1
|
Goyal N, Sridhar J, Do C, Bratton M, Shaik S, Jiang Q, Foroozesh M. Identification of CYP 2A6 inhibitors in an effort to mitigate the harmful effects of the phytochemical nicotine. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7:18. [PMID: 34722929 PMCID: PMC8555909 DOI: 10.20517/2394-4722.2020.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM In this study, our goal was to study the inhibition of nicotine metabolism by P450 2A6, as a means for reduction in tobacco use and consequently the prevention of smoking-related cancers. Nicotine, a phytochemical, is an addictive stimulant, responsible for the tobacco-dependence in smokers. Many of the other phytochemicals in tobacco, including polycyclic aromatic hydrocarbons, N-nitrosamines, and aromatic amines, are potent systemic carcinogens. Tobacco smoking causes about one of every five deaths in the United States annually. Nicotine plasma concentration is maintained by the smokers' smoking behavior within a small range. Nicotine is metabolized by cytochrome P450s 2A6 and 2A13 to cotinine. This metabolism causes a decrease in nicotine plasma levels, which in turn leads to increased tobacco smoking, and increased exposure to the tobacco carcinogens. METHODS Using the phytochemical nicotine as a lead structure, and taking its interactions with the P450 2A6 binding pocket into consideration, new pyridine derivatives were designed and synthesized as potential selective mechanism-based inhibitors for this enzyme. RESULTS The design and synthesis of two series of novel pyridine-based compounds, with varying substituents and substitution locations on the pyridine ring, as well as their inhibitory activities on cytochrome P450 2A6 and their interactions with its active site are discussed here. Substitutions at position 3 of the pyridine ring with an imidazole or propargyl ether containing group showed the most optimal interactions with the P4502A6 active site. CONCLUSION The pyridine compounds with an imidazole or propargyl ether containing substituent on position 3 were found to be promising lead compounds for further development. Hydrogen-bonding interactions were determined to be crucial for effective binding of these molecules within the P450 2A6 active site.
Collapse
Affiliation(s)
- Navneet Goyal
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Jayalakshmi Sridhar
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Camilla Do
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Melyssa Bratton
- Cell and Molecular Biology and Bioinformatic Core, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Shahensha Shaik
- Cell and Molecular Biology and Bioinformatic Core, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Quan Jiang
- Cell and Molecular Biology and Bioinformatic Core, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
2
|
Engineered human CYP2C9 and its main polymorphic variants for bioelectrochemical measurements of catalytic response. Bioelectrochemistry 2020; 138:107729. [PMID: 33421896 DOI: 10.1016/j.bioelechem.2020.107729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Polymorphism is an important aspect in drug metabolism responsible for different individual response to drug dosage, often leading to adverse drug reactions. Here human CYP2C9 as well as its polymorphic variants CYP2C9*2 and CYP2C9*3 present in approximately 35% of the Caucasian population have been engineered by linking their gene to the one of D. vulgaris flavodoxin (FLD) that acts as regulator of the electron flow from the electrode surface to the haem. The redox properties of the immobilised proteins were investigated by cyclic voltammetry and electrocatalysis was measured in presence of the largely used anticoagulant drug S-warfarin, marker substrate for CYP2C9. Immobilisation of the CYP2C9-FLD, CYP2C9*2-FLD and CYP2C9*3-FLD on DDAB modified glassy carbon electrodes showed well defined redox couples on the oxygen-free cyclic voltammograms and mid-point potentials of all enzymes were calculated. Electrocatalysis in presence of substrate and quantification of the product formed showed lower catalytic activities for the CYP2C9*3-FLD (2.73 ± 1.07 min-1) and CYP2C9*2-FLD (12.42 ± 2.17 min-1) compared to the wild type CYP2C9-FLD (18.23 ± 1.29 min-1). These differences in activity among the CYP2C9 variants are in line with the reported literature data, and this set the basis for the use of the bio-electrode for the measurement of the different catalytic responses towards drugs very relevant in therapy.
