1
|
Patabandige MW, Pfeifer LD, Nguyen HT, Desaire H. Quantitative clinical glycomics strategies: A guide for selecting the best analysis approach. MASS SPECTROMETRY REVIEWS 2022; 41:901-921. [PMID: 33565652 PMCID: PMC8601598 DOI: 10.1002/mas.21688] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/13/2020] [Accepted: 01/24/2021] [Indexed: 05/05/2023]
Abstract
Glycans introduce complexity to the proteins to which they are attached. These modifications vary during the progression of many diseases; thus, they serve as potential biomarkers for disease diagnosis and prognosis. The immense structural diversity of glycans makes glycosylation analysis and quantitation difficult. Fortunately, recent advances in analytical techniques provide the opportunity to quantify even low-abundant glycopeptides and glycans derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Understanding the strengths and weaknesses of different quantitative glycomics analysis methods is important for selecting the best strategy to analyze glycosylation changes in any given set of clinical samples. To provide guidance towards selecting the proper approach, we discuss four widely used quantitative glycomics analysis platforms, including fluorescence-based analysis of released N-linked glycans and three different varieties of MS-based analysis: liquid chromatography (LC)-mass spectrometry (MS) analysis of glycopeptides, matrix-assisted laser desorption ionization-time of flight MS, and LC-ESI-MS analysis of released N-linked glycans. These methods' strengths and weaknesses are compared, particularly associated with the figures of merit that are important for clinical biomarker studies, including: the initial sample requirements, the methods' throughput, sample preparation time, the number of species identified, the methods' utility for isomer separation and structural characterization, method-related challenges associated with quantitation, repeatability, the expertise required, and the cost for each analysis. This review, therefore, provides unique guidance to researchers who endeavor to undertake a clinical glycomics analysis by offering insights on the available analysis technologies.
Collapse
Affiliation(s)
- Milani Wijeweera Patabandige
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Leah D. Pfeifer
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Hanna T. Nguyen
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Heather Desaire
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| |
Collapse
|
2
|
Li Y, Yuan H, Dai Z, Zhang W, Zhang X, Zhao B, Liang Z, Zhang L, Zhang Y. Integrated proteomic sample preparation with combination of on-line high-abundance protein depletion, denaturation, reduction, desalting and digestion to achieve high throughput plasma proteome quantification. Anal Chim Acta 2021; 1154:338343. [PMID: 33736814 DOI: 10.1016/j.aca.2021.338343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 02/09/2023]
Abstract
In this study, we developed an integrated plasma proteome sample preparation system, by which high-abundance proteins from human plasma were first depleted by immunoaffinity column, followed by on-line middle and low-abundance proteins denaturation, reduction, desalting and tryptic digestion. To evaluate the performance of such a system, 20 μL plasma was processed automatically, followed by 1-h gradient liquid chromatography-mass spectrometry analysis (LC-MS). Compared to conventional in-solution protocols, not only the sample preparation time could be shortened from 20 h to 20 min, but also the number of identified proteins were greatly increased by 1.4-2.0 times. Such an integrated system allows us to process 36 human plasma samples per day, with more than 300 proteins and 52 FDA approved disease markers per sample being identified. With combination of such an integrated sample preparation system with label-free single-shot LC-MS/MS, the human plasma proteins could be quantified across more than 6 orders of magnitude of abundance range with high reproducibility (Pearson R = 0.99, n = 9). In addition, the relative quantification of human plasma samples from diabetic retinopathy patients and diabetic patients demonstrated the feasibility of our developed workflow for clinic plasma proteome profiling. All these results demonstrated that our developed integrated plasma proteome sample preparation system would provide a new tool for high throughput biomarker discovery.
Collapse
Affiliation(s)
- Yilan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiming Yuan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China.
