1
|
Sanders JD, Owen ON, Tran BH, Mosqueira JL, Marty MT. Coupling Online Size Exclusion Chromatography with Charge Detection-Mass Spectrometry Using Hadamard Transform Multiplexing. Anal Chem 2024; 96:16743-16749. [PMID: 39393347 DOI: 10.1021/acs.analchem.4c03248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Charge detection mass spectrometry (CD-MS) is a powerful technique for the analysis of large, heterogeneous biomolecules. By directly measuring the charge states of individual ions, CD-MS can measure the masses from spectra where conventional deconvolution approaches fail due to the lack of isotopic resolution or distinguishable charge states. However, CD-MS is inherently slow because hundreds or thousands of spectra need to be collected to produce adequate ion statistics. The slower speed of CD-MS complicates efforts to couple it with online separation techniques, which limit the number of spectra that can be acquired during a chromatographic peak. Here, we present the application of Hadamard transform multiplexing to online size exclusion chromatography (SEC) coupled with Orbitrap CD-MS, with a goal of using SEC for separating complex mixtures prior to CD-MS analysis. We developed a microcontroller to deliver pulsed injections from a large sample loop onto a SEC for online CD-MS analysis. Data showed a series of peaks spaced according to the pseudorandom injection sequence, which were demultiplexed with a Hadamard transform algorithm. The demultiplexed data revealed improved CD-MS signals while preserving retention time information. This multiplexing approach provides a general solution to the inherent incompatibilities of online separations and CD-MS detection that will enable a range of applications.
Collapse
Affiliation(s)
- James D Sanders
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - October N Owen
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Brian H Tran
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeffrey L Mosqueira
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Sanders JD, Owen ON, Tran BH, Juetten KJ, Marty MT. UniChromCD for Demultiplexing Time-Resolved Charge Detection-Mass Spectrometry Data. Anal Chem 2024; 96:15014-15022. [PMID: 39225436 DOI: 10.1021/acs.analchem.4c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Charge detection mass spectrometry (CD-MS) enables characterization of large, heterogeneous analytes through the analysis of individual ion signals. Because hundreds to thousands of scans must be acquired to produce adequate ion statistics, CD-MS generally requires long analysis times. The slow acquisition speed of CD-MS complicates efforts to couple it with time-dispersive techniques, such as chromatography and ion mobility, because it is not always possible to acquire enough scans from a single sample injection to generate sufficient ion statistics. Multiplexing methods based on Hadamard and Fourier transforms offer an attractive solution to this problem by improving the duty cycle of the separation while preserving retention/drift time information. However, integrating multiplexing with CD-MS data processing is complex. Here, we present UniChromCD, a new module in the open-source UniDec package that incorporates CD-MS time-domain data processing with demultiplexing tools. Following a detailed description of the algorithm, we demonstrate its capabilities using two multiplexed CD-MS workflows: Hadamard-transform size-exclusion chromatography and Fourier-transform ion mobility. Overall, UniChromCD provides a user-friendly interface for analysis and visualization of time-resolved CD-MS data.
Collapse
Affiliation(s)
- James D Sanders
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - October N Owen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Brian H Tran
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyle J Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Antoniadou M, Schierer V, Fontana D, Kahr J, Rosenberg E. Development of a Multiplexing Injector for Gas Chromatography for the Time-Resolved Analysis of Volatile Emissions from Lithium-Ion Batteries. Molecules 2024; 29:2181. [PMID: 38792043 PMCID: PMC11123839 DOI: 10.3390/molecules29102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Multiplex sampling, so far mainly used as a tool for S/N ratio improvement in spectroscopic applications and separation techniques, has been investigated here for its potential suitability for time-resolved monitoring where chromatograms of transient signals are recorded at intervals much shorter than the chromatographic runtime. Different designs of multiplex sample introduction were developed and utilized to analyze lithium-ion battery degradation products under normal or abuse conditions to achieve fast and efficient sample introduction. After comprehensive optimization, measurements were performed on two different GC systems, with either barrier discharge ionization detection (BID) or mass spectrometric detection (MS). Three different injector designs were examined, and modifications in the pertinent hardware components and operational conditions used. The shortest achievable sample introduction time was 50 ms with an interval of 6 s. Relative standard deviations were lower than 4% and 10% for the intra- and inter-day repeatability, respectively. The sample introduction system and column head pressure had to be carefully controlled, as this parameter most critically affects the amount of sample introduced and, thus, detector response. The newly developed sample introduction system was successfully used to monitor volatile degradation products of lithium-ion batteries and demonstrated concentration changes over the course of time of the degradation products (e.g., fluoroethane, acetaldehyde and ethane), as well as for solvents from the battery electrolyte like ethyl carbonate.
