1
|
Oppenländer T, Gross JH. Collision cross sections of large positive fullerene molecular ions and their use as ion mobility calibrants in trapped ion mobility mass spectrometry. Anal Bioanal Chem 2024:10.1007/s00216-024-05579-0. [PMID: 39384572 DOI: 10.1007/s00216-024-05579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
Positive-ion laser desorption/ionization (LDI) of fullerenes contained in soot as produced by the Krätschmer-Huffman process delivers a wide range of fullerene molecular ions from C56+• to above C300+•. Here, the collision cross section (CCS) values of those fullerene molecular ions are determined using a trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) instrument. While CCS values in the range from C60+• to C96+• are already known with high accuracy, those of ions from C98+• onward had yet to be determined. The fullerene molecular ions covered in this work have CCS values from about 200 to 440 Å2. The fullerene molecular ion series is evenly spaced at C2 differences in composition, and thus, small CCS differences of just 2.2-3.5 Å2 were determined across the entire range. Fullerene M+• ions may be employed as mobility calibrants, in particular, when very narrow 1/K0 ranges are being analyzed to achieve high TIMS resolving power. In addition, due to the simple elemental composition, M+• ions of fullerenes could also serve for mass calibration. This study describes the determination of CCS values of fullerene molecular ions from C56+• to C240+• and the application of ions from C56+• to C220+• to calibrate the ion mobility scale of a Bruker timsTOFflex instrument in any combination of LDI, matrix-assisted laser desorption/ionization (MALDI), and electrospray ionization (ESI) modes in the CCS range from about 200 to 420 Å2. This use was exemplified along with ions from Agilent Tune Mix, leucine-enkephalin, angiotensin I, angiotensin II, and substance P.
Collapse
Affiliation(s)
- Tobias Oppenländer
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Gass DT, Quintero AV, Hatvany JB, Gallagher ES. Metal adduction in mass spectrometric analyses of carbohydrates and glycoconjugates. MASS SPECTROMETRY REVIEWS 2024; 43:615-659. [PMID: 36005212 DOI: 10.1002/mas.21801] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Glycans, carbohydrates, and glycoconjugates are involved in many crucial biological processes, such as disease development, immune responses, and cell-cell recognition. Glycans and carbohydrates are known for the large number of isomeric features associated with their structures, making analysis challenging compared with other biomolecules. Mass spectrometry has become the primary method of structural characterization for carbohydrates, glycans, and glycoconjugates. Metal adduction is especially important for the mass spectrometric analysis of carbohydrates and glycans. Metal-ion adduction to carbohydrates and glycoconjugates affects ion formation and the three-dimensional, gas-phase structures. Herein, we discuss how metal-ion adduction impacts ionization, ion mobility, ion activation and dissociation, and hydrogen/deuterium exchange for carbohydrates and glycoconjugates. We also compare the use of different metals for these various techniques and highlight the value in using metals as charge carriers for these analyses. Finally, we provide recommendations for selecting a metal for analysis of carbohydrate adducts and describe areas for continued research.
Collapse
Affiliation(s)
- Darren T Gass
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Ana V Quintero
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Jacob B Hatvany
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| |
Collapse
|
3
|
Bouwmeester R, Richardson K, Denny R, Wilson ID, Degroeve S, Martens L, Vissers JPC. Predicting ion mobility collision cross sections and assessing prediction variation by combining conventional and data driven modeling. Talanta 2024; 274:125970. [PMID: 38621320 DOI: 10.1016/j.talanta.2024.125970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
The use of collision cross section (CCS) values derived from ion mobility studies is proving to be an increasingly important tool in the characterization and identification of molecules detected in complex mixtures. Here, a novel machine learning (ML) based method for predicting CCS integrating both molecular modeling (MM) and ML methodologies has been devised and shown to be able to accurately predict CCS values for singly charged small molecular weight molecules from a broad range of chemical classes. The model performed favorably compared to existing models, improving compound identifications for isobaric analytes in terms of ranking and assigning identification probability values to the annotation. Furthermore, charge localization was seen to be correlated with CCS prediction accuracy and with gas-phase proton affinity demonstrating the potential to provide a proxy for prediction error based on chemical structural properties. The presented approach and findings represent a further step towards accurate prediction and application of computationally generated CCS values.