| | - Zhongpeng Dai
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodan Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| |
Collapse
|
3
|
Wang S, Liu D, Qu J, Zhu H, Chen C, Gibbons C, Greenway H, Wang P, Bollag RJ, Liu K, Li L. Streamlined Subclass-Specific Absolute Quantification of Serum IgG Glycopeptides Using Synthetic Isotope-Labeled Standards. Anal Chem 2021; 93:4449-4455. [PMID: 33630567 PMCID: PMC8715724 DOI: 10.1021/acs.analchem.0c04462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Absolute glycoproteomics quantification has drawn tremendous attention owing to its prospects in biomarker discovery and clinical implementation but is impeded by a general lack of suitable heavy isotope-labeled glycopeptide standards. In this study, we devised a facile chemoenzymatic strategy to synthesize a total of 36 human IgG glycopeptides attached with well-defined glycoforms, including 15 isotope-labeled ones with a mass increment of 6 Da to their native counterparts. Spiking of these standards into human sera enabled simplified, robust, and precise absolute quantification of IgG glycopeptides in a subclass-specific fashion. Additionally, the implementation of the absolute quantification approach revealed subclass-dependent alteration of serum IgG galactosylation and sialylation in colon cancer samples.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jingyao Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - He Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Congcong Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Harmon Greenway
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Roni J Bollag
- Department of Pathology, Augusta University, Augusta, Georgia 30912, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia 30912, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
4
|
Delafield DG, Li L. Recent Advances in Analytical Approaches for Glycan and Glycopeptide Quantitation. Mol Cell Proteomics 2021; 20:100054. [PMID: 32576592 PMCID: PMC8724918 DOI: 10.1074/mcp.r120.002095] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing implications of glycosylation in physiological occurrences and human disease have prompted intensive focus on revealing glycomic perturbations through absolute and relative quantification. Empowered by seminal methodologies and increasing capacity for detection, identification, and characterization, the past decade has provided a significant increase in the number of suitable strategies for glycan and glycopeptide quantification. Mass-spectrometry-based strategies for glycomic quantitation have grown to include metabolic incorporation of stable isotopes, deposition of mass difference and mass defect isotopic labels, and isobaric chemical labeling, providing researchers with ample tools for accurate and robust quantitation. Beyond this, workflows have been designed to harness instrument capability for label-free quantification, and numerous software packages have been developed to facilitate reliable spectrum scoring. In this review, we present and highlight the most recent advances in chemical labeling and associated techniques for glycan and glycopeptide quantification.
Collapse
Affiliation(s)
- Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
5
|
iTRAQ-Based Quantitative Proteomic Comparison of 2D and 3D Adipocyte Cell Models Co-cultured with Macrophages Using Online 2D-nanoLC-ESI-MS/MS. Sci Rep 2019; 9:16746. [PMID: 31727937 PMCID: PMC6856061 DOI: 10.1038/s41598-019-53196-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
The demand for novel three-dimensional (3D) cell culture models of adipose tissue has been increasing, and proteomic investigations are important for determining the underlying causes of obesity, type II diabetes, and metabolic disorders. In this study, we performed global quantitative proteomic profiling of three 3D-cultured 3T3-L1 cells (preadipocytes, adipocytes and co-cultured adipocytes with macrophages) and their 2D-cultured counterparts using 2D-nanoLC-ESI-MS/MS with iTRAQ labelling. A total of 2,885 shared proteins from six types of adipose cells were identified and quantified in four replicates. Among them, 48 proteins involved in carbohydrate metabolism (e.g., PDHα, MDH1/2, FH) and the mitochondrial fatty acid beta oxidation pathway (e.g., VLCAD, ACADM, ECHDC1, ALDH6A1) were relatively up-regulated in the 3D co-culture model compared to those in 2D and 3D mono-cultured cells. Conversely, 12 proteins implicated in cellular component organisation (e.g., ANXA1, ANXA2) and the cell cycle (e.g., MCM family proteins) were down-regulated. These quantitative assessments showed that the 3D co-culture system of adipocytes and macrophages led to the development of insulin resistance, thereby providing a promising in vitro obesity model that is more equivalent to the in vivo conditions with respect to the mechanisms underpinning metabolic syndromes and the effect of new medical treatments for metabolic disorders.
Collapse
|
6
|
Sun S, Hu Y, Ao M, Shah P, Chen J, Yang W, Jia X, Tian Y, Thomas S, Zhang H. N-GlycositeAtlas: a database resource for mass spectrometry-based human N-linked glycoprotein and glycosylation site mapping. Clin Proteomics 2019; 16:35. [PMID: 31516400 PMCID: PMC6731604 DOI: 10.1186/s12014-019-9254-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND N-linked glycoprotein is a highly interesting class of proteins for clinical and biological research. The large-scale characterization of N-linked glycoproteins accomplished by mass spectrometry-based glycoproteomics has provided valuable insights into the interdependence of glycoprotein structure and protein function. However, these studies focused mainly on the analysis of specific sample type, and lack the integration of glycoproteomic data from different tissues, body fluids or cell types. METHODS In this study, we collected the human glycosite-containing peptides identified through their de-glycosylated forms by mass spectrometry from over 100 publications and unpublished datasets generated from our laboratory. A database resource termed N-GlycositeAtlas was created and further used for the distribution analyses of glycoproteins among different human cells, tissues and body fluids. Finally, a web interface of N-GlycositeAtlas was created to maximize the utility and value of the database. RESULTS The N-GlycositeAtlas database contains more than 30,000 glycosite-containing peptides (representing > 14,000 N-glycosylation sites) from more than 7200 N-glycoproteins from different biological sources including human-derived tissues, body fluids and cell lines from over 100 studies. CONCLUSIONS The entire human N-glycoproteome database as well as 22 sub-databases associated with individual tissues or body fluids can be downloaded from the N-GlycositeAtlas website at http://nglycositeatlas.biomarkercenter.org.
