@[Cu2 ((+)-Cam)2 Dabco]-packed column (column A). It exhibited good chiral resolving ability toward many different kinds of racemates, especially chiral drugs. Among them, the highest resolution value for 1,2-diphenyl-1,2-ethanediol reach 2.70. The relative standard deviations of retention time and peak area for repeated separation of 1,2-diphenyl-1,2-ethanol were 0.45 % and 0.81 %, respectively. Compared with the resolution ability of [Cu2 ((+)-Cam)2 Dabco]-packed column (column B), the column A shows higher column efficiency and better separation performance than those of column B. The results indicated that the [Cu3 (Btc)2 ]@[Cu2 ((+)-Cam)2 Dabco] as stationary phase can greatly improve the column efficiency and chiral resolution ability of chiral metal-organic frameworks, which demonstrated that the superficial chiral etching as an economic and efficient strategy opens up a new way for the application of metal-organic frameworks. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yan-Rui Lu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Yun-Yan Yu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Ji-Kai Chen
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Ping Guo
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Yu-Ping Yang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Cai-Fang Liu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| |
Collapse
|
12
|
Yue Z, Peng Z, Guo Y, Zhang W. Separation of anilines by a covalent triazine-triphenyl polymer as a stationary phase for their normal-phase and reverse-phase determination by high-performance liquid chromatography (HPLC). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Zeyi Yue
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Zifang Peng
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yun Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, China
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Wang C, Chen C, Ma M, Feng Z, Du Y. In‐situ grown metal organic framework synergistic system for the enantioseparation of three drugs in open tubular capillary electrochromatography. J Sep Sci 2022; 45:2708-2716. [DOI: 10.1002/jssc.202100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| | - Mingxuan Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| |
Collapse
|
14
|
Kioka K, Mizutani N, Hosono N, Uemura T. Mixed Metal-Organic Framework Stationary Phases for Liquid Chromatography. ACS NANO 2022; 16:6771-6780. [PMID: 35341245 DOI: 10.1021/acsnano.2c01592] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Strategic design of the stationary phase in liquid chromatography (LC) is crucial for modern separation science. Herein, a design approach using mixed metal-organic frameworks (MOFs) as tunable LC stationary phases is proposed. Three MOFs with an isostructural pillared-layer structure are employed, with pore sizes tuned by the systematic design of the constituent ligands, using 1,4-benzenedicarboxylate (bdc), 1,4-naphthalenedicarboxylate (ndc), and 9,10-anthracenedicarboxylate (adc). Packed columns filled with the MOFs and their mixed-particle/solid-solution stationary phases are prepared and examined for the retention capability of polyethylene glycol (PEG) in LC. While the MOF-packed columns filled with binary mixtures of different MOF particles provide good control of the retention with respect to the particle mixing ratio, the columns filled with mixed-linker solid-solution MOFs show a significant multicomponent effect on the retention behavior. Specifically, mixed-linker solid-solution MOFs consisting of bdc/ndc binary ligands are found to show a strong retention that surpasses even their parent MOFs, namely, pure bdc- and ndc-MOF stationary phases. The retention behavior on the MOF-packed columns is explained by the specific nanostructures of the solid-solution MOFs, which affects the balance between substrate affinity and adsorption kinetics into the MOF pores, dictating the total retention capability. The results provide an extra dimension for stationary phase design using MOFs as a promising recognition medium for LC.
Collapse
Affiliation(s)
- Kaoru Kioka
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Nagi Mizutani
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
Al‐Ghazzawi F, Conte L, Richardson C, Wagner P. Reactive Extrusion Printing for Simultaneous Crystallization-Deposition of Metal-Organic Framework Films. Angew Chem Int Ed Engl 2022; 61:e202117240. [PMID: 35146859 PMCID: PMC9303373 DOI: 10.1002/anie.202117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/06/2022]
Abstract
Reactive extrusion printing (REP) is demonstrated as an approach to simultaneously crystallize and deposit films of the metal-organic framework (MOF) Cu3 btc2 (btc=1,3,5-benzenetricarboxylate), also known as HKUST-1. The technique co-delivers inks of the copper(II) acetate and H3 btc starting materials directly on-surface and on-location for rapid nucleation into films at room temperature. The films were analyzed using PXRD, profilometry, SEM and thermal analysis techniques and confirmed high-quality Cu3 btc2 films are produced in low-dispersity interconnected nanoparticulate form. The porosity was examined using gas adsorption which showed REP gives Cu3 btc2 films with open interconnected pore structures, demonstrating the method bestows features that traditional synthesis does not. REP is a technique that opens the field to time-efficient large-scale fabrication of MOF interfaces and should find use in a wide variety of coating application settings.
