1
|
Khoubi J, Ghiasvand A, Bahrami A, Shahna FG, Farhadian M. An amide-based covalent organic framework chemically anchored on silica nanoparticles for headspace microextraction sampling of halogenated hydrocarbons in air. J Chromatogr A 2024; 1736:465387. [PMID: 39326383 DOI: 10.1016/j.chroma.2024.465387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
A needle trap device (NTD) was developed using an amide-based covalent-organic framework (COF), chemically bonded to silica nanoparticles. The NTD was coupled with gas chromatography-flame ionization detection (GC-FID) and employed for the headspace microextraction analysis of halogenated hydrocarbons (HHCs) in the air. The adsorbent was characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), and field-emission scanning electron microscopy (FE-SEM) techniques. Optimal values for the experimental variables were assessed using response surface methodology (RSM) with a central composite design (CCD), thereby reducing the number of experiments, material consumption, costs, and time. The optimal values for desorption time and temperature were obtained 5 min and 260 °C, respectively. Breakthrough volume (BtV) was studied over the range of 0.5 - 3 times the occupational exposure limit (OEL) and its optimal value was found to be 1200 mL. The optimal sampling temperature and relative humidity (RH) were obtained 20 °C, and 15 %, respectively. The limits of detection (LODs) and limits of quantification (LOQs) were ranged from 0.013 to 0.077 μg l-1 and 0.041 to 0.21 μg l-1, respectively, with a linear dynamic range (LDR) of 0.04 to 100 μg l-1. The method's repeatability and reproducibility (RSD %) were observed over the ranges of 5.3 - 6.4 % and 4.7 -6.9 %, respectively. A statistically validated agreement was observed between the NTD-GC-FID method and the NIOSH 1003 standard procedure for the sampling and determination of HHCs in real workplace air samples, demonstrating the reliability and accuracy of the developed approach.
Collapse
Affiliation(s)
- Jamshid Khoubi
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran; Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Alireza Ghiasvand
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Abdulrahman Bahrami
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Farshid Ghorbani Shahna
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Rahimpoor R, Soleymani-Ghoozhdi D, Firoozichahak A, Alizadeh S. Needle trap device technique: From fabrication to sampling. Talanta 2024; 276:126255. [PMID: 38776771 DOI: 10.1016/j.talanta.2024.126255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/17/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Needle Trap Device (NTD) as a novel, versatile, and eco-friendly technique has played an important role in analytical and environmental chemistry. The distinctive role of this interdisciplinary technique can be defended through the sampling and analysis of biological samples and industrial pollutants in gaseous and liquid environments. In recent years, significant efforts have been made to enhance the performance of the needle trap device resulting in the development of novel extraction routes by various packing materials with improved selectivity and enhanced adsorption characteristics. These achievements can lead to the facilitated pre-concentration of desired analytes. This review tries to have a comparative and comprehensive survey of the three important areas of NTD technique: I) Fabrication and preparation procedures of NTDs; II) Sampling techniques of pollutants using NTDs; and III) Employed materials as adsorbents in NTDs. In the packing-material section, the commercial and synthetic adsorbents such as carbon materials, metal-organic frameworks, aerogel, and polymers are considered. Furthermore, the limitations and potential areas for future development of the NTD technique are presented.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | | | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran.
| | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University, Hamedan, Iran
| |
Collapse
|
3
|
Belhameid A, Casado-Carmona FA, Megriche A, López-Lorente ÁI, Lucena R, Cárdenas S. On-site extraction of benzophenones from swimming pool water using hybrid tapes based on the integration of hydrophilic-lipophilic balance microparticles and an outer magnetic nanometric domain. Mikrochim Acta 2024; 191:513. [PMID: 39105990 PMCID: PMC11303577 DOI: 10.1007/s00604-024-06586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
An on-site extraction device is presented consisting of scotch tape modified with concentric domains of micrometric hydrophilic-lipophilic balance (HLB) particles surrounded by a ring of nanometric magnetic ones. On the one hand, HLB microparticles are readily available at the surface of the tape, exposed to interact with the target analytes, being responsible for the extraction capacity of the sorptive phase. On the other hand, the presence of magnetic nanoparticles enables the attachment of the modified tape onto a metallic screw via a magnet, which is then coupled to a wireless drill, enabling the stirring of the microextraction device. Both are simply fixed to the cost-effective, flexible, and versatile support, i.e., scotch tape, owing to their adhesive properties. The microextraction device has been applied to the determination of six benzophenones in swimming pool water samples. The variables that may affect the extraction process have been evaluated. Under the optimum conditions and using liquid chromatography-tandem mass spectrometry as the instrumental technique, the method provided a limit of detection of 0.03 µg L-1. The intra-day precision, evaluated at three different concentration levels and expressed as relative standard deviation, was lower than 10%, which also comprises the variability within single-use sorptive tapes. The accuracy, calculated with spiked samples and expressed as relative recovery, ranged from 71 to 138%. The method was applied to the analysis of swimming pool water, revealing the presence of such compounds.