Collapse
Affiliation(s)
- Robbin Bouwmeester
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| | | | | | - Ian D Wilson
- Computational & Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, United Kingdom
| | - Sven Degroeve
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | |
Collapse
|
4
|
Critch-Doran O, Jenkins K, Hashemihedeshi M, Mommers AA, Green MK, Dorman FL, Jobst KJ. Toward Part-per-Million Precision in the Determination of an Ion's Collision Cross Section Using Multipass Cyclic Ion Mobility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:775-783. [PMID: 38498916 DOI: 10.1021/jasms.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In cyclic ion mobility (cIMS), ions are permitted to travel multiple passes around the drift cell, increasing the distance traveled and the relative separation between ions. This study tests the hypothesis that multiple passes around the cell can also result in improved precision when measuring an ion's mobility and the collision cross section (TWCCS) derived therefrom. Experiments were performed with a diverse set of compounds, including 16 polycyclic aromatic hydrocarbons using gas chromatographic atmospheric pressure chemical ionization and a set of drug molecules by direct infusion electrospray ionization. The average periodic drift time, viz., the average time required for the ion to travel around the cIMS cell once, shifts dramatically, approaching part-per-million (ppm) precision as the number of passes increases to ∼100. Extrapolation of the precision of the CCS values with respect to the number of passes led to the prediction that the precision will reach 1000 ppm after 50 passes, 100 ppm after 100 passes, and <10 ppm after 150 passes. Experiments wherein the number of passes exceeded 100 produced TWCCS values having within-run precisions ranging between 15 and 117 ppm. The improved precision with an increasing number of passes may be a consequence of mitigating space-charge effects by allowing the ions to occupy a larger region of the cIMS cell. A method is proposed to enable practical measurements of TWCCS with ppm precision and is demonstrated to characterize an unknown drug mixture.
Collapse
Affiliation(s)
- Olivia Critch-Doran
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Kevin Jenkins
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Mahin Hashemihedeshi
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Alexander A Mommers
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - M Kirk Green
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Frank L Dorman
- Department of Chemistry, Dartmouth College, Hannover, New Hampshire 03755, United States
- Waters Corporation, 34 Maple St., Milford, Massachusetts 01757, United States
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| |
Collapse
|
5
|
Li X, Wang H, Jiang M, Ding M, Xu X, Xu B, Zou Y, Yu Y, Yang W. Collision Cross Section Prediction Based on Machine Learning. Molecules 2023; 28:molecules28104050. [PMID: 37241791 DOI: 10.3390/molecules28104050] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Ion mobility-mass spectrometry (IM-MS) is a powerful separation technique providing an additional dimension of separation to support the enhanced separation and characterization of complex components from the tissue metabolome and medicinal herbs. The integration of machine learning (ML) with IM-MS can overcome the barrier to the lack of reference standards, promoting the creation of a large number of proprietary collision cross section (CCS) databases, which help to achieve the rapid, comprehensive, and accurate characterization of the contained chemical components. In this review, advances in CCS prediction using ML in the past 2 decades are summarized. The advantages of ion mobility-mass spectrometers and the commercially available ion mobility technologies with different principles (e.g., time dispersive, confinement and selective release, and space dispersive) are introduced and compared. The general procedures involved in CCS prediction based on ML (acquisition and optimization of the independent and dependent variables, model construction and evaluation, etc.) are highlighted. In addition, quantum chemistry, molecular dynamics, and CCS theoretical calculations are also described. Finally, the applications of CCS prediction in metabolomics, natural products, foods, and the other research fields are reflected.