Collapse
Affiliation(s)
- Fatimah Al‐Ghazzawi
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAIIM FacultyInnovation CampusUniversity of WollongongNorth WollongongNSW 2522Australia
- Al-Nasiriyah Technical InstituteSouthern Technical UniversityThi-QarIraq
| | - Luke Conte
- School of Chemistry and Molecular BioscienceFaculty of Science Medicine and HealthUniversity of WollongongNorth WollongongNSW 2522Australia
| | - Christopher Richardson
- School of Chemistry and Molecular BioscienceFaculty of Science Medicine and HealthUniversity of WollongongNorth WollongongNSW 2522Australia
| | - Pawel Wagner
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAIIM FacultyInnovation CampusUniversity of WollongongNorth WollongongNSW 2522Australia
| |
Collapse
|
16
|
Abstract
In the past two decades, metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) assembled from metal ions or clusters and organic linkers via metal-ligand coordination bonds have captivated significant scientific interest on account of their high crystallinity, exceptional porosity, and tunable pore size, high modularity, and diverse functionality. The opportunity to achieve functional porous materials by design with promising properties, unattainable for solid-state materials in general, distinguishes MOFs from other classes of materials, in particular, traditional porous materials such as activated carbon, silica, and zeolites, thereby leading to complementary properties. Scientists have conducted intense research in the production of chiral MOF (CMOF) materials for specific applications including but not limited to chiral recognition, separation, and catalysis since the discovery of the first functional CMOF (i.e., d- or l-POST-1). At present, CMOFs have become interdisciplinary between chirality chemistry, coordination chemistry, and material chemistry, which involve in many subjects including chemistry, physics, optics, medicine, pharmacology, biology, crystal engineering, environmental science, etc. In this review, we will systematically summarize the recent progress of CMOFs regarding design strategies, synthetic approaches, and cutting-edge applications. In particular, we will highlight the successful implementation of CMOFs in asymmetric catalysis, enantioselective separation, enantioselective recognition, and sensing. We envision that this review will provide readers a good understanding of CMOF chemistry and, more importantly, facilitate research endeavors for the rational design of multifunctional CMOFs and their industrial implementation.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhijie Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
17
|
Experimentally probing the chiral recognition mechanism of 1,1′-bi-2-naphthol on a nitrogen enriched chiral metal-organic framework. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Al-Ghazzawi F, Conte L, Richardson C, Wagner P. Reactive Extrusion Printing for Simultaneous Crystallization‐Deposition of Metal‐Organic Frameworks Films. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fatimah Al-Ghazzawi
- University of Wollongong Intelligent Polymer Research Institute Innovation CampusNorth Wollongong 2522 Wollongong AUSTRALIA
| | - Luke Conte
- University of Wollongong School of Chemistry and Molecular Bioscience Northfields Avenue 2522 Wollongong AUSTRALIA
| | - Christopher Richardson
- University of Wollongong Faculty of Science Medicine and Health School of Chemistry and Molecular Bioscience Northfields Avenue 2522 Wollongong AUSTRALIA
| | - Pawel Wagner
- University of Wollongong Intelligent Polymer Research Institute Innovation CampusNorth Wollongong 2522 Wollongong AUSTRALIA
| |
Collapse
|
19
|
Metal-organic framework-based core-shell composites for chromatographic stationary phases. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Zhao J, Luo J, Lin Z, Chen X, Ning GH, Liu J, Li D. Chiral copper( i)–organic frameworks for dye degradation and the enantioselective recognition of amino acids. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel chiral CMOFs with a 2D layered hexagonal network have been prepared and used for dye adsorption and degradation. Furthermore, one exhibits different adsorption rates and efficiencies for chiral amino acids.
Collapse
Affiliation(s)
- Jianping Zhao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Jie Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Zhihong Lin
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Xu Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong, Hong Kong 999077, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
21
|
Cao W, Missen OP, Turner DR. Enantioselective chiral sorption of 1-phenylethanol by homochiral 1D coordination polymers. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01457a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enantiomeric selectivity is shown within the pores of a 1D coordination polymer, dependent on the nature of the pore space.