Collapse
Affiliation(s)
- Ahmed Belhameid
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
- Laboratory of Applied Mineral Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, University, Campus El Manar 1, 2092, Tunis, Tunisia
| | - Francisco Antonio Casado-Carmona
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Illes Balears, Carretera de Valldemossa Km 7.5, E-07122, Palma de Mallorca, Spain
| | - Adel Megriche
- Laboratory of Applied Mineral Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, University, Campus El Manar 1, 2092, Tunis, Tunisia
| | - Ángela Inmaculada López-Lorente
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| |
Collapse
|
4
|
Rahimpoor R, Soleymani-Ghoozhdi D, Alizadeh S, Firoozichahak A, Mehregan F, Firoozi R. Investigation of organophosphorus (OPs) compounds by a needle trap device based on mesoporous organo-layered double hydroxide (organo-LDH). RSC Adv 2023; 13:17656-17666. [PMID: 37312990 PMCID: PMC10258888 DOI: 10.1039/d3ra01732j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Organophosphorus (OPs) compounds can endanger human health and the environment by inhibiting the acetylcholinesterase enzyme. But these compounds have been widely used as pesticides due to their effectiveness against all kinds of pests. In this study, a Needle Trap Device (NTD) packed with mesoporous organo-layered double hydroxide (organo-LDH) material and coupled with gas chromatography-mass spectrometry (GC-MS) was employed for the sampling and analysis of OPs compounds (diazinon, ethion, malathion, parathion, and fenitrothion). In this way, the [magnesium-zinc-aluminum] layered double hydroxide ([Mg-Zn-Al] LDH) modified with sodium dodecyl sulfate (SDS) as a surfactant was prepared and characterized by FT-IR, XRD, BET, and FE-SEM, EDS, and elemental mapping techniques. Then, various parameters such as relative humidity, sampling temperature, desorption time, and desorption temperature were evaluated by the mesoporous organo-LDH:NTD method. The optimal values of these parameters were determined using response surface methodology (RMS) and central composite design (CCD). The optimal temperature and relative humidity values were obtained as 20 °C and 25.0%, respectively. On the other hand, the desorption temperature and time values were in the range of 245.0-254.0 °C and 5 min, respectively. The limit of detection (LOD) and limit of quantification (LOQ) were reported in the range of 0.02-0.05 mg m-3 and 0.09-0.18 mg m-3, respectively, which shows the high sensitivity of the proposed method compared to the usual methods. The repeatability and reproducibility of the proposed method (by calculating the relative standard deviation) was estimated in the range of 3.8-10.10 which indicates the acceptable precision of the organo-LDH:NTD method. Also, the desorption rate of the stored needles at 25 °C and 4 °C, was determined to be 86.0% and 96.0%, respectively after 6 days. The results of this study proved that the mesoporous organo-LDH:NTD method can be utilized as a fast, simple, environmentally friendly, and effective method for sampling and determining OPs compounds in the air.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences Larestan Iran
| | - Danial Soleymani-Ghoozhdi
- Student Research Committee, Faculty of Public Health, Kerman University of Medical Sciences Kerman Iran
| | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University Hamedan Iran
| | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Science Gonabad Iran
| | - Faeze Mehregan
- Medical Student, School of Medicine, Shahrekord University of Medical Sciences Shahrekord Iran
| | - Razieh Firoozi
- Computer Engineering, Birjand Branch, Islamic Azad University Birjand Iran
| |
Collapse
|
5
|
Shao Y, Song C, Yue Z, Peng S, Zhao W, Zhang W, Zhang S, Ouyang G. Rapid sampling and determination of phthalate esters in indoor air using needle trap device. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Rahimpoor R, Firoozichahak A, Alizadeh S, Soleymani-Ghoozhdi D, Mehregan F. Application of a needle trap device packed with a MIP@MOF nano-composite for efficient sampling and determination of airborne diazinon pesticide. RSC Adv 2022; 12:16267-16276. [PMID: 35733694 PMCID: PMC9153383 DOI: 10.1039/d2ra01614a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this research, a novel, selective, and efficient porous adsorbent nano-composite comprising a molecularly imprinted polymer and a metal-organic framework (MIP@MOF) was employed for sampling, extraction and analysis of diazinon from the air by a needle trap device (NTD), for the first time. The synthesized MIP@MOF sorbent was characterized by the FT-IR, XRD, FE-SEM, TEM, and EDS techniques. Then, the effective parameters of the sampling (temperature and humidity) and desorption (time and temperature) process were optimized by response surface methodology (RSM). The optimum values of temperature and humidity of the sampling chamber were estimated to be 20 °C and 25.0%, respectively. Also, the highest response during the analyte desorption was obtained at 262 °C and 4.5 minutes. For more details, the performance of the MIP@MOF:NTD method was evaluated by determination of important parameters such as repeatability, reproducibility, the limit of detection (LOD), and the limit of quantification (LOQ), and then compared with the NIOSH 5600 standard method. The values of LOD and LOQ for the targeted analyte were determined to be 0.02 and 0.1 μg m-3, respectively. Also, the repeatability and reproducibility of the proposed method were obtained in the range of (3.9-5.1)% and (5.1-6.4)%, respectively, which proved the acceptable precision of the method. Furthermore, the results of this study exhibited a high correlation coefficient (R 2 = 0.9781) between the proposed method and the recommended NIOSH method. Finally, the proposed procedure was utilized for sampling and determination of the airborne diazinon in real conditions. These results indicated that the proposed MIP@MOF:NTD method can be employed as a fast, simple, environmentally friendly, selective, and effective procedure for sampling and determining diazinon in air.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences Larestan Iran
| | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Science Gonabad Iran
| | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University Hamedan Iran
| | - Danial Soleymani-Ghoozhdi
- Student Research Committee, Faculty of Public Health, Kerman University of Medical Sciences Kerman Iran
| | - Faeze Mehregan
- School of Medicine, Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
7
|
|
8
|
Safarpour Khotbesara N, Bahrami A, Habibi Mohraz M, Afkhami A, Farhadian M. Development of a needle trap device packed with the Schiff base network-1/single-walled carbon nanotube for sampling phenolic compounds in air. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Zeinali S, Pawliszyn J. Needle-Trap Device Containing a Filter: A Novel Device for Aerosol Studies. Anal Chem 2021; 93:14401-14408. [PMID: 34661386 DOI: 10.1021/acs.analchem.1c01964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Particles in an aerosol sample contain a portion of the total available analytes. Therefore, particle trapping is required to fully characterize a gaseous sample. Needle-trap devices (NTDs) are highly useful to this end, as they allow sampling and preconcentration of free analytes, as well as the trapping of particles. Packing sorbents into the needle creates a filter that traps solid particles or liquid droplets. However, the particle-trapping efficiency of sorbent-packed NTDs is limited, especially for nanoparticles. To address this issue, an aerogel based on electrospun polyacrylonitrile (PAN) was prepared for trapping small particles to analyze particle-bound analytes. The PAN aerogel filter was fabricated by cutting electrospun PAN fibers and removing the remaining solvent via freeze-drying to obtain a light porous fibrous structure. The PAN aerogel was heated (H-PAN) prior to packing to ensure stability during thermal desorption. The trapping efficiency of the H-PAN-packed NTD was measured using a range of conditions, with high filtration efficiencies (>99%) being obtained in all cases. The mechanical stability of the H-PAN aerogel was tested using multiple extraction/desorption cycles with and without solid sorbent particles, with results indicating high repeatability (n = 94, relative standard deviation (RSD) <6%). The developed NTD was compared to thin-film microextraction with respect to their ability to characterize breath samples obtained with or without face masks; the NTD was able to trap both free and droplet-bound analytes, while thin-film microextraction was only able to extract free analytes, which is fully reflected in concentrations obtained with these two methods.
