1
|
Wang N, Wu S, Huang L, Hu Y, He X, He J, Hu B, Xu Y, Rong Y, Yuan C, Zeng X, Wang F. Intratumoral microbiome: implications for immune modulation and innovative therapeutic strategies in cancer. J Biomed Sci 2025; 32:23. [PMID: 39966840 PMCID: PMC11837407 DOI: 10.1186/s12929-025-01117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Recent advancements have revealed the presence of a microbiome within tumor tissues, underscoring the crucial role of the tumor microbiome in the tumor ecosystem. This review delves into the characteristics of the intratumoral microbiome, underscoring its dual role in modulating immune responses and its potential to both suppress and promote tumor growth. We examine state-of-the-art techniques for detecting and analyzing intratumoral bacteria, with a particular focus on their interactions with the immune system and the resulting implications for cancer prognosis and treatment. By elucidating the intricate crosstalk between the intratumoral microbiome and the host immune system, we aim to uncover novel therapeutic strategies that enhance the efficacy of cancer treatments. Additionally, this review addresses the existing challenges and future prospects within this burgeoning field, advocating for the integration of microbiome research into comprehensive cancer therapy frameworks.
Collapse
Affiliation(s)
- Na Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Si Wu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yue Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xin He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jourong He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ben Hu
- Center for Tumor Precision Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China.
| | - Xiantao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
2
|
Vibrational spectroscopy for decoding cancer microbiota interactions: Current evidence and future perspective. Semin Cancer Biol 2022; 86:743-752. [PMID: 34273519 DOI: 10.1016/j.semcancer.2021.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/27/2023]
Abstract
The role of human microbiota in cancer initiation and progression is recognized in recent years. In order to investigate the interactions between cancer cells and microbes, a systematic analysis using various emerging techniques is required. Owing to the label-free, non-invasive and molecular fingerprinting characteristics, vibrational spectroscopy is uniquely suited to decode and understand the relationship and interactions between cancer and the microbiota at the molecular level. In this review, we first provide a quick overview of the fundamentals of vibrational spectroscopic techniques, namely Raman and infrared spectroscopy. Next, we discuss the emerging evidence underscoring utilities of these spectroscopic techniques to study cancer or microbes separately, and share our perspective on how vibrational spectroscopy can be employed at the intersection of the two fields. Finally, we envision the potential opportunities in exploiting vibrational spectroscopy not only in basic cancer-microbiome research but also in its clinical translation, and discuss the challenges in the bench to bedside translation.
Collapse
|
3
|
Unger N, Eiserloh S, Nowak F, Zuchantke S, Liebler-Tenorio E, Sobotta K, Schnee C, Berens C, Neugebauer U. Looking Inside Non-Destructively: Label-Free, Raman-Based Visualization of Intracellular Coxiella burnetii. Anal Chem 2022; 94:4988-4996. [PMID: 35302749 PMCID: PMC8974703 DOI: 10.1021/acs.analchem.1c04754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
The life cycle of intracellular pathogens is often complex and can include different morphoforms. Treatment of intracellular infections and unperturbed studying of the pathogen inside the host cell are frequently challenging. Here, we present a Raman-based, label-free, non-invasive, and non-destructive method to localize, visualize, and even quantify intracellular bacteria in 3D within intact host cells in a Coxiella burnetii infection model. C. burnetii is a zoonotic obligate intracellular pathogen that causes infections in ruminant livestock and humans with an acute disease known as Q fever. Using statistical data analysis, no isolation is necessary to gain detailed information on the intracellular pathogen's metabolic state. High-quality false color image stacks with diffraction-limited spatial resolution enable a 3D spatially resolved single host cell analysis that shows excellent agreement with results from transmission electron microscopy. Quantitative analysis at different time points post infection allows to follow the infection cycle with the transition from the large cell variant (LCV) to the small cell variant (SCV) at around day 6 and a gradual change in the lipid composition during vacuole maturation. Spectral characteristics of intracellular LCV and SCV reveal a higher lipid content of the metabolically active LCV.