Collapse
Affiliation(s)
- Winnie Cao
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Owen P. Missen
- School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC 3800, Australia
- Geosciences, Museums Victoria, Melbourne, VIC 3001, Australia
| | - David R. Turner
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
22
|
Qian JF, Yue HD, Qiu PX, Liang Q, Hang MT, He MY, Bu YF, Chen Q, Zhang ZH. Anions mediated amino-type Cd-MOFs catalysts for efficient photocatalytic hydrogen evolution. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Qian JF, Ji W, Zhu H, Yang XS, Yue HD, Chen Q, He MY, Zhang ZH. Weak anionic ligands controlled synthesis of ZnII/CdII coordination polymers based on N-(4-pyridylmethyl)-l-threonine. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Chiral metal–organic frameworks based on asymmetric synthetic strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214083] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Chen JK, Xu NY, Guo P, Wang BJ, Zhang JH, Xie SM, Yuan LM. A chiral metal-organic framework core-shell microspheres composite for high-performance liquid chromatography enantioseparation. J Sep Sci 2021; 44:3976-3985. [PMID: 34490989 DOI: 10.1002/jssc.202100557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/05/2022]
Abstract
The unique features of uniform and adjustable cavities, abundant chiral active sites, and high enantioselectivity make chiral metal-organic frameworks popular as an emerging candidate for enantioselective separation. However, the wide particle size distribution and irregular shape of as-synthesized metal-organic frameworks result in low column efficiency, undesired chromatographic peak shape, and high column backpressure of such metal-organic frameworks packed columns. Herein, we report the fabrication of chiral core-shell microspheres [Cu2 (d-Cam)2 (4,4'-bpy)]n @SiO2 composite for high-performance liquid chromatography enantioseparation to overcome the above-mentioned problems. The [Cu2 (d-Cam)2 (4,4'-bpy)]n @SiO2 packed column gave high-resolution separation of racemates under low column backpressure (10-22 bar), indicating its synergistic effect of the good column packing property of the SiO2 microspheres and the chiral recognition ability of [Cu2 (d-Cam)2 (4,4'-bpy)]n crystals. Thirteen kinds of chiral compounds including alcohols, amines, ketones, epoxides, and organic bases were well separated with good peak shapes and high column efficiency (18200 plates/m for 1-(9-anthryl)-2,2,2-trifluoroethanol) on the [Cu2 (d-Cam)2 (4,4'-bpy)]n @SiO2 packed column. Among them, seven pairs of enantiomers achieved baseline separation and the resolution value for 1-(9-anthryl)-2,2,2-trifluoroethanol reached 11.22. Some effects such as column temperature, and analytes mass on the enantioseparations have been investigated. In addition, the [Cu2 (d-Cam)2 (4,4'-bpy)]n @SiO2 packed column exhibited good stability and repeatability for the separation of chiral compounds. The relative standard deviations for five replicate separations of 1-phenylethanol were less than 1.0, 1.5, 3.0, and 2.0% for the retention time, peak area, number of theoretical plates, and resolution, respectively. The research results demonstrated the development of chiral metal-organic frameworks core-shell microspheres composite provide a promising platform for their practical application in chiral separation fields.
Collapse
Affiliation(s)
- Ji-Kai Chen
- Department of Chemistry, Yunnan Normal University, Kunming, P.R. China
| | - Na-Yan Xu
- Department of Chemistry, Yunnan Normal University, Kunming, P.R. China
| | - Ping Guo
- Department of Chemistry, Yunnan Normal University, Kunming, P.R. China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming, P.R. China
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, P.R. China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, P.R. China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, P.R. China
| |
Collapse
|
26
|
Si T, Wang L, Zhang H, Liang X, Lu X, Wang S, Guo Y. A novel approach for the preparation of core-shell MOF/polymer composites as mixed-mode stationary phase. Talanta 2021; 232:122459. [PMID: 34074436 DOI: 10.1016/j.talanta.2021.122459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
The nickel organic framework capped with polyvinylpyrrolidone was prepared and synergistically immobilized onto porous silica surface as the mixed-mode stationary phase for high-performance liquid chromatography. Here, polyvinylpyrrolidone firstly was chosen as functional molecules to change morphology and size of the metal organic framework. The silica microspheres were then modified by them via a simple bonding method rather than in-situ growth method with the aid of electrostatic interaction commonly used before. The stationary phase showed flexible selectivity for separation of both hydrophilic and hydrophobic compounds, especially for hydrophilic compounds such as carbohydrates, alkaloids and sulfonamides etc. The chromatographic behaviors were evaluated by investigating various factors, and a typical mixed-mode retention feature of the column was observed. The composites could be prepared repetitively, and relative standard deviations of retention time of objective compounds among different batches were less than 1.75%. It also showed excellent chromatographic reproducibility, stability and potentiality for application in real samples. In short, the composites can be used for a feasible option for analysis of multiple compounds as the mixed-mode stationary phase and it provides a general approach for preparing MOFs-based composites by changing morphology and size of MOFs.
Collapse
Affiliation(s)
- Tiantian Si
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Shuai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China.
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
27
|
Cheng M, Zhu F, Xu W, Zhang S, Dhinakaran MK, Li H. Chiral Nanochannels of Ordered Mesoporous Silica Constructed by a Pillar[5]arene-Based Host-Guest System. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27305-27312. [PMID: 34077197 DOI: 10.1021/acsami.1c05790] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The separation of racemic compounds by chiral nanochannels has attracted extensive attention. However, the fabrication of high-performance chiral nanochannels is still a challenge owing to the difficulty in magnifying the weak chiral interaction to macroscopic properties of materials. Herein, by introducing a l-alanine-pillar[5]arene host to achiral ordered mesoporous silica (OMS), chiral OMS nanochannels were fabricated, which exhibited excellent selectivity (ee value up to 90.2%) to separate racemic drugs with promising reusability and stability. Besides, it was identified that enantioselective separation took place through a molecular-recognition-adsorbed transport mechanism. This work highlights the great potential of chiral OMS nanochannels as a platform for enantioselective separation.