Collapse
Affiliation(s)
- Maria Antoniadou
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, A-1060 Vienna, Austria
| | - Valentin Schierer
- Electric Drive Technologies, Electromobility Department, Austrian Institute of Technology GmbH, Giefinggasse 2, A-1210 Vienna, Austria; (V.S.); (J.K.)
| | - Daniela Fontana
- FAAM Research Centre, Strada del Portone 61, I-10137 Torino, Italy
| | - Jürgen Kahr
- Electric Drive Technologies, Electromobility Department, Austrian Institute of Technology GmbH, Giefinggasse 2, A-1210 Vienna, Austria; (V.S.); (J.K.)
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, A-1060 Vienna, Austria
| |
Collapse
|
4
|
Matz M, Botha C, Beskers T, Wilhelm M. Fourier transformation liquid chromatography: increasing sensitivity by a factor of 50. Analyst 2022; 147:1199-1212. [DOI: 10.1039/d1an02298a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To turn liquid chromatography into a Fourier transformation technique a continuous sinusoidal sample concentration profile is developed, which increases the sensitivity. The analytes can be characterized by evaluating the phase angle and magnitude.
Collapse
Affiliation(s)
- Markus Matz
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry, Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Carlo Botha
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry, Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Timo Beskers
- PSS Polymer Standards Service GmbH, In der Dalheimer Wiese 5, 55023 Mainz, Germany
| | - Manfred Wilhelm
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry, Engesserstraße 18, 76131 Karlsruhe, Germany
| |
Collapse
|
5
|
Trapp O, Lamour S, Maier F, Siegle AF, Zawatzky K, Straub BF. In Situ Mass Spectrometric and Kinetic Investigations of Soai's Asymmetric Autocatalysis. Chemistry 2020; 26:15871-15880. [PMID: 32822103 PMCID: PMC7756584 DOI: 10.1002/chem.202003260] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 01/15/2023]
Abstract
Chemical reactions that lead to a spontaneous symmetry breaking or amplification of the enantiomeric excess are of fundamental interest in explaining the formation of a homochiral world. An outstanding example is Soai's asymmetric autocatalysis, in which small enantiomeric excesses of the added product alcohol are amplified in the reaction of diisopropylzinc and pyrimidine-5-carbaldehydes. The exact mechanism is still in dispute due to complex reaction equilibria and elusive intermediates. In situ high-resolution mass spectrometric measurements, detailed kinetic analyses and doping with in situ reacting reaction mixtures show the transient formation of hemiacetal complexes, which can establish an autocatalytic cycle. We propose a mechanism that explains the autocatalytic amplification involving these hemiacetal complexes. Comprehensive kinetic experiments and modelling of the hemiacetal formation and the Soai reaction allow the precise prediction of the reaction progress, the enantiomeric excess as well as the enantiomeric excess dependent time shift in the induction period. Experimental structural data give insights into the privileged properties of the pyrimidyl units and the formation of diastereomeric structures leading to an efficient amplification of even minimal enantiomeric excesses, respectively.
Collapse
Affiliation(s)
- Oliver Trapp
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5-1381377MunichGermany
- Max-Planck-Institute for AstronomyKönigstuhl 1769117HeidelbergGermany
| | - Saskia Lamour
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5-1381377MunichGermany
- Max-Planck-Institute for AstronomyKönigstuhl 1769117HeidelbergGermany
| | - Frank Maier
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5-1381377MunichGermany
| | - Alexander F. Siegle
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5-1381377MunichGermany
| | - Kerstin Zawatzky
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5-1381377MunichGermany
| | - Bernd F. Straub
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
6
|
Yu J, Jing G, Li W, Liu W, Okonkwo JN, Liu W, Hill HH. Simulating, Predicting, and Minimizing False Peaks for Hadamard Transform Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1957-1964. [PMID: 32692560 DOI: 10.1021/jasms.0c00206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiplexing techniques, including the Hadamard transform, are widely used in the recovery of weak signals from high-level noise. Hadamard transform ion mobility spectrometry (HT-IMS), however, can suffer serious drawbacks due to false peaks. False peaks in HT-IMS are generally attributed to nonperfect gating behavior. This paper confirmed that the origin of false peaks in HT-IMS is not generally due to ion gating but rather to peak shifts by Coulombic repulsion of the ion packets inside the drift tube. The amplitudes of these false peaks are determined by the number of ions inside the ion packets. This phenomenon is simulated and confirmed by the convolution of the spectrum with a shifted s-sequence to reproduce the artifact peaks with the exact position, amplitude, and profile. Two approaches, including preoffset sequence modulation and post-data processing, were evaluated to mitigate the false peaks in HT-IMS, and both methods can work effectively.