Collapse
Affiliation(s)
- Shisheng Sun
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
- College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Minghui Ao
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Jing Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Xingwang Jia
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Stefani Thomas
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| |
Collapse
|
7
|
Lee SY, Lee S, Park SB, Kim KY, Hong J, Kang D. Development of a parallel microbore hollow fiber enzyme reactor platform for online 18O-labeling: Application to lectin-specific lung cancer N-glycoproteome. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:58-64. [PMID: 30292950 DOI: 10.1016/j.jchromb.2018.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/29/2018] [Accepted: 09/28/2018] [Indexed: 11/19/2022]
Abstract
We introduce a simple online 18O-labeling protocol for protein samples that uses a parallelizing microbore hollow fiber enzyme reactor (mHFER) as an alternative tool for online proteolytic digestion. Online 18O-labeling is performed by separately attaching two mHFERs in parallel to a 10-port switching valve with a high-pressure syringe pump and two syringes containing 16O- or 18O-water. 16O-/18O-labeled peptides are formed in this manner and simultaneously analyzed online using nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS) without any residual trypsin activity. The usefulness of a parallel mHFER platform (P-mHFER) in 18O-labeling was tested using both cytochrome C and alpha-1-acid-glycoprotein to verify the incorporation level of two 18O atoms into tryptic peptides and to provide a quantitative assessment with varied mixing ratios. Additionally, our 18O-labeling approach was used to study the serum N-glycoproteome from lung cancer patients and controls to evaluate the applicability of lectin-based quantitative N-glycoproteomics. We successfully quantified 76 peptides (from 62 N-glycoproteins). Nineteen of these peptides from lung cancer serum were up-/down-regulated at least 2.5-fold compared to controls. As a result, the P-mHFER-based online 18O-labeling platform presented here can be a simple and reproducible way to allow quantitative proteomic analysis of diverse proteome samples.
Collapse
Affiliation(s)
- Sun Young Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seonjeong Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Bum Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ki Young Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Dukjin Kang
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
8
|
Synthesis of hydrazide-functionalized hydrophilic polymer hybrid graphene oxide for highly efficient N -glycopeptide enrichment and identification by mass spectrometry. Talanta 2017; 171:124-131. [DOI: 10.1016/j.talanta.2017.04.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 01/01/2023]
|
9
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
10
|
Faria SS, Morris CFM, Silva AR, Fonseca MP, Forget P, Castro MS, Fontes W. A Timely Shift from Shotgun to Targeted Proteomics and How It Can Be Groundbreaking for Cancer Research. Front Oncol 2017; 7:13. [PMID: 28265552 PMCID: PMC5316539 DOI: 10.3389/fonc.2017.00013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 01/10/2023] Open
Abstract
The fact that cancer is a leading cause of death all around the world has naturally sparked major efforts in the pursuit of novel and more efficient biomarkers that could better serve as diagnostic tools, prognostic predictors, or therapeutical targets in the battle against this type of disease. Mass spectrometry-based proteomics has proven itself as a robust and logical alternative to the immuno-based methods that once dominated the field. Nevertheless, intrinsic limitations of classic proteomic approaches such as the natural gap between shotgun discovery-based methods and clinically applicable results have called for the implementation of more direct, hypothesis-based studies such as those made available through targeted approaches, that might be able to streamline biomarker discovery and validation as a means to increase survivability of affected patients. In fact, the paradigm shifting potential of modern targeted proteomics applied to cancer research can be demonstrated by the large number of advancements and increasing examples of new and more useful biomarkers found during the course of this review in different aspects of cancer research. Out of the many studies dedicated to cancer biomarker discovery, we were able to devise some clear trends, such as the fact that breast cancer is the most common type of tumor studied and that most of the research for any given type of cancer is focused on the discovery diagnostic biomarkers, with the exception of those that rely on samples other than plasma and serum, which are generally aimed toward prognostic markers. Interestingly, the most common type of targeted approach is based on stable isotope dilution-selected reaction monitoring protocols for quantification of the target molecules. Overall, this reinforces that notion that targeted proteomics has already started to fulfill its role as a groundbreaking strategy that may enable researchers to catapult the number of viable, effective, and validated biomarkers in cancer clinical practice.