Collapse
Affiliation(s)
- Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
28
|
Tay HM, Kyratzis N, Thoonen S, Boer SA, Turner DR, Hua C. Synthetic strategies towards chiral coordination polymers. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Thoonen S, Hua C. Chiral Detection with Coordination Polymers. Chem Asian J 2021; 16:890-901. [PMID: 33709619 DOI: 10.1002/asia.202100039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Coordination polymers and metal-organic frameworks are prime candidates for general chemical sensing, but the use of these porous materials as chiral probes is still an emerging field. In the last decade, they have found application in a range of chiral analysis methods, including liquid- and gas-phase chromatography, circular dichroism spectroscopy, fluorescence sensing, and NMR spectroscopy. In this minireview, we examine recent works on coordination polymers as chiral sensors and their enantioselective host-guest chemistry, while highlighting their potential for application in different settings.
Collapse
Affiliation(s)
- Shannon Thoonen
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Carol Hua
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
30
|
Choi HJ, Ahn YH, Koh DY. Enantioselective Mixed Matrix Membranes for Chiral Resolution. MEMBRANES 2021; 11:279. [PMID: 33920323 PMCID: PMC8069341 DOI: 10.3390/membranes11040279] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022]
Abstract
Most pharmaceuticals are stereoisomers that each enantiomer shows dramatically different biological activity. Therefore, the production of optically pure chemicals through sustainable and energy-efficient technology is one of the main objectives in the pharmaceutical industry. Membrane-based separation is a continuous process performed on a large scale that uses far less energy than the conventional thermal separation process. Enantioselective polymer membranes have been developed for chiral resolution of pharmaceuticals; however, it is difficult to generate sufficient enantiomeric excess (ee) with conventional polymers. This article describes a chiral resolution strategy using a composite structure of mixed matrix membrane that employs chiral fillers. We discuss several enantioselective fillers, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, porous organic cages (POCs), and their potential use as chiral fillers in mixed matrix membranes. State-of-the-art enantioselective mixed matrix membranes (MMMs) and the future design consideration for highly efficient enantioselective MMMs are discussed.
Collapse
Affiliation(s)
- Hwa-Jin Choi
- Department of Chemical and Molecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Yun-Ho Ahn
- Department of Chemical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea;
| | - Dong-Yeun Koh
- Department of Chemical and Molecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| |
Collapse
|
31
|
Liu J, Mukherjee S, Wang F, Fischer RA, Zhang J. Homochiral metal-organic frameworks for enantioseparation. Chem Soc Rev 2021; 50:5706-5745. [PMID: 33972960 DOI: 10.1039/d0cs01236j] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Obtaining homochiral compounds is of high importance to human health and environmental sustainability. Currently, enantioseparation is one of the most effective approaches to obtain homochiral compounds. Thanks to their controlled synthesis and high efficiency, homochiral metal-organic frameworks (HMOFs) are one of the most widely studied porous materials to enable enantioseparation. In this review, we discuss the chiral pocket model in depth as the key to unlock enantioselective separation mechanisms in HMOFs. In particular, we classify our discussion of these chiral pockets (also regarded as "molecular traps") into: (a) achiral/chiral linker based helical channels as a result of packing modality; and (b) chiral pores inherited from chiral ligands. Driven by a number of mechanisms of enantioseparation, conceptual advances have been recently made in the design of HMOFs for achieving high enantioseparation performances. Herein, these are systematically categorised and discussed. Further we elucidate various applications of HMOFs as regards enantioseparation, systematically classifying them into their use for purification and related analytical utility according to the reported examples. Last but not the least, we discuss the challenges and perspectives concerning the rational design of HMOFs and their corresponding enantioseparations.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | | | | | | | | |
Collapse
|
32
|
Yu Y, Yuan B, Hu C, Fu N, Xu N, Zhang J, Wang B, Xie S, Yuan L. Homochiral Metal-Organic Framework [Co(L)(bpe)2(H2O)2]·H2O Used for Separation of Racemates in High-Performance Liquid Chromatography. J Chromatogr Sci 2021; 59:355-360. [PMID: 33395701 DOI: 10.1093/chromsci/bmaa117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/24/2020] [Accepted: 11/14/2020] [Indexed: 11/14/2022]
Abstract
A homochiral metal-organic framework (MOF) comprising [Co(L)(bpe)2(H2O)2]·H2O was prepared using (1R,2R)-(-)-1,2-cyclohexanedicarboxylic acid (H2L) and 1,2-bis(4-pyridyl)-ethylene as organic ligands. The homochiral MOF [Co(L)(bpe)2(H2O)2]·H2O was explored as chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC) separation of racemates. Nine racemates including naphthol, alcohol, diol, amine, ketone, ether and organic acid were well separated on the homochiral MOF [Co(L)(bpe)2(H2O)2]·H2O column (250 mm long × 4.6 mm i.d.). The relative standard deviation for five replicate separations of 1,1'-bi-2-naphthol is 0.69% for the retention time, indicating that the good reproducibility and stability of the homochiral MOF column for HPLC enantioseparation. The results indicated that the homochiral MOF as CSP is practical, which promotes the application of homochiral MOFs in HPLC.