Collapse
Affiliation(s)
- Nancy Unger
- Center
for Sepsis Control and Care, Jena University
Hospital, 07747 Jena, Germany
- Leibniz
Institute of Photonic Technology, 07745 Jena, Germany
| | - Simone Eiserloh
- Center
for Sepsis Control and Care, Jena University
Hospital, 07747 Jena, Germany
- Leibniz
Institute of Photonic Technology, 07745 Jena, Germany
| | - Frauke Nowak
- Institute
of Molecular Pathogenesis, Friedrich-Loeffler-Institut—Federal
Research Institute for Animal Health (FLI), 07743 Jena, Germany
| | - Sara Zuchantke
- Institute
of Molecular Pathogenesis, Friedrich-Loeffler-Institut—Federal
Research Institute for Animal Health (FLI), 07743 Jena, Germany
| | - Elisabeth Liebler-Tenorio
- Institute
of Molecular Pathogenesis, Friedrich-Loeffler-Institut—Federal
Research Institute for Animal Health (FLI), 07743 Jena, Germany
| | - Katharina Sobotta
- Institute
of Medical Microbiology, Jena University
Hospital, 07747 Jena, Germany
| | - Christiane Schnee
- Institute
of Molecular Pathogenesis, Friedrich-Loeffler-Institut—Federal
Research Institute for Animal Health (FLI), 07743 Jena, Germany
| | - Christian Berens
- Institute
of Molecular Pathogenesis, Friedrich-Loeffler-Institut—Federal
Research Institute for Animal Health (FLI), 07743 Jena, Germany
| | - Ute Neugebauer
- Center
for Sepsis Control and Care, Jena University
Hospital, 07747 Jena, Germany
- Leibniz
Institute of Photonic Technology, 07745 Jena, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
4
|
Jayan H, Pu H, Sun DW. Recent developments in Raman spectral analysis of microbial single cells: Techniques and applications. Crit Rev Food Sci Nutr 2021; 62:4294-4308. [PMID: 34251940 DOI: 10.1080/10408398.2021.1945534] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conventional microbial cell analyses are mostly population-averaged methods that conceal the characteristics of single-cell in the community. Single-cell analysis can provide information on the functional and structural variation of each cell, resulting in the elimination of long and tedious microbial cultivation techniques. Raman spectroscopy is a label-free, noninvasive, and in-vivo method ideal for single-cell measurement to obtain spatially resolved chemical information. In the current review, recent developments in Raman spectroscopic techniques for microbial characterization at the single-cell level are presented, focusing on Raman imaging of single cells to study the intracellular distribution of different components. The review also discusses the limitation and challenges of each technique and put forward some future outlook for improving Raman spectroscopy-based techniques for single-cell analysis. Raman spectroscopic methods at the single-cell level have potential in precision measurements, metabolic analysis, antibiotic susceptibility testing, resuscitation capability, and correlating phenotypic information to genomics for cells, the integration of Raman spectroscopy with other techniques such as microfluidics, stable isotope probing (SIP), and atomic force microscope can further improve the resolution and provide extensive information. Future focuses should be given to advance algorithms for data analysis, standardized reference libraries, and automated cell isolation techniques in future.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510641, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510641, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510641, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
5
|
Arend N, Pittner A, Ramoji A, Mondol AS, Dahms M, Rüger J, Kurzai O, Schie IW, Bauer M, Popp J, Neugebauer U. Detection and Differentiation of Bacterial and Fungal Infection of Neutrophils from Peripheral Blood Using Raman Spectroscopy. Anal Chem 2020; 92:10560-10568. [PMID: 32613830 DOI: 10.1021/acs.analchem.0c01384] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neutrophils are important cells of the innate immune system and the major leukocyte subpopulation in blood. They are responsible for recognizing and neutralizing invading pathogens, such as bacteria or fungi. For this, neutrophils are well equipped with pathogen recognizing receptors, cytokines, effector molecules, and granules filled with reactive oxygen species (ROS)-producing enzymes. Depending on the pathogen type, different reactions are triggered, which result in specific activation states of the neutrophils. Here, we aim to establish a label-free method to indirectly detect infections and to identify