Collapse
Affiliation(s)
- Shakiba Zeinali
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
10
|
Pasquini D, Gori A, Ferrini F, Brunetti C. An Improvement of SPME-Based Sampling Technique to Collect Volatile Organic Compounds from Quercus ilex at the Environmental Level. Metabolites 2021; 11:388. [PMID: 34198607 PMCID: PMC8232123 DOI: 10.3390/metabo11060388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
Biogenic Volatile Organic Compounds (BVOCs) include many chemical compounds emitted by plants into the atmosphere. These compounds have a great effect on biosphere-atmosphere interactions and may affect the concentration of atmospheric pollutants, with further consequences on human health and forest ecosystems. Novel methods to measure and determine BVOCs in the atmosphere are of compelling importance considering the ongoing climate changes. In this study, we developed a fast and easy-to-handle analytical methodology to sample these compounds in field experiments using solid-phase microextraction (SPME) fibers at the atmospheric level. An improvement of BVOCs adsorption from SPME fibers was obtained by coupling the fibers with fans to create a dynamic sampling system. This innovative technique was tested sampling Q. ilex BVOCs in field conditions in comparison with the conventional static SPME sampling technique. The results showed a great potential of this dynamic sampling system to collect BVOCs at the atmosphere level, improving the efficiency and sensitivity of SPME fibers. Indeed, our novel device was able to reduce the sampling time, increase the amount of BVOCs collected through the fibers and add information regarding the emissions of these compounds at the environmental level.
Collapse
Affiliation(s)
- Dalila Pasquini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (A.G.); (F.F.); (C.B.)
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), 50019 Sesto Fiorentino, Italy
| | - Antonella Gori
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (A.G.); (F.F.); (C.B.)
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), 50019 Sesto Fiorentino, Italy
| | - Francesco Ferrini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (A.G.); (F.F.); (C.B.)
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), 50019 Sesto Fiorentino, Italy
- VALUE Laboratory on Green, Health & Wellbeing, University of Florence and the Italian Horticultural Society, 50019 Sesto Fiorentino, Italy
| | - Cecilia Brunetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (A.G.); (F.F.); (C.B.)
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), 50019 Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Casado-Carmona FA, Lasarte-Aragonés G, Kabir A, Furton KG, Lucena R, Cárdenas S. Fan-based device for integrated air sampling and microextraction. Talanta 2021; 230:122290. [PMID: 33934762 DOI: 10.1016/j.talanta.2021.122290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
In this article, a new air sampler based on a conventional computer fan is presented and evaluated. The fan has a double role as it acts as the air pumping system and supports the sorptive phases, which are located on its blades. The compact design and the reduced energy consumption (it can operate with a standard cell phone charger) confers high portability to the device. Also, a simple alternative integrated into the fan is proposed for using an internal standard during the sampling, thus increasing the precision of the measurements. In this first communication, sol-gel Carbowax 20 M coated fabric phases are used as sorptive membranes thanks to their planar geometry, mechanical and thermal stability, and their versatility covering different interaction chemistries. After sampling, the fabric phases are placed in a headspace vial, which is finally analyzed by gas chromatography-mass spectrometry. The sampler has been characterized for the extraction of selected volatile organic compounds (chloroform, benzaldehyde, toluene, and cyclohexane) from air and its versatility has also been evaluated by the identification of semi-volatile compounds in working place (toluene and xylene in laboratory residue storage room) and biogenic volatile compounds in natural samples (terpenes in fresh pine needles and orange peel samples).