Collapse
Affiliation(s)
- Yunyan Yu
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Baoyan Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Cong Hu
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Nan Fu
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Nayan Xu
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Junhui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Bangjin Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Shengming Xie
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Liming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
33
|
Wu S, Wang H, Wu D, Fan GC, Tao Y, Kong Y. Silver nanoparticle driven signal amplification for electrochemical chiral discrimination of amino acids. Analyst 2021; 146:1612-1619. [PMID: 33605973 DOI: 10.1039/d1an00119a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
β-Cyclodextrin (β-CD) modified silver nanoparticles (AgNPs), denoted as β-CD/AgNPs, were prepared by a simple one-pot method. Due to the inherent chirality of β-CD, the developed β-CD/AgNPs exhibited higher affinity toward l-tyrosine (l-Tyr) than d-tyrosine (d-Tyr), leading to serious aggregation of AgNPs in the presence of l-Tyr. Consequently, the l-Tyr induced aggregation of AgNPs can result in signal amplification in the differential pulse voltammograms (DPVs) of l-Tyr, which can be applied for the electrochemical chiral discrimination of the Tyr enantiomers. Other chiral amino acids including tryptophan and phenylalanine can also be successfully discriminated with the β-CD/AgNPs, suggesting high universality of the developed chiral sensor.
Collapse
Affiliation(s)
- Shanshan Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Hui Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
34
|
Nalaparaju A, Jiang J. Metal-Organic Frameworks for Liquid Phase Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003143. [PMID: 33717851 PMCID: PMC7927635 DOI: 10.1002/advs.202003143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Indexed: 05/10/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs) have attracted overwhelming attention. With readily tunable structures and functionalities, MOFs offer an unprecedentedly vast degree of design flexibility from enormous number of inorganic and organic building blocks or via postsynthetic modification to produce functional nanoporous materials. A large extent of experimental and computational studies of MOFs have been focused on gas phase applications, particularly the storage of low-carbon footprint energy carriers and the separation of CO2-containing gas mixtures. With progressive success in the synthesis of water- and solvent-resistant MOFs over the past several years, the increasingly active exploration of MOFs has been witnessed for widespread liquid phase applications such as liquid fuel purification, aromatics separation, water treatment, solvent recovery, chemical sensing, chiral separation, drug delivery, biomolecule encapsulation and separation. At this juncture, the recent experimental and computational studies are summarized herein for these multifaceted liquid phase applications to demonstrate the rapid advance in this burgeoning field. The challenges and opportunities moving from laboratory scale towards practical applications are discussed.
Collapse
Affiliation(s)
- Anjaiah Nalaparaju
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| |
Collapse
|
35
|
Si T, Wang S, Zhang H, Wang L, Lu X, Liang X, Guo Y. Design and evaluation of novel MOF-polymer core-shell composite as mixed-mode stationary phase for high performance liquid chromatography. Mikrochim Acta 2021; 188:76. [PMID: 33559844 DOI: 10.1007/s00604-021-04738-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
A general method was developed for preparing a metal-organic framework-polymer composite coated silica core-shell stationary phase. Silica microspheres were comodified with metal-organic framework and polyvinylpyrrolidone rather than the in situ method of silica modification by original metal-organic framework particles. Metal-organic framework particles and polyvinylpyrrolidone on silica surface were beneficial to suppress silanol activity and enhance composite material tolerance, as well as increasing the water compatibility of the original metal-organic framework-based stationary phases. The stationary phase exhibited superior hydrophilic and hydrophobic performance in terms of separation for various analytes including seven alkaloids, six sulfonamides, five antibiotics, and five polycyclic aromatic hydrocarbons. Moreover, the composite material also showed excellent stability with the relative standard deviation of the retention time of 0.4 to 0.7%. The separation performance with real samples proved that the column has good practical application potential. In summary, the poposed method provides a general way for preparing metal-organic framework-polymer composite material and changed the current status of original metal-organic framework particles modified silica as a single mode chromatographic stationary phase.
Collapse
Affiliation(s)
- Tiantian Si
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China.
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
36
|
Homochiral coordination architectures based on a series of pyridyl-alanine derivatives with varied configurations: Structural diversity, photoluminescence and magnetic properties. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Yuan B, Li L, Yu Y, Xu N, Fu N, Zhang J, Zhang M, Wang B, Xie S, Yuan L. Chiral metal-organic framework [Co2(d-cam)2(TMDPy)]@SiO2 core-shell microspheres for HPLC separation. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Zhang Y, Jin X, Ma X, Wang Y. Chiral porous organic frameworks and their application in enantioseparation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:8-33. [PMID: 33245740 DOI: 10.1039/d0ay01831g] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Porous organic frameworks (POFs) are a kind of porous material with a network structure composed of repeated monomers, which have excellent physical and chemical properties, such as a high surface area, high porosity, uniform pore sizes and structural diversity, and which have aroused broad interest among researchers. With the rapid development of materials science, increasingly more porous materials have been developed and applied, especially metal organic frameworks (MOFs) and covalent organic frameworks (COFs), which have been widely applied in the fields of luminous materials, catalytic research, adsorption and drug transport. One of the most important applications for chiral porous materials is in chiral separation and these materials have become a research hotspot in the field of chromatographic separation and analysis in recent years. In this review, from the viewpoint of enantioseparation, the synthesis of chiral porous materials and their applications in high-performance liquid chromatography (HPLC), capillary electrochromatography (CEC), and gas chromatography (GC) are reviewed. The typical applications of MOFs in solid-phase microextraction (SPME) are also discussed.