Collapse
Affiliation(s)
- Jianna Yu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Guoxing Jing
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Wenshan Li
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Wen Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | | | - Wenjie Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Herbert H Hill
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
7
|
Wunsch MR, Reiter AMC, Schuster FS, Lehnig R, Trapp O. Continuous online process analytics with multiplexing gas chromatography by using calibrated convolution matrices. J Chromatogr A 2019; 1595:180-189. [PMID: 30803787 DOI: 10.1016/j.chroma.2019.02.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 11/26/2022]
Abstract
The development of fast and precise measurement techniques for process analytical technology is important to operate chemical processes safely and efficiently. For quantitative measurements of multiple components at a trace level, often gas chromatographic methods are used which have a response time of several minutes or of up to one hour. For fast changing processes, this can be too slow for efficient control. For reducing the dead time of a control loop by increasing the measurement frequency, a multiplexing gas chromatography (mpGC) technique for a chromatographic system exhibiting a systematic non-linear response has been developed. For mpGC, superimposed chromatograms are measured by injecting consecutive samples before all components of previous samples have eluted from the column. The deconvolution of a superimposed chromatogram yields a computed chromatogram which is an average over the single chromatograms forming the superimposed chromatogram. Such a computed chromatogram typically shows so called correlation noise depending on the degree by which the single chromatograms forming the superimposed chromatogram will differ from each other (non-linear response). A technique is presented to calibrate the convolution matrix in order to suppress correlation noise introduced by systematic errors of the chromatographic system. The remaining correlation noise in the computed chromatogram is then exclusively caused by changing concentrations in the sample stream. For the method presented here, the sample is injected five times during the run time of a single chromatogram. The computed chromatogram is obtained three times within this timespan while representing each time an averaged chromatogram over the last five injections. Therefore, the sample throughput is increased by a factor of three compared to conventional GC.
Collapse
Affiliation(s)
- Marco R Wunsch
- BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
| | | | | | - Rudolf Lehnig
- BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
| | - Oliver Trapp
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich, Germany.
| |
Collapse
|
8
|
Siegle AF, Pallmann S, Trapp O. Significant sensitivity enhancement in Hadamard transform high-performance liquid chromatography by application of long modulation sequences constructed from lower order sequences. J Chromatogr A 2018; 1575:34-39. [DOI: 10.1016/j.chroma.2018.08.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022]
|
9
|
Wunsch MR, Lehnig R, Janke C, Trapp O. Online High Throughput Measurements for Fast Catalytic Reactions Using Time-Division Multiplexing Gas Chromatography. Anal Chem 2018; 90:9256-9263. [PMID: 30001483 DOI: 10.1021/acs.analchem.8b01805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing new catalysts is crucial for optimization of chemical processes. Thus, advanced analytical methods are required to determine the catalytic performance of new catalysts accurately. Usually, gas chromatographic methods are employed to analyze quantitatively the product distribution of volatile compounds generated by a specific catalyst. However, the characterization of rapidly changing catalysts, e.g., due to deactivation, still poses an analytical challenge because gas chromatographic methods are too slow for monitoring the change of the complex product spectra. Here, we developed a gas chromatographic technique based on the concept of multiplexing gas chromatography (mpGC) for fast and comprehensive analysis of the product stream from a catalytic testing unit. This technique is applied for the study of the catalytic reaction of methanol-to-olefins (MTO) conversion. For this method, the time distance between two measurements is chosen so that the chromatograms but not the peaks themselves are superimposed. In this way, stacked chromatograms are generated in which the components from successively injected samples elute baseline separated next to each other from the column. The peaks from different samples are interlaced, and for this reason, the method is referred to as time-division multiplexing gas chromatography (td-mpGC). The peaks are analyzed by direct peak integration not requiring a Hadamard transformation for deconvolution of the raw data as usual for many mpGC applications. Therefore, the sample can be injected equidistantly. The integrated peaks have to be allocated to the correct retention times. The time distance between two measurements for studying the reaction and regeneration cycles of MTO catalysts is 4.3 min and 38 s, respectively. Column switching techniques such as back-flush and heart-cut are introduced as general tools for multiplexing gas chromatography.