Collapse
Affiliation(s)
- Sara S Faria
- Mastology Program, Federal University of Uberlandia (UFU) , Uberlandia , Brazil
| | - Carlos F M Morris
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Adriano R Silva
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Micaella P Fonseca
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Patrice Forget
- Department of Anesthesiology and Perioperative Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit of Brussel , Brussels , Belgium
| | - Mariana S Castro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Wagner Fontes
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| |
Collapse
|
11
|
Affiliation(s)
- Stefan Gaunitz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nicola L. B. Pohl
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Regional Center for Applied Molecular Oncology, Masaryk Memorial Oncological Institute, 656 53 Brno, Czech Republic
| |
Collapse
|
12
|
Banazadeh A, Veillon L, Wooding KM, Zabet-Moghaddam M, Mechref Y. Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis 2016; 38:162-189. [PMID: 27757981 DOI: 10.1002/elps.201600357] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/13/2022]
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins that plays essential roles in various biological processes, including protein folding, host-pathogen interaction, immune response, and inflammation and aberrant protein glycosylation is a well-known event in various disease states including cancer. As a result, it is critical to develop rapid and sensitive methods for the analysis of abnormal glycoproteins associated with diseases. Mass spectrometry (MS) in conjunction with different separation methods, such as capillary electrophoresis (CE), ion mobility (IM), and high performance liquid chromatography (HPLC) has become a popular tool for glycoprotein analysis, providing highly informative fragments for structural identification of glycoproteins. This review provides an overview of the developments and accomplishments in the field of glycomics and glycoproteomics reported between 2014 and 2016.
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kerry M Wooding
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.,Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
13
|
Wu R, Xie Y, Deng C. Thiol-ene click synthesis of L-Cysteine-bonded zwitterionic hydrophilic magnetic nanoparticles for selective and efficient enrichment of glycopeptides. Talanta 2016; 160:461-469. [DOI: 10.1016/j.talanta.2016.07.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/16/2016] [Accepted: 07/22/2016] [Indexed: 12/16/2022]
|
14
|
Kim JY, Lim HB, Moon MH. Online Miniaturized Asymmetrical Flow Field-Flow Fractionation and Inductively Coupled Plasma Mass Spectrometry for Metalloprotein Analysis of Plasma from Patients with Lung Cancer. Anal Chem 2016; 88:10198-10205. [DOI: 10.1021/acs.analchem.6b02775] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jin Yong Kim
- Department
of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Heung Bin Lim
- Department
of Chemistry, Dankook University, Yongin-si, Gyeonggi-do 16890, Korea
| | - Myeong Hee Moon
- Department
of Chemistry, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
15
|
Thaysen-Andersen M, Packer NH, Schulz BL. Maturing Glycoproteomics Technologies Provide Unique Structural Insights into the N-glycoproteome and Its Regulation in Health and Disease. Mol Cell Proteomics 2016; 15:1773-90. [PMID: 26929216 PMCID: PMC5083109 DOI: 10.1074/mcp.o115.057638] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
The glycoproteome remains severely understudied because of significant analytical challenges associated with glycoproteomics, the system-wide analysis of intact glycopeptides. This review introduces important structural aspects of protein N-glycosylation and summarizes the latest technological developments and applications in LC-MS/MS-based qualitative and quantitative N-glycoproteomics. These maturing technologies provide unique structural insights into the N-glycoproteome and its synthesis and regulation by complementing existing methods in glycoscience. Modern glycoproteomics is now sufficiently mature to initiate efforts to capture the molecular complexity displayed by the N-glycoproteome, opening exciting opportunities to increase our understanding of the functional roles of protein N-glycosylation in human health and disease.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia;
| | - Nicolle H Packer
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin L Schulz