Collapse
Affiliation(s)
- Ying Zhang
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | | | | | | |
Collapse
|
39
|
Si T, Liang X, Lu X, Wang L, Wang S, Guo Y. 2D metal-organic framework nanosheets-assembled core-shell composite material as stationary phase for hydrophilic interaction liquid chromatography. Talanta 2021; 222:121603. [DOI: 10.1016/j.talanta.2020.121603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
|
40
|
Jiang H, Yang K, Zhao X, Zhang W, Liu Y, Jiang J, Cui Y. Highly Stable Zr(IV)-Based Metal-Organic Frameworks for Chiral Separation in Reversed-Phase Liquid Chromatography. J Am Chem Soc 2020; 143:390-398. [PMID: 33356210 DOI: 10.1021/jacs.0c11276] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal-organic frameworks (MOFs) have been widely explored as chiral stationary phases (CSPs) in chiral resolution. However, it remains a challenge to develop new CSPs for reversed-phase high-performance liquid chromatography (RP-HPLC), which is the most popular chromatographic mode and accounts for over 90% of all separations. Here we demonstrated for the first time that highly stable Zr-based MOFs can be efficient CSPs for RP-HPLC. By elaborately designing and synthesizing three tetracarboxylate ligands of enantiopure 1,1'-biphenyl-20-crown-6, we prepared three chiral porous Zr(IV)-MOFs with the framework formula [Zr6O4(OH)8(H2O)4(L)2]. They share the same flu topological structure but channels of different sizes and display excellent tolerance to water, acid, and base. Chiral crown ether moieties are periodically aligned within the framework channels, allowing for stereoselective recognition of guest molecules via supramolecular interactions. Under acidic aqueous eluent conditions, the Zr-MOF-packed HPLC columns provide high resolution, selectivity, and durability for the separation of a variety of model racemates, including unprotected and protected amino acids and N-containing drugs, which are comparable to or even superior to several commercial chiral columns for HPLC separation. DFT calculations suggest that the Zr-MOF provides a confined microenvironment for chiral crown ethers that dictates the separation selectivity.
Collapse
Affiliation(s)
- Hong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xiangxiang Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenqiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Tang B, Zhang X, Geng L, Sun L, Luo A. A chiral metal-organic cage used as the stationary phase for gas chromatography separations. J Chromatogr A 2020; 1636:461792. [PMID: 33340747 DOI: 10.1016/j.chroma.2020.461792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Chiral metal-organic cages (MOCs) are a new type of porous materials with unique molecular recognition ability, which have received research attention as a chiral stationary phase (CSP) for gas chromatography (GC). Herein, we report the detailed investigation of a chiral MOC ([Cu12(LPA)12(H2O)12], PA = L-phenylalanine, MOC-PA) as a novel stationary phase for GC separations. The MOC-PA capillary column exhibited a high-resolution performance for a wide range of analytes, including n-alkanes, n-alcohols, esters, aromatic compounds and the Grob mixture, positional isomers and racemates. In particular, MOC-PA coated column displayed good resolution and performance for amino acid derivatives. Moreover, the MOC-PA column showed excellent separation repeatability and reproducibility. The relative standard deviation (RSD) values for the retention times were in the range of 0.16-0.30% for run to run (n = 3), 0.31-0.77% for day-to-day (n = 3), and 3.6-4.7% for column-to-column (n = 3), respectively. The experimental results showed that MOC-PA had great potential as a GC stationary phase.
Collapse
Affiliation(s)
- Bo Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| | - Xin Zhang
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China
| | - Lina Geng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, China.