Collapse
Affiliation(s)
- Francisco A Casado-Carmona
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - Guillermo Lasarte-Aragonés
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, 11200 SW 8th St., Miami, FL, 33199, USA
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, 11200 SW 8th St., Miami, FL, 33199, USA
| | - Rafael Lucena
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| | - Soledad Cárdenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| |
Collapse
|
12
|
Li H, Bi C, Li X, Xu Y. A needle trap device method for sampling and analysis of semi-volatile organic compounds in air. CHEMOSPHERE 2020; 250:126284. [PMID: 32234620 DOI: 10.1016/j.chemosphere.2020.126284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/08/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Semi-volatile organic compounds (SVOCs), such as phthalates, organophosphates, and polybrominated diphenyl ethers, are emerging as an important class of pollutants that are of serious health concerns. Determining concentrations of these pollutants is of great importance for environmental and exposure studies. In this work, a needle trap device (NTD) method was developed to measure the concentration of SVOCs in air samples. Sorbents were packed in the NTD to capture SVOCs with the aid of a sampling pump. NTD operational parameters, such as desorption temperature, desorption time, and sampling flow rate, were optimized for the target SVOCs. The limit of detection for air sampling by the NTD method ranged between 5 pg and 1 ng, depending on the SVOC compound. The variations in terms of NTD repeatability and reproducibility were lower than 14% for all cases. In addition, the influence of other experimental parameters, such as sampling temperature and humidity, breakthrough volume, NTD storage time, as well as carryover effect were examined. Finally, NTDs were used to determine emissions of gas-phase SVOCs from various consumer products in an emission cell and to collect total airborne SVOC samples (gas and particle phases) in an office. The results of NTD method were in an agreement with data obtained by conventional active sampling methods using Tenax® sorbent tubes and polyurethane foam samplers, but with improvements of relative standard deviation, sensitivity, and sampling time. The results demonstrated that the NTD method is a simple, sensitive, effective, reusable, and inexpensive technique for sampling and analyzing SVOCs in the concentration range from 2 ng m-3 to 100 μg m-3 in air.
Collapse
Affiliation(s)
- Hongwan Li
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Chenyang Bi
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA
| | - Xiaofeng Li
- Department of Building Science, Tsinghua University, Beijing, China
| | - Ying Xu
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, TX, USA; Department of Building Science, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Lan H, Hartonen K, Riekkola ML. Miniaturised air sampling techniques for analysis of volatile organic compounds in air. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115873] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Portable stir membrane device for on-site environmental sampling and extraction. J Chromatogr A 2019; 1606:360359. [DOI: 10.1016/j.chroma.2019.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/12/2023]
|
15
|
Application of a needle trap device packed with XAD-2 polyaniline composite for sampling naphthalene and phenanthrene in air. J Chromatogr A 2019; 1602:74-82. [DOI: 10.1016/j.chroma.2019.05.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/19/2022]
|
16
|
Using labelled internal standards to improve needle trap micro-extraction technique prior to gas chromatography/mass spectrometry. Talanta 2019; 200:145-155. [DOI: 10.1016/j.talanta.2019.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022]
|
17
|
Belinato JR, Dias FFG, Caliman JD, Augusto F, Hantao LW. Opportunities for green microextractions in comprehensive two-dimensional gas chromatography / mass spectrometry-based metabolomics - A review. Anal Chim Acta 2018; 1040:1-18. [PMID: 30327098 DOI: 10.1016/j.aca.2018.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Microextractions have become an attractive class of techniques for metabolomics. The most popular technique is solid-phase microextraction that revolutionized the field of modern sample preparation in the early nineties. Ever since this milestone, microextractions have taken on many principles and formats comprising droplets, fibers, membranes, needles, and blades. Sampling devices may be customized to impart exhaustive or equilibrium-based characteristics to the extraction method. Equilibrium-based approaches may rely on additional methods for calibration, such as diffusion-based or on-fiber kinetic calibration to improve bioanalysis. In addition, microextraction-based methods may enable minimally invasive sampling protocols and measure the average free concentration of analytes in heterogeneous multiphasic biological systems. On-fiber derivatization has evidenced new opportunities for targeted and untargeted analysis in metabolomics. All these advantages have highlighted the potential of microextraction techniques for in vivo and on-site sampling and sample preparation, while many opportunities are still available for laboratory protocols. In this review, we outline and discuss some of the most recent applications using microextractions techniques for comprehensive two-dimensional gas chromatography-based metabolomics, including potential research opportunities.