- §School of Chemistry & Molecular Biosciences, St Lucia, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Ruhaak LR, Kim K, Stroble C, Taylor SL, Hong Q, Miyamoto S, Lebrilla CB, Leiserowitz G. Protein-Specific Differential Glycosylation of Immunoglobulins in Serum of Ovarian Cancer Patients. J Proteome Res 2016; 15:1002-10. [PMID: 26813784 DOI: 10.1021/acs.jproteome.5b01071] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies indicated that glycans in serum may serve as biomarkers for diagnosis of ovarian cancer; however, it was unclear to which proteins these glycans belong. We hypothesize that protein-specific glycosylation profiles of the glycans may be more informative of ovarian cancer and can provide insight into biological mechanisms underlying glycan aberration in serum of diseased individuals. Serum samples from women diagnosed with epithelial ovarian cancer (EOC, n = 84) and matched healthy controls (n = 84) were obtained from the Gynecologic Oncology Group. Immunoglobulin (IgG, IgA, and IgM) concentrations and glycosylation profiles were quantified using multiple reaction monitoring mass spectrometry. Differential and classification analyses were performed to identify aberrant protein-specific glycopeptides using a training set. All findings were validated in an independent test set. Multiple glycopeptides from immunoglubins IgA, IgG, and IgM were found to be differentially expressed in serum of EOC patients compared with controls. The protein-specific glycosylation profiles showed their potential in the diagnosis of EOC. In particular, IgG-specific glycosylation profiles are the most powerful in discriminating between EOC case and controls. Additional studies of protein- and site-specific glycosylation profiles of immunoglobulins and other proteins will allow further elaboration on the characteristics of biological functionality and causality of the differential glycosylation in ovarian cancer and thus ultimately lead to increased sensitivity and specificity of diagnosis.
Collapse
Affiliation(s)
- L Renee Ruhaak
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California , Davis, California 95616, United States
| | - Carol Stroble
- Department of Chemistry, University of California , Davis, California 95616, United States.,University of California Davis Medical Center , Sacramento, California 95817, United States
| | - Sandra L Taylor
- Division of Biostatistics, Department of Public Health Sciences, University of California , Davis, California 95616, United States
| | - Qiuting Hong
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Suzanne Miyamoto
- University of California Davis Medical Center , Sacramento, California 95817, United States
| | - Carlito B Lebrilla
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Gary Leiserowitz
- University of California Davis Medical Center , Sacramento, California 95817, United States.,Division of Gynecologic Oncology, University of California Davis Medical Center , Sacramento, California 98517, United States
| |
Collapse
|
17
|
Qiao J, Kim JY, Wang YY, Qi L, Wang FY, Moon MH. Trypsin immobilization in ordered porous polymer membranes for effective protein digestion. Anal Chim Acta 2015; 906:156-164. [PMID: 26772135 DOI: 10.1016/j.aca.2015.11.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/26/2015] [Accepted: 11/28/2015] [Indexed: 02/01/2023]
Abstract
Fast and effective protein digestion is a vital process for mass spectrometry (MS) based protein analysis. This study introduces a porous polymer membrane enzyme reactor (PPMER) coupled to nanoflow liquid chromatography-tandem MS (nLC-ESI-MS/MS) for on-line digestion and analysis of proteins. Poly (styrene-co-maleic anhydride) (PS-co-MAn) was fabricated by the breath figure method to make a porous polymer membrane in which the MAn group was covalently bound to enzyme. Based on this strategy, microscale PPMER (μPPMER) was constructed for on-line connection with the nLC-ESI-MS/MS system. Its capability for enzymatic digestion with bovine serum albumin (BSA) was evaluated with varied digestion periods. The on-line proteolysis of BSA and subsequent analysis with μPPMER-nLC-ESI-MS/MS revealed that peptide sequence coverage increased from 10.3% (digestion time 10 min) to 89.1% (digestion time 30 min). μPPMER can efficiently digest proteins due to the microscopic confinement effect, showing its potential application in fast protein identification and protease immobilization. Applications of on-line digestion using μPPMER with human plasma and urinary proteome samples showed that the developed on-line method yielded equivalent or better performance in protein coverage and identified more membrane proteins than the in-solution method. This may be due to easy accommodation of hydrophobic membrane proteins within membrane pores.