Collapse
Affiliation(s)
- Xiaohang Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Mengxiang Ding
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Bei Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yadan Zou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yuetong Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
6
|
Belova L, Celma A, Van Haesendonck G, Lemière F, Sancho JV, Covaci A, van Nuijs ALN, Bijlsma L. Revealing the differences in collision cross section values of small organic molecules acquired by different instrumental designs and prediction models. Anal Chim Acta 2022; 1229:340361. [PMID: 36156233 DOI: 10.1016/j.aca.2022.340361] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The number of open access databases containing experimental and predicted collision cross section (CCS) values is rising and leads to their increased use for compound identification. However, the reproducibility of reference values with different instrumental designs and the comparison between predicted and experimental CCS values is still under evaluation. This study compared experimental CCS values of 56 small molecules (Contaminants of Emerging Concern) acquired by both drift tube (DT) and travelling wave (TW) ion mobility mass spectrometry (IM-MS). The TWIM-MS included two instrumental designs (Synapt G2 and VION). The experimental TWCCSN2 values obtained by the TWIM-MS systems showed absolute percent errors (APEs) < 2% in comparison to experimental DTIMS data, indicating a good correlation between the datasets. Furthermore, TWCCSN2 values of [M - H]- ions presented the lowest APEs. An influence of the compound class on APEs was observed. The applicability of prediction models based on artificial neural networks (ANN) and multivariate adaptive regression splines (MARS), both built using TWIM-MS data, was investigated for the first time for the prediction of DTCCSN2 values. For [M+H]+ and [M - H]- ions, the 95th percentile confidence intervals of observed APEs were comparable to values reported for both models indicating a good applicability for DTIMS predictions. For the prediction of DTCCSN2 values of [M+Na]+ ions, the MARS based model provided the best results with 73.9% of the ions showing APEs below the threshold reported for [M+Na]+. Finally, recommendations for database transfer and applications of prediction models for future DTIMS studies are made.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avinguda de Vicent Sos Baynat, 12006, Castelló, Spain
| | - Glenn Van Haesendonck
- Biomolecular & Analytical Mass Spectrometry (BAMS) Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Filip Lemière
- Biomolecular & Analytical Mass Spectrometry (BAMS) Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Juan Vicente Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avinguda de Vicent Sos Baynat, 12006, Castelló, Spain
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | | | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avinguda de Vicent Sos Baynat, 12006, Castelló, Spain.
| |
Collapse
|
7
|
Paglia G, Smith AJ, Astarita G. Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics. MASS SPECTROMETRY REVIEWS 2022; 41:722-765. [PMID: 33522625 DOI: 10.1002/mas.21686] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.
Collapse
Affiliation(s)
- Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Andrew J Smith
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
8
|
A re-calibration procedure for interoperable lipid collision cross section values measured by traveling wave ion mobility spectrometry. Anal Chim Acta 2022; 1226:340236. [DOI: 10.1016/j.aca.2022.340236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022]
|
9
|
Rose B, May JC, Reardon AR, McLean JA. Collision Cross-Section Calibration Strategy for Lipid Measurements in SLIM-Based High-Resolution Ion Mobility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1229-1237. [PMID: 35653638 PMCID: PMC9516683 DOI: 10.1021/jasms.2c00067] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Structures for lossless ion manipulation-based high-resolution ion mobility (HRIM) interfaced with mass spectrometry has emerged as a powerful tool for the separation and analysis of many isomeric systems. IM-derived collision cross section (CCS) is increasingly used as a molecular descriptor for structural analysis and feature annotation, but there are few studies on the calibration of CCS from HRIM measurements. Here, we examine the accuracy, reproducibility, and practical applicability of CCS calibration strategies for a broad range of lipid subclasses and develop a straightforward and generalizable framework for obtaining high-resolution CCS values. We explore the utility of using structurally similar custom calibrant sets as well as lipid subclass-specific empirically derived correction factors. While the lipid calibrant sets lowered overall bias of reference CCS values from ∼2-3% to ∼0.5%, application of the subclass-specific correction to values calibrated with a broadly available general calibrant set resulted in biases <0.4%. Using this method, we generated a high-resolution CCS database containing over 90 lipid values with HRIM. To test the applicability of this method to a broader class range typical of lipidomics experiments, a standard lipid mix was analyzed. The results highlight the importance of both class and arrival time range when correcting or scaling CCS values and provide guidance for implementation of the method for more general applications.
Collapse
|
10
|
Zimnicka M, Kalenius E, Jurczak J, Danikiewicz W. Ion mobility mass spectrometry - an efficient tool for the analysis of conformational switch of macrocyclic receptors upon anion binding. Analyst 2021; 146:5337-5346. [PMID: 34323262 DOI: 10.1039/d1an00958c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions between anions and synthetic macrocyclic receptors belong to the extensively explored area of research due to the particularly important functions of anions in biological and environmental sciences. Structures of anion-macrocycle complexes are closely related to their function, highlighting the importance of structural analysis of the complexes. Here, we discuss the application of ion mobility mass spectrometry (IM-MS) and theoretical calculations to the structural analysis of tetralactam macrocycles (M) with varying flexibility and structural properties, and their complexes with anions [M + X]-. Collision cross section (CCS) values obtained from both direct drift tube (DT) and indirect using traveling-wave (TW) IM-MS measurements supplemented by theoretical calculations were successfully used to describe the structural properties of various macrocycle-anion complexes, proving the suitability of the IM-MS approach for sensitive, selective, and fast detection of anion complexes and characterization of their structures and conformations.