Collapse
Affiliation(s)
- João R Belinato
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Fernanda F G Dias
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Jaqueline D Caliman
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Fabio Augusto
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Leandro W Hantao
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
18
|
Kędziora-Koch K, Wasiak W. Needle-based extraction techniques with protected sorbent as powerful sample preparation tools to gas chromatographic analysis: Trends in application. J Chromatogr A 2018; 1565:1-18. [DOI: 10.1016/j.chroma.2018.06.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/12/2018] [Accepted: 06/18/2018] [Indexed: 12/31/2022]
|
19
|
Zhang X, Wang P, Han Q, Li H, Wang T, Ding M. Metal-organic framework based in-syringe solid-phase extraction for the on-site sampling of polycyclic aromatic hydrocarbons from environmental water samples. J Sep Sci 2018; 41:1856-1863. [DOI: 10.1002/jssc.201701383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoqiong Zhang
- Beijing Key Laboratory of Control Technology for Toxic, Hazardous, Flammable and Explosive Sources of City; Beijing Municipal Institute of Labor Protection; Beijing P. R. China
| | - Peiyi Wang
- Beijing Key Laboratory of Control Technology for Toxic, Hazardous, Flammable and Explosive Sources of City; Beijing Municipal Institute of Labor Protection; Beijing P. R. China
| | - Qiang Han
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Ministry of Education; Department of Chemistry; Tsinghua University; Beijing P. R. China
| | - Hengzhen Li
- Department of Environmental Remediation; Zhongyan Technology Co. Ltd.; Beijing P. R. China
| | - Tong Wang
- Beijing Key Laboratory of Control Technology for Toxic, Hazardous, Flammable and Explosive Sources of City; Beijing Municipal Institute of Labor Protection; Beijing P. R. China
| | - Mingyu Ding
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology; Ministry of Education; Department of Chemistry; Tsinghua University; Beijing P. R. China
| |
Collapse
|
20
|
In-syringe solid-phase extraction for on-site sampling of pyrethroids in environmental water samples. Anal Chim Acta 2018; 1009:48-55. [PMID: 29422131 DOI: 10.1016/j.aca.2018.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 01/11/2023]
Abstract
On-site sampling is an analytical approach that can ensure the accuracy of monitoring data and enhance the effectiveness of environmental protection measures. In the present work, an in-syringe solid-phase extraction (SPE) device was designed for on-site sampling of trace contaminants in environmental water samples followed by gas chromatography-mass spectrometry (GC-MS) analysis. Template assisted freeze casting followed by hydrazine vapor reduction approach was used to synthesize a hierarchical porous graphene aerogel (HPGA), which was used as the sorbent in the in-syringe SPE device. Environmental degradable pyrethroids were selected as the model analytes. Owing to the large specific surface area and hydrophobicity of HPGA, the target molecules could be completely extracted during one aspirating/dispensing cycle. The analytes were stable on the sorbent for at least 72 h when the device was stored under airtight and light-free conditions, and were not affected by the pH value of sample solution. All results demonstrated that the device could meet the requirements of on-site sampling. For practical application, the limits of detection were found to be in the range of 0.012-0.11 ng mL-1 under the optimized conditions, and satisfactory recoveries in the range of 65.7-105.9% were obtained for the analysis of real samples. The results of this study demonstrate the immense potential of HPGA for the enrichment of trace environmental pollutants, and meanwhile promote the application of the in-syringe SPE technique as a promising candidate for on-site sampling.