Collapse
Affiliation(s)
- Juan Qiao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, PR China
| | - Jin Yong Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 120-749, South Korea
| | - Yuan Yuan Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, PR China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, PR China.
| | - Fu Yi Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, PR China
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 120-749, South Korea.
| |
Collapse
|
18
|
Cong Y, Zhang Z, Zhang S, Hu L, Gu J. Quantitative MS analysis of therapeutic mAbs and their glycosylation for pharmacokinetics study. Proteomics Clin Appl 2015; 10:303-14. [DOI: 10.1002/prca.201500098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Yuting Cong
- Research Center for Drug Metabolism; School of Life Sciences; Jilin University; Changchun China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry; National Chromatographic R&A Center; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Zhang Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry; National Chromatographic R&A Center; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Shen Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry; National Chromatographic R&A Center; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Lianghai Hu
- Research Center for Drug Metabolism; School of Life Sciences; Jilin University; Changchun China
| | - Jingkai Gu
- Research Center for Drug Metabolism; School of Life Sciences; Jilin University; Changchun China
| |
Collapse
|
19
|
Pernikářová V, Bouchal P. Targeted proteomics of solid cancers: from quantification of known biomarkers towards reading the digital proteome maps. Expert Rev Proteomics 2015; 12:651-67. [PMID: 26456120 DOI: 10.1586/14789450.2015.1094381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The concept of personalized medicine includes novel protein biomarkers that are expected to improve the early detection, diagnosis and therapy monitoring of malignant diseases. Tissues, biofluids, cell lines and xenograft models are the common sources of biomarker candidates that require verification of clinical value in independent patient cohorts. Targeted proteomics - based on selected reaction monitoring, or data extraction from data-independent acquisition based digital maps - now represents a promising mass spectrometry alternative to immunochemical methods. To date, it has been successfully used in a high number of studies answering clinical questions on solid malignancies: breast, colorectal, prostate, ovarian, endometrial, pancreatic, hepatocellular, lung, bladder and others. It plays an important role in functional proteomic experiments that include studying the role of post-translational modifications in cancer progression. This review summarizes verified biomarker candidates successfully quantified by targeted proteomics in this field and directs the readers who plan to design their own hypothesis-driven experiments to appropriate sources of methods and knowledge.
Collapse
Affiliation(s)
- Vendula Pernikářová
- a Masaryk University , Faculty of Science, Department of Biochemistry , Kotlářská 2, 61137 Brno , Czech Republic
| | - Pavel Bouchal
- a Masaryk University , Faculty of Science, Department of Biochemistry , Kotlářská 2, 61137 Brno , Czech Republic.,b Masaryk Memorial Cancer Institute , Regional Centre for Applied Molecular Oncology , Žlutý kopec 7, 65653 Brno , Czech Republic
| |
Collapse
|
20
|
Zhang Z, Sun D, Cong Y, Mao J, Huang J, Qin H, Liu J, Huang G, Wang L, Ye M, Zou H. Amine Chemistry Method for Selective Enrichment of N-Linked Glycopeptides for Glycoproteomics Analysis. J Proteome Res 2015; 14:3892-9. [PMID: 26257013 DOI: 10.1021/acs.jproteome.5b00306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An amine chemistry method was developed for the extraction of N-glycopeptides using amine-functionalized beads for glycoproteomics analysis. Two reductive amination reactions between primary amine and aldehyde were employed in this approach. The first one was to block the primary amines in the peptides by addition of formaldehyde and sodium cyanoborohydride into the peptide sample, and the second one was to couple the glycopeptides onto solid phase beads by incubating the glycopeptides containing aldehyde groups (oxidized by periodate) with the amine-functionalized beads in the presence of sodium cyanoborohydride. It was demonstrated that the blocking of primary amines in the peptides by the first reductive amination reaction prior to the periodate oxidation made the amine chemistry method very efficient and sensitive. This new method was validated by analysis of glycoprotein standards as well as proteome samples. It was found that this new method led to significant increase in the identification of N-glycosites compared with the conventional hydrazide chemistry method.
Collapse
Affiliation(s)
- Zhang Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road, Beijing 100049, China
| | - Deguang Sun
- The Second Affiliated Hospital of Dalian Medical University , 467 Zhongshan Road, Dalian 116027, China
| | - Yuting Cong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, China.,Research Center for Drug Metabolism, School of Life Sciences, Jilin University , 2699 Qianjin Avenue, Changchun 130012, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road, Beijing 100049, China
| | - Junfeng Huang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road, Beijing 100049, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road, Beijing 100049, China
| | - Jing Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road, Beijing 100049, China
| | - Guang Huang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, China
| | - Liming Wang
- The Second Affiliated Hospital of Dalian Medical University , 467 Zhongshan Road, Dalian 116027, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, China
| | - Hanfa Zou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|