Collapse
Affiliation(s)
- Marco R Wunsch
- BASF SE , Carl-Bosch-Strasse 38 , 67056 Ludwigshafen , Germany
| | - Rudolf Lehnig
- BASF SE , Carl-Bosch-Strasse 38 , 67056 Ludwigshafen , Germany
| | | | - Oliver Trapp
- Department Chemie , Ludwig-Maximilians-Universität München , Butenandtstrasse 5-13 , 81377 Munich , Germany
| |
Collapse
|
10
|
Pallmann S, Siegle AF, Šteflová J, Trapp O. Direct Hadamard Transform Capillary Zone Electrophoresis without Instrumental Modifications. Anal Chem 2018; 90:8445-8453. [PMID: 29886730 DOI: 10.1021/acs.analchem.8b01010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the first successful implementation of a multiplexing method on a standard capillary electrophoresis system with UV detection that is independent of additional hardware. This was achieved using the Hadamard transform approach and employing vial exchange and voltage suspensions for translation of pseudorandom binary sequence elements into sample and background electrolyte injections of a capillary zone electrophoresis separation. Sequences exceeding peak capacity of the capillary were subdivided into shorter subsequences measured successively and realigned afterward based on EOF marker or analyte peaks. This way, we realized and deconvoluted modulation sequences as long as 8-bit (255 injections) for two systems containing either AMP or a mixture of the nucleotides (A,C,G,U)MP resulting in electropherograms of considerably improved signal-to-noise ratio. We achieved factors of intensity enhancement of around 6.9 and 5.2, respectively (theoretical maximum 8.0). This contribution, further, presents experimental and simulation studies on the effects on zones during injection and separation when experiencing voltage suspensions. Besides analysis of EOF behavior and influence of diffusion dispersion, we also provide data on the significance of specific electrophoretic errors such as peak position shift, inconsistent sample injection, and peak broadening on the quality of the inverse Hadamard transform. Moreover, the application of our approach to the practical analysis of a milk sample is described. The results demonstrate the applicability of multiplexing on unmodified standard CE instrumentation and establish a new suitable methodology to enhance the low sensitivity of on-column UV detection in capillary electrophoresis.
Collapse
Affiliation(s)
- Sebastian Pallmann
- Ludwig-Maximilian University Munich , Faculty for Chemistry and Pharmacy , Butenandtstrasse 5-13 , 81377 Munich , Germany.,Max-Planck-Institute for Astronomy , Königstuhl 17 , 69117 Heidelberg , Germany
| | - Alexander F Siegle
- Ludwig-Maximilian University Munich , Faculty for Chemistry and Pharmacy , Butenandtstrasse 5-13 , 81377 Munich , Germany
| | - Jana Šteflová
- Ludwig-Maximilian University Munich , Faculty for Chemistry and Pharmacy , Butenandtstrasse 5-13 , 81377 Munich , Germany
| | - Oliver Trapp
- Ludwig-Maximilian University Munich , Faculty for Chemistry and Pharmacy , Butenandtstrasse 5-13 , 81377 Munich , Germany.,Max-Planck-Institute for Astronomy , Königstuhl 17 , 69117 Heidelberg , Germany
| |
Collapse
|
11
|
Wunsch MR, Lehnig R, Trapp O. Online Continuous Trace Process Analytics Using Multiplexing Gas Chromatography. Anal Chem 2017; 89:4038-4045. [PMID: 28274122 DOI: 10.1021/acs.analchem.6b04674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The analysis of impurities at a trace level in chemical products, nutrition additives, and drugs is highly important to guarantee safe products suitable for consumption. However, trace analysis in the presence of a dominating component can be a challenging task because of noncompatible linear detection ranges or strong signal overlap that suppresses the signal of interest. Here, we developed a technique for quantitative analysis using multiplexing gas chromatography (mpGC) for continuous and completely automated process trace analytics exemplified for the analysis of a CO2 stream in a production plant for detection of benzene, toluene, ethylbenzene, and the three structural isomers of xylene (BTEX) in the concentration range of 0-10 ppb. Additional minor components are methane and methanol with concentrations up to 100 ppm. The sample is injected up to 512 times according to a pseudorandom binary sequence (PRBS) with a mean frequency of 0.1 Hz into a gas chromatograph equipped with a flame ionization detector (FID). A superimposed chromatogram is recorded which is deconvoluted into an averaged chromatogram with Hadamard transformation. Novel algorithms to maintain the data acquisition rate of the detector by application of Hadamard transformation and to suppress correlation noise induced by components with much higher concentrations than the target substances are shown. Compared to conventional GC-FID, the signal-to-noise ratio has been increased by a factor of 10 with mpGC-FID. Correspondingly, the detection limits for BTEX in CO2 have been lowered from 10 to 1 ppb each. This has been achieved despite the presence of detectable components (methane and methanol) with a concentration about 1000 times higher than the target substances. The robustness and reliability of mpGC has been proven in a two-month field test in a chemical production plant.