the cause of infection by spectroscopic characterization of the neutrophils. For this, isolated neutrophils from human peripheral blood were stimulated in an in vitro infection model with heat-inactivated Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacterial pathogens as well as with heat-inactivated and viable fungi (Candida albicans). Label-free and nondestructive Raman spectroscopy was used to characterize neutrophils on a single cell level. Phagocytized fungi could be visualized in a few high-resolution false color images of individual neutrophils using label-free Raman spectroscopic imaging. Using a high-throughput screening Raman spectroscope (HTS-RS), Raman spectra of more than 2000 individual neutrophils from three different donors were collected in each treatment group, yielding a data set of almost 20 000 neutrophil spectra. Random forest classification models were trained to differentiate infected and noninfected cells with high accuracy (90%). Among the neutrophils challenged with pathogens, even the cause of infection, bacterial or fungal, was predicted correctly with 92% accuracy. Therefore, Raman spectroscopy enables reliable neutrophil phenotyping and infection diagnosis in a label-free manner. In contrast to the microbiological diagnostic standard, where the pathogen is isolated in time-consuming cultivation, this Raman-based method could potentially be blood-culture independent, thus saving precious time in bloodstream infection diagnostics.
Collapse
Affiliation(s)
- Natalie Arend
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Angelina Pittner
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.,Institute for Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
| | - Abdullah S Mondol
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Marcel Dahms
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.,InfectoGnostics Research Campus Jena, Reg. Assoc., Philosophenweg 7, 07743 Jena, Germany
| | - Jan Rüger
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Oliver Kurzai
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.,Centre for Innovation Competence Septomics, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Albert-Einstein-Straße 10, 07745 Jena, Germany.,Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2/E1, 97080 Würzburg, Germany
| | - Iwan W Schie
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.,InfectoGnostics Research Campus Jena, Reg. Assoc., Philosophenweg 7, 07743 Jena, Germany.,Institute for Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.,InfectoGnostics Research Campus Jena, Reg. Assoc., Philosophenweg 7, 07743 Jena, Germany.,Institute for Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
6
|
Kumar S, Gopinathan R, Chandra GK, Umapathy S, Saini DK. Rapid detection of bacterial infection and viability assessment with high specificity and sensitivity using Raman microspectroscopy. Anal Bioanal Chem 2020; 412:2505-2516. [PMID: 32072214 DOI: 10.1007/s00216-020-02474-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/05/2020] [Accepted: 01/30/2020] [Indexed: 01/15/2023]
Abstract
Infectious diseases caused by bacteria still pose major diagnostic challenges in spite of the availability of various molecular approaches. Irrespective of the type of infection, rapid identification of the causative pathogen with a high degree of sensitivity and specificity is essential for initiating appropriate treatment. While existing methods like PCR possess high sensitivity, they are incapable of identifying the viability status of the pathogen and those which can, like culturing, are inherently slow. To overcome these limitations, we developed a diagnostic platform based on Raman microspectroscopy, capable of detecting biochemical signatures from a single bacterium for identification as well as viability assessment. The study also establishes a decontamination protocol for handling live pathogenic bacteria which does not affect identification and viability testing, showing applicability in the analysis of sputum samples containing pathogenic mycobacterial strains. The minimal sample processing along with multivariate analysis of spectroscopic signatures provides an interface for automatic classification, allowing the prediction of unknown samples by mapping signatures onto available datasets. Also, the novelty of the current work is the demonstration of simultaneous identification and viability assessment at a single bacterial level for pathogenic bacteria. Graphical abstract.