Collapse
Affiliation(s)
- Magdalena Zimnicka
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | |
Collapse
|
11
|
Zhang C, Schumacher KN, Dodds ED, Hage DS. Glycoprotein analysis using lectin microcolumns and capillary electrophoresis: Characterization of alpha 1-acid glycoprotein by combined separation methods. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122855. [PMID: 34274643 DOI: 10.1016/j.jchromb.2021.122855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Separations based on combinations of 2.1 mm I.D. high-performance affinity microcolumns and capillary electrophoresis were developed and used to characterize the glycoforms of an intact glycoprotein. Human alpha1-acid glycoprotein (AGP) was used as a model analyte due to its heterogeneous glycosylation resulting from variations in its degree of branching, fucosylation, and number of sialic acids. Three separation formats were examined based on microcolumns that contained the lectins concanavalin A (Con A) or Aleuria aurantia lectin (AAL). These microcolumns were used with one another or in combination with capillary electrophoresis. N-Glycan analysis of the non-retained and retained AGP fractions was carried out by using PNGase F digestion and nanoflow electrospray ionization mass spectrometry. Con A microcolumns were found to selectively enrich AGP that contained bi-antennary N-glycans, while AAL microcolumns retained AGP with fucose-containing N-glycans. Results from these separation methods indicated that fucosylation of the N-linked glycans was more abundant when a high degree of branching was present in AGP. Sialic acid residues were more abundant when higher degrees of branching and more fucose residues were present in AGP. The separation and analysis methods that were developed could be used with relatively small amounts of AGP and can be adapted for use with other intact glycoproteins.
Collapse
Affiliation(s)
- Chenhua Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | | | - Eric D Dodds
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
12
|
Auth T, Grabarics M, Schlangen M, Pagel K, Koszinowski K. Modular Ion Mobility Calibrants for Organometallic Anions Based on Tetraorganylborate Salts. Anal Chem 2021; 93:9797-9807. [PMID: 34227799 DOI: 10.1021/acs.analchem.1c01333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organometallics are widely used in catalysis and synthesis. Their analysis relies heavily on mass spectrometric methods, among which traveling-wave ion mobility spectrometry (TWIMS) has gained increasing importance. Collision cross sections (CCS) obtainable by TWIMS significantly aid the structural characterization of ions in the gas phase, but for organometallics, their accuracy has been limited by the lack of appropriate calibrants. Here, we propose tetraorganylborates and their alkali-metal bound oligomers [Mn-1(BR4)n]- (M = Li, Na, K, Rb, Cs; R = aryl, Et; n = 1-6) as calibrants for electrospray ionization (ESI) TWIMS. These species chemically resemble typical organometallics and readily form upon negative-ion mode ESI of solutions of alkali-metal tetraorganylborates. By combining different tetraorganylborate salts, we have generated a large number of anions in a modular manner and determined their CCS values by drift-tube ion mobility spectrometry (DTIMS) (DTCCSHe = 81-585, DTCCSN2 = 130-704 Å2). In proof-of-concept experiments, we then applied these DTCCS values to the calibration of a TWIMS instrument and analyzed phenylcuprate and argentate anions, [Lin-1MnPh2n]- and [MnPhn+1]- (M = Cu, Ag), as prototypical reactive organometallics. The TWCCSN2 values derived from TWIMS measurements are in excellent agreement with those determined by DTIMS (<2% relative difference), demonstrating the effectiveness of the proposed calibration scheme. Moreover, we used theoretical methods to predict the structures and CCS values of the anions considered. These predictions are in good agreement with the experimental results and give further insight into the trends governing the assembly of tetraorganylborate, cuprate, and argentate oligomers.