Collapse
|
3
|
Sadeghi SJ, Di Nardo G, Gilardi G. Chimeric cytochrome P450 3A4 used for in vitro prediction of food-drug interactions. Biotechnol Appl Biochem 2020; 67:541-548. [PMID: 32713008 DOI: 10.1002/bab.1993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/26/2022]
Abstract
Inhibition of cytochrome P450 (CYP)-mediated drug metabolism by dietary substances is the main cause of drug-food interactions in humans. The present study reports on the in vitro inhibition assays of human CYP3A4 genetically linked to the reductase domain of bacterial BM3 of Bacillus megaterium (BMR) resulting in the chimeric protein CYP3A4-BMR. The activity of this chimeric enzyme was initially measured colorimetrically with erythromycin as the substrate where KM values similar to published data were determined. Subsequently, the inhibition assays with three different dietary products, grapefruit juice, curcumin, and resveratrol, were carried out with the chimeric enzyme both in solution and immobilized on electrode surfaces. For the solution studies, nicotinamide adenine dinucleotide phosphate was added as the electron donor, whereas the need for this cofactor was obviated in the immobilized enzyme as it was supplied by the electrode. Inhibition of the N-demethylation of erythromycin by CYP3A4-BMR chimera was measured at increasing concentrations of the different dietary compounds with calculated IC50 values of 0.5%, 31 μM, and 250 μM for grapefruit juice, curcumin, and resveratrol measured in solution compared with 0.7%, 24 μM, and 208 μM measured electrochemically, respectively. These data demonstrate the feasibility of the use of both CYP3A4-BMR chimera as well as bioelectrochemistry for in vitro studies of not only drug-food interactions but also prediction of adverse drug reactions in this important P450 enzyme.
Collapse
Affiliation(s)
- Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Centre for Nanostructured Interfaces and Surfaces, University of Torino, Torino, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Centre for Nanostructured Interfaces and Surfaces, University of Torino, Torino, Italy
| |
Collapse
|
4
|
Surface charge-controlled electron transfer and catalytic behavior of immobilized cytochrome P450 BM3 inside dendritic mesoporous silica nanoparticles. Anal Bioanal Chem 2020; 412:4703-4712. [PMID: 32483647 DOI: 10.1007/s00216-020-02727-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
Understanding the influencing factors on the reaction kinetics of P450 BM3 within confined spaces is essential for developing efficient P450 BM3 bioreactors. Herein, two dendritic mesoporous silica nanoparticles (OH-DMSNs and NH2-DMSNs) with similar pore size but opposite surface charge have been prepared and served as the vehicle to immobilize P450 BM3. With the help of the film-forming material of chitosan, P450 BM3/OH-DMSN and P450 BM3/NH2-DMSN composites were immobilized on GC electrode and characterized with electrochemical measurements. Compared with P450 BM3/OH-DMSNs/GCE, P450 BM3/NH2-DMSNs/GCE showed higher electron transfer efficiency with higher current charge and lower ks value. Besides, the generated catalytic current towards testosterone on P450 BM3/NH2-DMSNs/GCE was 1.81 times larger than P450 BM3/OH-DMSNs/GCE. Furthermore, P450 BM3 inside NH2-DMSNs displayed higher affinity towards testosterone with the lower Kmapp value of 244.82 μM. These results are attributed to the positively charged internal walls of NH2-DMSNs so that P450 BM3 adapts to an orientation favorable for electron exchange with electrodes and substrate binding with the active sites. The present study provides fundamentals for regulating the surface charge to optimize redox process and catalytic behavior in CYP bioreactors through electrostatic interactions.
Collapse
|
5
|
Kesik‐Brodacka M. Progress in biopharmaceutical development. Biotechnol Appl Biochem 2018; 65:306-322. [PMID: 28972297 PMCID: PMC6749944 DOI: 10.1002/bab.1617] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
Since its introduction in 1982, biopharmaceutical drugs have revolutionized the treatment of a broad spectrum of diseases and are increasingly used in nearly all branches of medicine. In recent years, the biopharmaceuticals market has developed much faster than the market for all drugs and is believed to have great potential for further dynamic growth because of the tremendous demand for these drugs. Biobetters, which contain altered active pharmaceutical ingredients with enhanced efficacy, will play an important role in the development of biopharmaceuticals. Another significant group of biopharmaceuticals are biosimilars. Their introduction in the European Union and, recently, the Unites States markets will reduce the costs of biopharmaceutical treatment. This review highlights recent progress in the field of biopharmaceutical development and issues concerning the registration of innovative biopharmaceuticals and biosimilars. The leading class of biopharmaceuticals, the current biopharmaceuticals market, and forecasts are also discussed.