Collapse
Affiliation(s)
- Srividya Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Renu Gopinathan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Goutam Kumar Chandra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.,Department of Physics, NIT Calicut, Calicut, Kerala, 673601, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India. .,Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India. .,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India. .,Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
7
|
Abstract
Abstract
A potential role of optical technologies in medicine including micro-Raman spectroscopy is diagnosis of bacteria, cells and tissues which is covered in this chapter. The main advantage of Raman-based methods to complement and augment diagnostic tools is that unsurpassed molecular specificity is achieved without labels and in a nondestructive way. Principles and applications of micro-Raman spectroscopy in the context of medicine will be described. First, Raman spectra of biomolecules representing proteins, nucleic acids, lipids and carbohydrates are introduced. Second, microbial applications are summarized with the focus on typing on species and strain level, detection of infections, antibiotic resistance and biofilms. Third, cytological applications are presented to classify single cells and study cell metabolism and drug–cell interaction. Fourth, applications to tissue characterization start with discussion of lateral resolution for Raman imaging followed by Raman-based detection of pathologies and combination with other modalities. Finally, an outlook is given to translate micro-Raman spectroscopy as a clinical tool to solve unmet needs in point-of-care applications and personalized treatment of diseases.
Collapse
|
8
|
Peng MW, Wei XY, Yu Q, Yan P, Chen YP, Guo JS. Identification of ceftazidime interaction with bacteria in wastewater treatment by Raman spectroscopic mapping. RSC Adv 2019; 9:32744-32752. [PMID: 35529746 PMCID: PMC9073089 DOI: 10.1039/c9ra06006e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/03/2019] [Indexed: 01/02/2023] Open
Abstract
Raman spectroscopy yields a fingerprint spectrum and is of great importance in medical and biological sciences as it is non-destructive, non-invasive, and available in the aqueous environment. In this study, Raman spectroscopy and Raman mapping were used to explore the dynamic biochemical processes in screened bacteria under ceftazidime stress. The Raman spectral difference between bacteria with and without antibiotic stress was analyzed by principal component analysis and characteristic peaks were obtained. The results showed that amino acids changed first and lipids were reduced when bacteria were exposed to ceftazidime stress. Furthermore, in Raman mapping, when bacteria were subjected to antibiotic stress, the peak at 1002 cm-1 (phenylalanine) increased, while the peak at 1172 cm-1 (lipids) weakened. This indicates that when bacteria were stimulated by antibiotics, the intracellular lipids decreased and the content of specific amino acids increased. The reduction of intracellular lipids may suggest a change of membrane permeability. The increase of specific amino acids suggests that bacteria resist external stimuli of antibiotics by regulating the activities of related enzymes. This study explored the processes of the action between bacteria and antibiotics by Raman spectroscopy, and provides a foundation for the further study of the dynamics of microbial biochemical processes in the future.
Collapse
Affiliation(s)
- Meng-Wen Peng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University Chongqing 400045 China +86-23-65935818 +86-23-65935818
| | - Xiang-Yang Wei
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University Chongqing 400045 China +86-23-65935818 +86-23-65935818
| | - Qiang Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University Chongqing 400045 China +86-23-65935818 +86-23-65935818
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University Chongqing 400045 China +86-23-65935818 +86-23-65935818
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University Chongqing 400045 China +86-23-65935818 +86-23-65935818
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University Chongqing 400045 China +86-23-65935818 +86-23-65935818
| |
Collapse
|
9
|
Puchkov EO. Quantitative Methods for Single-Cell Analysis of Microorganisms. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719010120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Synergistic clearance of intracellular pathogens by hyaluronan-streptomycin micelles encapsulated with rapamycin. Carbohydr Polym 2019; 210:364-371. [PMID: 30732772 DOI: 10.1016/j.carbpol.2019.01.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 02/02/2023]
|
11
|
Tannert A, Ramoji A, Neugebauer U, Popp J. Photonic monitoring of treatment during infection and sepsis: development of new detection strategies and potential clinical applications. Anal Bioanal Chem 2017; 410:773-790. [PMID: 29214536 DOI: 10.1007/s00216-017-0713-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023]
Abstract
Despite the strong decline in the infection-associated mortality since the development of the first antibiotics, infectious diseases are still a major cause of death in the world. With the rising number of antibiotic-resistant pathogens, the incidence of deaths caused by infections may increase strongly in the future. Survival rates in sepsis, which occurs when body response to infections becomes uncontrolled, are still very poor if an adequate therapy is not initiated immediately. Therefore, approaches to monitor the treatment efficacy are crucially needed to adapt therapeutic strategies according to the patient's response. An increasing number of photonic technologies are being considered for diagnostic purpose and monitoring of therapeutic response; however many of these strategies have not been introduced into clinical routine, yet. Here, we review photonic strategies to monitor response to treatment in patients with infectious disease, sepsis, and septic shock. We also include some selected approaches for the development of new drugs in animal models as well as new monitoring strategies which might be applicable to evaluate treatment response in humans in the future. Figure Label-free probing of blood properties using photonics.