| |
Collapse
|
42
|
Si T, Lu X, Zhang H, Liang X, Wang S, Guo Y. A new strategy for the preparation of core-shell MOF/Polymer composite material as the mixed-mode stationary phase for hydrophilic interaction/ reversed-phase chromatography. Anal Chim Acta 2020; 1143:181-188. [PMID: 33384116 DOI: 10.1016/j.aca.2020.11.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023]
Abstract
A facile method for efficient synthesis of core-shell composite material was proposed. In this method, the silica microspheres were co-modified with metal organic framework (MOF-235) and polyethylene glycol polymer (PEG) and used as mixed-mode stationary phase (MOF-235@PEG@silica) for high-performance liquid chromatography. Elemental analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and Brunauer-Emmett-Teller etc. methods were used to investigate the properties of the core-shell composite material. The MOF-235@PEG@silica stationary phase showed flexible selectivity for the separation of both hydrophilic and hydrophobic compounds especially for the separation of nine alkaloids, which showed superior hydrophilic separation performance than previous MOF-based composite stationary phases. Some factors including the pH of buffer salt, the ratio of organic phase and water phase in the mobile phase have been investigated, suggesting that the chromatographic retention mechanism of the column was a mixed mode of hydrophilic and reversed phase. The composite material also showed excellent chromatographic repeatability with the RSDs of the retention time found to be 0.2%-0.6% (n = 10) and the standard addition test in the actual sample proved that it can be used for practical sample analysis. In short, it provided a general way for preparing MOFs-based composites as mixed-mode chromatographic stationary phases, and changed the current status of MOF-based composite materials as single mode chromatographic stationary phases.
Collapse
Affiliation(s)
- Tiantian Si
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
43
|
|
44
|
Hao C, Xu L, Kuang H, Xu C. Artificial Chiral Probes and Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1802075. [PMID: 30656745 DOI: 10.1002/adma.201802075] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/29/2018] [Indexed: 06/09/2023]
Abstract
The development of artificial chiral architectures, especially chiral inorganic nanostructures, has greatly promoted research into chirality in nanoscience. The nanoscale chirality of artificial chiral nanostructures offers many new application opportunities, including chiral catalysis, asymmetric synthesis, chiral biosensing, and others that may not be allowed by natural chiral molecules. Herein, the progress achieved during the past decade in chirality-associated biological applications (biosensing, biolabeling, and bioimaging) combined with individual chiral nanostructures (such as chiral semiconductor nanoparticles and chiral metal nanoparticles) or chiral assemblies is discussed.
Collapse
Affiliation(s)
- Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
45
|
Wang C, Zhang L, Li X, Yu A, Zhang S. Controlled fabrication of core-shell silica@chiral metal-organic framework for significant improvement chromatographic separation of enantiomers. Talanta 2020; 218:121155. [DOI: 10.1016/j.talanta.2020.121155] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 01/15/2023]
|
46
|
Tang B, Sun C, Wang W, Geng L, Sun L, Luo A. Chiral amorphous metal–organic polyhedra used as the stationary phase for high‐resolution gas chromatography separations. Chirality 2020; 32:1178-1185. [DOI: 10.1002/chir.23263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Bo Tang
- School of Life ScienceBeijing Institute of Technology Beijing China
| | - Chenyu Sun
- School of Life ScienceBeijing Institute of Technology Beijing China
| | - Wei Wang
- School of Life ScienceBeijing Institute of Technology Beijing China
| | - Lina Geng
- School of Life ScienceBeijing Institute of Technology Beijing China
| | - Liquan Sun
- School of Life ScienceBeijing Institute of Technology Beijing China
| | - Aiqin Luo
- School of Life ScienceBeijing Institute of Technology Beijing China
| |
Collapse
|
47
|
Yu Y, Xu N, Zhang J, Wang B, Xie S, Yuan L. Chiral Metal-Organic Framework d-His-ZIF-8@SiO 2 Core-Shell Microspheres Used for HPLC Enantioseparations. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16903-16911. [PMID: 32176483 DOI: 10.1021/acsami.0c01023] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chiral metal-organic frameworks (MOFs) have aroused great attention in the chiral separation field based on their excellent characteristics, including abundant topological structures, large surface area, adjustable pore/channel sizes, multiple active sites, and good chemical stability. However, the irregular morphology and nonuniformity of the synthesized MOF particles cause low column efficiency and high column backpressure for MOF-packed columns, which significantly affects their separation performance. Herein, we prepared a homochiral d-his-ZIF-8@SiO2 composite by growing of d-his-ZIF-8 on the carboxylic-functionalized SiO2 microspheres via a simple one-pot synthesis approach. The d-his-ZIF-8@SiO2 core-shell microspheres with uniform particles and narrow size distribution were applied as the chiral stationary phase (CSP) for enantioseparations in HPLC. Various racemates were separated on the d-his-ZIF-8@SiO2-packed columns with n-hexane/isopropanol as the mobile phase. Eighteen racemates including alcohol, phenol, amine, ketone, and organic acid were well resolved on the homochiral d-his-ZIF-8@SiO2 CSP. The d-his-ZIF-8@SiO2 core-shell microspheres' CSP possesses an excellent chiral resolution ability toward various racemic compounds with good reproducibility and stability. Hence, the fabrication of chiral MOF@SiO2 core-shell microspheres is an effective strategy to improve the application of homochiral MOFs as CSPs in the field of chromatography.