Collapse
Affiliation(s)
- Marco R Wunsch
- BASF SE , Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
| | - Rudolf Lehnig
- BASF SE , Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
| | - Oliver Trapp
- Department Chemie, Ludwig-Maximilians-Universität München , Butenandtstr. 5-13, Haus F, 81377 Munich, Germany
| |
Collapse
|
12
|
Zawatzky K, Reibarkh M, Canfield N, Wang TC, Li S, Du L, Welch CJ. Visualizing small differences using subtractive chromatographic analysis. J Chromatogr A 2016; 1468:245-249. [DOI: 10.1016/j.chroma.2016.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 01/04/2023]
|
13
|
Using chromatogram averaging to improve quantitation of minor impurities. J Chromatogr A 2016; 1465:205-10. [DOI: 10.1016/j.chroma.2016.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/15/2016] [Accepted: 08/20/2016] [Indexed: 11/20/2022]
|
14
|
Siegle AF, Trapp O. Improving the signal-to-noise ratio in gel permeation chromatography by Hadamard encoding. J Chromatogr A 2016; 1448:93-97. [DOI: 10.1016/j.chroma.2016.04.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 11/25/2022]
|
15
|
Zawatzky K, Biba M, Regalado EL, Welch CJ. MISER chiral supercritical fluid chromatography for high throughput analysis of enantiopurity. J Chromatogr A 2016; 1429:374-9. [DOI: 10.1016/j.chroma.2015.12.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/12/2015] [Accepted: 12/20/2015] [Indexed: 12/18/2022]
|
16
|
Siegle AF, Trapp O. Hyphenation of Hadamard Encoded Multiplexing Liquid Chromatography and Circular Dichroism Detection to Improve the Signal-to-Noise Ratio in Chiral Analysis. Anal Chem 2015; 87:11932-4. [DOI: 10.1021/acs.analchem.5b03705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander F. Siegle
- Organisch-Chemisches
Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer
Feld 270, 69120 Heidelberg, Germany
| | - Oliver Trapp
- Organisch-Chemisches
Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer
Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Siegle AF, Trapp O. Implementation of Hadamard encoding for rapid multisample analysis in liquid chromatography. J Sep Sci 2015; 38:3839-3844. [DOI: 10.1002/jssc.201500849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander F. Siegle
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Heidelberg Germany
| | - Oliver Trapp
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Heidelberg Germany
| |
Collapse
|
18
|
Cesar W, Flourens F, Kaiser C, Sutour C, Angelescu DE. Enhanced Microgas Chromatography Using Correlation Techniques for Continuous Indoor Pollutant Detection. Anal Chem 2015; 87:5620-5. [DOI: 10.1021/acs.analchem.5b00687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William Cesar
- Université Paris-Est, ESIEE-Paris, ESYCOM, 2 Boulevard Blaise Pascal 93162 Noisy-le-Grand Cedex, France
- Université Paris-Est, IFSTTAR, 14-20
Boulevard Newton 77447 Marne la Vallée Cedex 2, France
| | - Frédéric Flourens
- Université Paris-Est, ESIEE-Paris, ESYCOM, 2 Boulevard Blaise Pascal 93162 Noisy-le-Grand Cedex, France
| | - Claire Kaiser
- Laboratoire National de Métrologie et d’Essais, 1 Rue Gaston Boissier, 75015 Paris, France
| | - Christophe Sutour
- Laboratoire National de Métrologie et d’Essais, 1 Rue Gaston Boissier, 75015 Paris, France
| | - Dan E. Angelescu
- Université Paris-Est, ESIEE-Paris, ESYCOM, 2 Boulevard Blaise Pascal 93162 Noisy-le-Grand Cedex, France
- Fluidion, 231 Rue St.
Honoré, 75001 Paris, France
| |
Collapse
|