Collapse
Affiliation(s)
- Astrid Tannert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena, Germany.
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena, Germany
| |
Collapse
|
12
|
Harrison JP, Berry D. Vibrational Spectroscopy for Imaging Single Microbial Cells in Complex Biological Samples. Front Microbiol 2017; 8:675. [PMID: 28450860 PMCID: PMC5390015 DOI: 10.3389/fmicb.2017.00675] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Vibrational spectroscopy is increasingly used for the rapid and non-destructive imaging of environmental and medical samples. Both Raman and Fourier-transform infrared (FT-IR) imaging have been applied to obtain detailed information on the chemical composition of biological materials, ranging from single microbial cells to tissues. Due to its compatibility with methods such as stable isotope labeling for the monitoring of cellular activities, vibrational spectroscopy also holds considerable power as a tool in microbial ecology. Chemical imaging of undisturbed biological systems (such as live cells in their native habitats) presents unique challenges due to the physical and chemical complexity of the samples, potential for spectral interference, and frequent need for real-time measurements. This Mini Review provides a critical synthesis of recent applications of Raman and FT-IR spectroscopy for characterizing complex biological samples, with a focus on developments in single-cell imaging. We also discuss how new spectroscopic methods could be used to overcome current limitations of single-cell analyses. Given the inherent complementarity of Raman and FT-IR spectroscopic methods, we discuss how combining these approaches could enable us to obtain new insights into biological activities either in situ or under conditions that simulate selected properties of the natural environment.
Collapse
Affiliation(s)
- Jesse P Harrison
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry Meets Microbiology", University of ViennaVienna, Austria
| | - David Berry
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry Meets Microbiology", University of ViennaVienna, Austria
| |
Collapse
|
13
|
Kogermann K, Putrinš M, Tenson T. Single-cell level methods for studying the effect of antibiotics on bacteria during infection. Eur J Pharm Sci 2016; 95:2-16. [PMID: 27577009 DOI: 10.1016/j.ejps.2016.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
Abstract
Considerable evidence about phenotypic heterogeneity among bacteria during infection has accumulated during recent years. This heterogeneity has to be considered if the mechanisms of infection and antibiotic action are to be understood, so we need to implement existing and find novel methods to monitor the effects of antibiotics on bacteria at the single-cell level. This review provides an overview of methods by which this aim can be achieved. Fluorescence label-based methods and Raman scattering as a label-free approach are discussed in particular detail. Other label-free methods that can provide single-cell level information, such as impedance spectroscopy and surface plasmon resonance, are briefly summarized. The advantages and disadvantages of these different methods are discussed in light of a challenging in vivo environment.