Collapse
Affiliation(s)
- Yunyan Yu
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P. R. China
| | - Nayan Xu
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P. R. China
| | - Junhui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P. R. China
| | - Bangjin Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P. R. China
| | - Shengming Xie
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P. R. China
| | - Liming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, P. R. China
| |
Collapse
|
48
|
Polycarbonate Microchip Containing CuBTC-Monopol Monolith for Solid-Phase Extraction of Dyes. Int J Anal Chem 2020; 2020:8548927. [PMID: 32095138 PMCID: PMC7036109 DOI: 10.1155/2020/8548927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022] Open
Abstract
In the present study, preparation of CuBTC-monopol monoliths for use within the microchip solid phase extraction was undertaken through a 20-min UV lamp-assisted polymerization for 2,2-dimethoxy-2-phenyl acetophenone (DMPA), butyl methacrylate (BMA), and ethylene dimethacrylate (EDMA) alongside inclusion of the porogenic solvent system (1-propanol and methanol (1 : 1)). The resultant coating underwent coating using CuBTC nanocrystals in ethanolic solution of ethanolic solution of 1,3,5-benzenetricarboxylic acid (H3BTC, 10 mM) and 10 mM copper(II) acetate Cu(CH3COO)2. This paper reports enhanced extraction, characterization, and synthesis studies for porous CuBTC metal organic frameworks that are marked by different methods including SEM/EDAX analysis, atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy (FT-IR). The evaluation of the microchip's performance was undertaken as sorbent through retrieval of six toxic dyes (anionic and cationic dyes). Various parameters (desorption and extraction step flow rates, volume of desorption solvent, volume of sample, and type of desorption solvent) were examined to optimize dye extraction using fabricated microchips. The result indicated that CuBTC-monopol monoliths were permeable with the ability of removing impurities and attained high toxic dye extraction recovery (83.4-99.9%). The assessment of reproducibility for chip-to-chip was undertaken by computing the relative standard deviations (RSDs) of the six dyes in extraction. The interbatch and intrabatch RSDs ranged between 3.8 and 6.9% and 2.3 and 4.8%. Such features showed that fabricated CuBTC-monopol monolithic disk polycarbonate microchips have the potential of extracting toxic dyes that could be utilized for treating wastewater.
Collapse
|
49
|
Shuang Y, Liao Y, Zhang T, Li L. Preparation and evaluation of an ethylenediamine dicarboxyethyl diamido-bridged bis(β-cyclodextrin)-bonded chiral stationary phase for high performance liquid chromatography. J Chromatogr A 2020; 1619:460937. [PMID: 32063276 DOI: 10.1016/j.chroma.2020.460937] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 11/25/2022]
Abstract
An ethylenediamine dicarboxyethyl diacetamido-bridged bis(β-cyclodextrin) was firstly synthesized through the reaction of 6-deoxy-6-amino-β-cyclodextrin (NH2-CD) with ethylenediaminetetraacetic dianhydride. Then it was bonded onto the surface of silica gel SBA-15 to obtain an ethylenediamine dicarboxyethyl diacetamido-bridged bis(β-CD)-bonded chiral stationary phase (EBCDP). The structures of the bridged bis(β-CD) and EBCDP were characterized by infrared spectroscopy, mass spectrometry, elemental analysis and thermogravimetric analysis, accordingly. The chiral chromatographic performances of EBCDP were systematically evaluated by separating 28 racemic analytes in the reversed-phase or polar organic mode, including eight flavanones, eight bolckers, five dansyl-amino acids, three DL-amino acids and four other common drugs. As a result, the relatively high enantioselectivity of EBCDP was observed in comparison with a native β-CD-CSP (CDSP). All selected analytes were separated on EBCDP, of which 20 analytes had resolutions up to baseline, 2'-hydroxyflavanone and arotinolol had resolutions up to 4.35 and 2.05 in about 30 min, respectively, whereas CDSP only separated 11 analytes with low resolutions (0.55~1.69). Moreover, EBCDP was able to utilize the complexation of the bridging linker (ethylenediamine dicarboxyethyl diamide group, EDTA-based) to realize direct separations of DL-amino acids with a mobile phase containing copper ion (Cu2+), which was similar to the chiral ligand exchange chromatography. Unlike the native cyclodextrin with small cavity (~242 Å3), the bridged bis(β-CD) combined two β-CD units with a bridging linker, having a well-organized "pseudo-cavity" as an organic whole to encapsulate more analytes, which made EBCDP have broad-spectrum applications in chiral separations.
Collapse
Affiliation(s)
- Yazhou Shuang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yuqin Liao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Tianci Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Laisheng Li
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
50
|
Tang H, Yang K, Wang KY, Meng Q, Wu F, fang Y, Wu X, Li Y, Zhang W, Luo Y, Zhu C, Zhou HC. Engineering a homochiral metal–organic framework based on an amino acid for enantioselective separation. Chem Commun (Camb) 2020; 56:9016-9019. [DOI: 10.1039/d0cc00897d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A homochiral metal–organic framework is constructed from an amino acid-derived ligand and it exhibits high enantioseparation capacities for alcohols, epoxides, and ibuprofen.
Collapse
|