Collapse
|
6
|
Xu X, Bai G, Song L, Zheng Q, Yao Y, Liu S, Yao C. Fast steroid hormone metabolism assays with electrochemical liver microsomal bioreactor based on polydopamine encapsulated gold-graphene nanocomposite. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Castrignanò S, D'Avino S, Di Nardo G, Catucci G, Sadeghi SJ, Gilardi G. Modulation of the interaction between human P450 3A4 and B. megaterium reductase via engineered loops. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:116-125. [PMID: 28734977 DOI: 10.1016/j.bbapap.2017.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/09/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Chimerogenesis involving cytochromes P450 is a successful approach to generate catalytically self-sufficient enzymes. However, the connection between the different functional modules should allow a certain degree of flexibility in order to obtain functional and catalytically efficient proteins. We previously applied the molecular Lego approach to develop a chimeric P450 3A4 enzyme linked to the reductase domain of P450 BM3 (BMR). Three constructs were designed with the connecting loop containing no glycine, 3 glycine or 5 glycine residues and showed a different catalytic activity and coupling efficiency. Here we investigate how the linker affects the ability of P450 3A4 to bind substrates and inhibitors. We measure the electron transfer rates and the catalytic properties of the enzyme also in the presence of ketoconazole as inhibitor. The data show that the construct 3A4-5GLY-BMR with the longest loop better retains the binding ability and cooperativity for testosterone, compared to P450 3A4. In both 3A4-3GLY-BMR and 3A4-5GLY-BMR, the substrate induces an increase in the first electron transfer rate and a shorter lag phase related to a domain rearrangements, when compared to the construct without Gly. These data are consistent with docking results and secondary structure predictions showing a propensity to form helical structures in the loop of the 3A4-BMR and 3A4-3GLY-BMR. All three chimeras retain the ability to bind the inhibitor ketoconazole and show an IC50 comparable with those reported for the wild type protein. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Silvia Castrignanò
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Serena D'Avino
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy.
| |
Collapse
|
8
|
Baravalle R, Ciaramella A, Baj F, Di Nardo G, Gilardi G. Identification of endocrine disrupting chemicals acting on human aromatase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:88-96. [PMID: 28578073 DOI: 10.1016/j.bbapap.2017.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 01/28/2023]
Abstract
Human aromatase is the cytochrome P450 catalysing the conversion of androgens into estrogens playing a key role in the endocrine system. Due to this role, it is likely to be a target of the so-called endocrine disrupting chemicals, a series of compounds able to interfere with the hormone system with toxic effects. If on one side the toxicity of some compounds such as bisphenol A is well known, on the other side the toxic concentrations of such compounds as well as the effect of the many other molecules that are in contact with us in everyday life still need a deep investigation. The availability of biological assays able to detect the interaction of chemicals with key molecular targets of the endocrine system represents a possible solution to identify potential endocrine disrupting chemicals. Here the so-called alkali assay previously developed in our laboratory is applied to test the effect of different compounds on the activity of human aromatase. The assay is based on the detection of the alkali product that forms upon strong alkali treatment of the NADP+ released upon enzyme turnover. Here it is applied on human aromatase and validated using anastrozole and sildenafil as known aromatase inhibitors. Out of the small library of compounds tested, resveratrol and ketoconazole resulted to inhibit aromatase activity, while bisphenol A and nicotine were found to exert an inhibitory effect at relatively high concentrations (100μM), and other molecules such as lindane and four plasticizers did not show any significant effect. These data are confirmed by quantification of the product estrone in the same reaction mixtures through ELISA. Overall, the results show that the alkali assay is suitable to screen for molecules that interfere with aromatase activity. As a consequence it can also be applied to other molecular targets of EDCs that use NAD(P)H for catalysis in a high throughput format for the fast screening of many different compounds as endocrine disrupting chemicals. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Roberta Baravalle
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Alberto Ciaramella
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Francesca Baj
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy.