Collapse
|
21
|
Ashrafi M, Bates M, Baguneid M, Alonso-Rasgado T, Rautemaa-Richardson R, Bayat A. Volatile organic compound detection as a potential means of diagnosing cutaneous wound infections. Wound Repair Regen 2017; 25:574-590. [DOI: 10.1111/wrr.12563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammed Ashrafi
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair, Centre for Dermatological Research, University of Manchester, Manchester; United Kingdom
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| | | | - Mohamed Baguneid
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
| | - Teresa Alonso-Rasgado
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| | - Riina Rautemaa-Richardson
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
- Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester; Manchester United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair, Centre for Dermatological Research, University of Manchester, Manchester; United Kingdom
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| |
Collapse
|
22
|
Lee J, Rai PK, Jeon YJ, Kim KH, Kwon EE. The role of algae and cyanobacteria in the production and release of odorants in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:252-262. [PMID: 28475978 DOI: 10.1016/j.envpol.2017.04.058] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
This review covers literatures pertaining to algal and cyanobacterial odor problems that have been published over the last five decades. Proper evaluation of algal and cyanobacterial odors may help establish removal strategies for hazardous metabolites while enhancing the recyclability of water. A bloom of microalgae is a sign of an anthropogenic disturbance in aquatic systems and can lead to diverse changes in ecosystems along with increased production of odorants. In general, because algal and cyanobacterial odors vary in chemistry and intensity according to blooming pattern, it is necessary to learn more about the related factors and processes (e.g., changes due to differences in taxa). This necessitates systematic and transdisciplinary approaches that require the cooperation of chemists, biologists, engineers, and policy makers.
Collapse
Affiliation(s)
- Jechan Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Young Jae Jeon
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
23
|
Kędziora K, Wasiak W. Extraction media used in needle trap devices—Progress in development and application. J Chromatogr A 2017; 1505:1-17. [DOI: 10.1016/j.chroma.2017.05.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
|
24
|
Usmanov DT, Hiraoka K, Wada H, Matsumura M, Sanada-Morimura S, Nonami H, Yamabe S. Non-proximate mass spectrometry using a heated 1-m long PTFE tube and an air-tight APCI ion source. Anal Chim Acta 2017; 973:59-67. [DOI: 10.1016/j.aca.2017.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/19/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022]
|
25
|
Gómez-Ríos GA, Vasiljevic T, Gionfriddo E, Yu M, Pawliszyn J. Towards on-site analysis of complex matrices by solid-phase microextraction-transmission mode coupled to a portable mass spectrometer via direct analysis in real time. Analyst 2017; 142:2928-2935. [DOI: 10.1039/c7an00718c] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
On-site analysis of complex matrices by SPME-TM coupled to a portable mass spectrometer via DART.
Collapse
Affiliation(s)
| | | | | | - Miao Yu
- Department of Chemistry
- University of Waterloo
- Ontario
- Canada N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry
- University of Waterloo
- Ontario
- Canada N2L 3G1
| |
Collapse
|
26
|
Gómez-Ríos GA, Reyes-Garcés N, Pawliszyn J. Evaluation of a multi-fiber exchange solid-phase microextraction system and its application to on-site sampling. J Sep Sci 2016; 38:3560-7. [PMID: 26311558 DOI: 10.1002/jssc.201500158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/13/2015] [Accepted: 07/24/2015] [Indexed: 11/10/2022]
Abstract
Until recently, multiple solid-phase microextraction fibers could not be automatically desorbed in a single gas chromatographic sequence without manual intervention from an operator. This drawback had been a critical issue, particularly during the analysis of numerous on-site samples taken with various fiber assemblies. Recently, a Multi-Fiber Exchange system, designed to overcome this flaw found in other commercially available autosamplers, was released. In the current research, a critical evaluation of the Multi-Fiber Exchange system performance in terms of storage stability and long-term operation is presented. It was established in the course of our research that the Multi-Fiber Exchange system can operate continuously and precisely for multiple extraction/injection cycles. However, when the effect of residence time of commercial fibers on the Multi-Fiber Exchange tray was evaluated, results showed that among the evaluated fiber coatings, Carboxen/polydimethylsiloxane was the only coating capable of efficient storage on the tray for up to 24 h after field sampling without suffering significant loss of analytes (≤10% for benzene, toluene, ethylbenzene, o-xylene, decane, and limonene). Additionally, the system capability for high-throughput analysis was demonstrated by the unattended desorption of multiple fibers after on-site sampling of toluene, indoor air levels, in a polymer synthesis lab.