Collapse
Affiliation(s)
- Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Marta Putrinš
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
14
|
Abstract
The label-free detection of microbial cells attached to a surface is an active field of research. The field is driven by the need to understand and control the growth of biofilms in a number of applications, including basic research in natural environments, industrial facilities, and clinical devices, to name a few. Despite significant progress in the ability to monitor the growth of biofilms and related living cells, the sensitivity and selectivity of such sensors are still a challenge. We believe that among the many different technologies available for monitoring biofilm growth, optical techniques are the most promising, as they afford direct imaging and offer high sensitivity and specificity. Furthermore, as each technique offers different insights into the biofilm growth mechanism, our analysis allows us to provide an overview of the biological processes at play. In addition, we use a set of key parameters to compare state-of-the-art techniques in the field, including a critical assessment of each method, to identify the most promising types of sensors. We highlight the challenges that need to be overcome to improve the characteristics of current biofilm sensor technologies and indicate where further developments are required. In addition, we provide guidelines for selecting a suitable sensor for detecting microbial cells on a surface.
Collapse
|
15
|
Assmann C, Kirchhoff J, Beleites C, Hey J, Kostudis S, Pfister W, Schlattmann P, Popp J, Neugebauer U. Identification of vancomycin interaction with Enterococcus faecalis within 30 min of interaction time using Raman spectroscopy. Anal Bioanal Chem 2015; 407:8343-52. [DOI: 10.1007/s00216-015-8912-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/30/2015] [Accepted: 07/09/2015] [Indexed: 12/22/2022]
|
16
|
Schröder UC, Bokeloh F, O'Sullivan M, Glaser U, Wolf K, Pfister W, Popp J, Ducrée J, Neugebauer U. Rapid, culture-independent, optical diagnostics of centrifugally captured bacteria from urine samples. BIOMICROFLUIDICS 2015; 9:044118. [PMID: 26339318 PMCID: PMC4537478 DOI: 10.1063/1.4928070] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/24/2015] [Indexed: 05/25/2023]
Abstract
This work presents a polymeric centrifugal microfluidic platform for the rapid and sensitive identification of bacteria directly from urine, thus eliminating time-consuming cultivation steps. This "Lab-on-a-Disc" platform utilizes the rotationally induced centrifugal field to efficiently capture bacteria directly from suspension within a glass-polymer hybrid chip. Once trapped in an array of small V-shaped structures, the bacteria are readily available for spectroscopic characterization, such as Raman spectroscopic fingerprinting, providing valuable information on the characteristics of the captured bacteria. Utilising fluorescence microscopy, quantification of the bacterial load has been achieved for concentrations above 2 × 10(-7) cells ml(-1) within a 4 μl sample. As a pilot application, we characterize urine samples from patients with urinary tract infections. Following minimal sample preparation, Raman spectra of the bacteria are recorded following centrifugal capture in stopped-flow sedimentation mode. Utilizing advanced analysis algorithms, including extended multiplicative scattering correction, high-quality Raman spectra of different pathogens, such as Escherichia coli or Enterococcus faecalis, are obtained from the analyzed patient samples. The whole procedure, including sample preparation, requires about 1 h to obtain a valuable result, marking a significant reduction in diagnosis time when compared to the 24 h and more typically required for standard microbiological methods. As this cost-efficient centrifugal cartridge can be operated using low-complexity, widely automated instrumentation, while providing valuable bacterial identification in urine samples in a greatly reduced time-period, our opto-microfluidic Lab-on-a-Disc device demonstrates great potential for next-generation patient diagnostics at the of point-of-care.
Collapse
Affiliation(s)
| | | | - Mary O'Sullivan
- Biomedical Diagnostics Institute, National Centre of Sensor Research, School of Physical Sciences, Dublin City University , Glasnevin, Dublin 9, Ireland
| | | | - Katharina Wolf
- Institute of Medical Microbiology, Jena University Hospital , 07747 Jena, Germany
| | - Wolfgang Pfister
- Institute of Medical Microbiology, Jena University Hospital , 07747 Jena, Germany
| | | | - Jens Ducrée
- Biomedical Diagnostics Institute, National Centre of Sensor Research, School of Physical Sciences, Dublin City University , Glasnevin, Dublin 9, Ireland
| | | |
Collapse
|