| |
Collapse
|
9
|
Degregorio D, D'Avino S, Castrignanò S, Di Nardo G, Sadeghi SJ, Catucci G, Gilardi G. Human Cytochrome P450 3A4 as a Biocatalyst: Effects of the Engineered Linker in Modulation of Coupling Efficiency in 3A4-BMR Chimeras. Front Pharmacol 2017; 8:121. [PMID: 28377716 PMCID: PMC5359286 DOI: 10.3389/fphar.2017.00121] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/27/2017] [Indexed: 11/15/2022] Open
Abstract
Human liver cytochrome P450 3A4 is the main enzyme involved in drug metabolism. This makes it an attractive target for biocatalytic applications, such as the synthesis of pharmaceuticals and drug metabolites. However, its poor solubility, stability and low coupling have limited its application in the biotechnological context. We previously demonstrated that the solubility of P450 3A4 can be increased by creating fusion proteins between the reductase from Bacillus megaterium BM3 (BMR) and the N-terminally modified P450 3A4 (3A4-BMR). In this work, we aim at increasing stability and coupling efficiency by varying the length of the loop connecting the two domains to allow higher inter-domain flexibility, optimizing the interaction between the domains. Starting from the construct 3A4-BMR containing the short linker Pro-Ser-Arg, two constructs were generated by introducing a 3 and 5 glycine hinge (3A4-3GLY-BMR and 3A4-5GLY-BMR). The three fusion proteins show the typical absorbance at 450 nm of the reduced heme-CO adduct as well as the correct incorporation of the FAD and FMN cofactors. Each of the three chimeric proteins were more stable than P450 3A4 alone. Moreover, the 3A4-BMR-3-GLY enzyme showed the highest NADPH oxidation rate in line with the most positive reduction potential. On the other hand, the 3A4-BMR-5-GLY fusion protein showed a Vmax increased by 2-fold as well as a higher coupling efficiency when compared to 3A4-BMR in the hydroxylation of the marker substrate testosterone. This protein also showed the highest rate value of cytochrome c reduction when this external electron acceptor is used to intercept electrons from BMR to P450. The data suggest that the flexibility and the interaction between domains in the chimeric proteins is a key parameter to improve turnover and coupling efficiency. These findings provide important guidelines in engineering catalytically self-sufficient human P450 for applications in biocatalysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of TurinTurin, Italy
| |
Collapse
|
10
|
Rua F, Sadeghi SJ, Castrignanò S, Valetti F, Gilardi G. Electrochemistry of Canis familiaris cytochrome P450 2D15 with gold nanoparticles: An alternative to animal testing in drug discovery. Bioelectrochemistry 2015; 105:110-6. [DOI: 10.1016/j.bioelechem.2015.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/05/2015] [Accepted: 03/22/2015] [Indexed: 11/15/2022]
|
11
|
Bioelectrochemistry as a tool for the study of aromatization of steroids by human aromatase. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Cui D, Mi L, Xu X, Lu J, Qian J, Liu S. Nanocomposites of graphene and cytochrome P450 2D6 isozyme for electrochemical-driven tramadol metabolism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11833-11840. [PMID: 25222611 DOI: 10.1021/la502699m] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cytochrome P450 enzymes (cyt P450s) with an active center of iron protoheme are involved in most clinical drugs metabolism process. Herein, an electrochemical platform for the investigation of drug metabolism in vitro was constructed by immobilizing cytochrome P450 2D6 (CYP2D6) with cyt P450 reductase (CPR) on graphene modified glass carbon electrode. Direct and reversible electron transfer of the immobilized CYP2D6 with the direct electron transfer constant of 0.47 s(-1) and midpoint potential of -0.483 V was obtained. In the presence of substrate tramadol, the electrochemical-driven CYP2D6 mediated catalytic behavior toward the conversion of tramadol to o-demethyl-tramadol was confirmed. The Michaelis-Menten constant (Km(app)) and heterogeneous reaction rate constant during the metabolism of tramadol were calculated to be 23.85 μM and 1.96 cm s(-1), respectively. The inhibition effect of quinidine on CYP2D6 catalyze-cycle was also investigated. Furthermore, this system was applied to studying the metabolism of other drugs.
Collapse
Affiliation(s)
- Dongmei Cui
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University , Jiangning District 211189, Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|