Collapse
Affiliation(s)
| | | | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
27
|
Heidari M, Bahrami A, Ghiasvand AR, Shahna FG, Soltanian AR, Rafieiemam M. Application of graphene nanoplatelets silica composite, prepared by sol-gel technology, as a novel sorbent in two microextraction techniques. J Sep Sci 2015; 38:4225-32. [DOI: 10.1002/jssc.201500975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/27/2015] [Accepted: 09/27/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Mahmoud Heidari
- Department of Occupational Health, School of Health; Guilan University of Medical Sciences; Rasht Iran
| | - Abdolrahman Bahrami
- Department of Occupational Health, School of Health; Hamadan University of Medical Sciences; Hamadan Iran
| | - Ali Reza Ghiasvand
- Department of Chemistry, Faculty of Science; Lorestan University; Khoramabad Iran
| | - Farshid Ghorbani Shahna
- Department of Occupational Health, School of Health; Hamadan University of Medical Sciences; Hamadan Iran
| | - Ali Reza Soltanian
- Department of Biostatistics and Epidemiology, School of Health; Hamadan University of Medical Sciences; Hamadan Iran
| | - Maryam Rafieiemam
- Department of Occupational Health, School of Health; Guilan University of Medical Sciences; Rasht Iran
| |
Collapse
|
28
|
Beck JJ, Porter N, Cook D, Gee WS, Griffith CM, Rands AD, Truong TV, Smith L, San Román I. In-field Volatile Analysis Employing a Hand-held Portable GC-MS: Emission Profiles Differentiate Damaged and Undamaged Yellow Starthistle Flower Heads. PHYTOCHEMICAL ANALYSIS : PCA 2015; 26:395-403. [PMID: 26095961 DOI: 10.1002/pca.2573] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
INTRODUCTION Understanding the complex chemical signalling of plants and insects is an important component of chemical ecology. Accordingly, the collection and analysis of chemical cues from plants in their natural environment is integral to elucidation of plant-insect communications. Remote plant locations and the need for a large number of replicates make in situ headspace analyses a daunting logistical challenge. A hand-held, portable GC-MS system was used to discriminate between damaged and undamaged Centaurea solstitialis (yellow starthistle) flower heads in both a potted-plant and natural setting. OBJECTIVE To determine if a portable GC-MS system was capable of distinguishing between undamaged and mechanically damaged plant treatments, and plant environments. METHODOLOGY A portable GC-MS utilising needle trap adsorbent technology was used to collect and analyse in situ headspace volatiles of varying yellow starthistle treatments. Principal component analysis (PCA) was used to distinguish treatments and identify biomarker volatiles. Analysis of variance (ANOVA) was used to determine differences between treatment volatile amounts. RESULTS The portable GC-MS system detected 31 volatiles from the four treatments. Each GC-MS run was completed in less than 3 min. PCA showed four distinct clusters representing the four treatments - damaged and undamaged potted plant, and damaged and undamaged natural plant. Damage-specific volatiles were identified. CONCLUSION The portable GC-MS system distinguished the treatments based on their detected volatile profiles. Additional statistical analysis identified five possible biomarker volatiles for the treatments, among them cyclosativene and copaene, which indicated damaged flower heads.
Collapse
Affiliation(s)
- John J Beck
- Foodborne Toxin Detection and Prevention, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Nathan Porter
- Torion Technologies Incorporated, American Fork, UT, USA
| | - Daniel Cook
- Poisonous Plant Research Laboratory, Agricultural Research Service, US Department of Agriculture, Logan, UT, USA
| | - Wai S Gee
- Foodborne Toxin Detection and Prevention, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Corey M Griffith
- Foodborne Toxin Detection and Prevention, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | | | - Tai V Truong
- Torion Technologies Incorporated, American Fork, UT, USA
| | - Lincoln Smith
- European Biological Control Lab, Agricultural Research Service, US Department of Agriculture, Montpellier, France
| | - Itxaso San Román
- Foodborne Toxin Detection and Prevention, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| |
Collapse
|
29
|
Development of a standard gas generating vial comprised of a silicon oil–polystyrene/divinylbenzene composite sorbent. J Chromatogr A 2015; 1410:1-8. [DOI: 10.1016/j.chroma.2015.07.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/02/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022]
|
30
|
Grandy J, Asl-Hariri S, Pawliszyn J. Novel and Emerging Air-Sampling Devices. COMPREHENSIVE ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/bs.coac.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Development of syringe pump assisted headspace sampler. J Chromatogr A 2014; 1361:88-94. [DOI: 10.1016/j.chroma.2014.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 11/22/2022]
|