Collapse
Affiliation(s)
- Thomas Auth
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Márkó Grabarics
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Molekülphysik, Faradayweg 4-6, Berlin 14195, Germany
| | - Maria Schlangen
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, Berlin 10623, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Molekülphysik, Faradayweg 4-6, Berlin 14195, Germany
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| |
Collapse
|
13
|
Naylor CN, Clowers BH. Reevaluating the Role of Polarizability in Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:618-627. [PMID: 33533630 DOI: 10.1021/jasms.0c00338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the expanding commercial availability of gas-phase separation systems that incorporate gas-phase mobility, there is a concurrent rise in efforts to cast the gas-phase mobility coefficient in terms of an ion-neutral collision cross-section (CCS). The motivating factors for this trend are varied, but many aim to complement experimental results with computationally generated CCS values from in silico structural approximations. Unfortunately, the current paradigm for relating experimental mobility results to computationally derived structures relies upon empirical approaches, including a myriad of variables that do not realistically bound the comparison. In this Critical Insight, we advocate for the development of a self-consistent experimental and computational framework that uses laboratory results to constrain the scope of the modeling effort. This paper aims to prompt discussion, challenge assumptions, and promote the development of more efficient, accurate computational techniques within the gas-phase ion measurement community. Specifically, we postulate whether experimental deviations from Langevin's polarization limit (Kpol) are suitable to estimate the relative contributions of hard-sphere collisions and long-range interactions within CCS values. Not surprisingly, different molecule classes exhibit different trends in the K/Kpol ratio when normalized for reduced mass, and the most common IMS calibrants (e.g., tune mix, polyalanine, tetraalkylammonium salts) follow different polarizability trends than many of the analytes probed in the literature. Succinctly, if gas-phase ion structure is largely invariant based upon the colliding neutral and newly developed experimental efforts can quantitatively capture ion polarizability, then modeling efforts describing a target analyte must be self-consistent as the collision neutral is changed in silico.
Collapse
Affiliation(s)
- Cameron N Naylor
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
14
|
Li A, Conant CR, Zheng X, Bloodsworth KJ, Orton DJ, Garimella SVB, Attah IK, Nagy G, Smith RD, Ibrahim YM. Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations. Anal Chem 2020; 92:14976-14982. [PMID: 33136380 DOI: 10.1021/acs.analchem.0c02829] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0-p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1-2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.
Collapse
Affiliation(s)
- Ailin Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher R Conant
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
15
|
Bijlsma L, Bade R, Been F, Celma A, Castiglioni S. Perspectives and challenges associated with the determination of new psychoactive substances in urine and wastewater - A tutorial. Anal Chim Acta 2020; 1145:132-147. [PMID: 33453874 DOI: 10.1016/j.aca.2020.08.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022]
Abstract
New psychoactive substances (NPS), often designed as (legal) substitutes to conventional illicit drugs, are constantly emerging in the drug market and being commercialized in different ways and forms. Their use continues to cause public health problems and is therefore of major concern in many countries. Monitoring NPS use, however, is arduous and different sources of information are required to get more insight of the prevalence and diffusion of NPS use. The determination of NPS in pooled urine and wastewater has shown great potential, adding a different and complementary light on this issue. However, it also presents analytical challenges and limitations that must be taken into account such as the complexity of the matrices, the high sensitivity and selectivity required in the analytical methods as a consequence of the low analyte concentrations as well as the rapid transience of NPS on the drug market creating a scenario with constantly moving analytical targets. Analytical investigation of NPS in pooled urine and wastewater is based on liquid chromatography hyphenated to mass spectrometry and can follow different strategies: target, suspect and non-target analysis. This work aims to discuss the advantages and disadvantages of the different data acquisition workflows and data exploration approaches in mass spectrometry, but also pays attention to new developments such as ion mobility and the use of in-silico prediction tools to improve the identification capabilities in high-complex samples. This tutorial gives an insight into this emerging topic of current concern, and describes the experience gathered within different collaborations and projects supported by key research articles and illustrative practical examples.
Collapse
Affiliation(s)
- L Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071, Castellón, Spain.
| | - R Bade
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, South Australia, 5000, Australia.
| | - F Been
- KWR Water Research Institute, Chemical Water Quality and Health, 3430 BB, Nieuwegein, the Netherlands
| | - A Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071, Castellón, Spain
| | - S Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, 20156, Milan, Italy
| |
Collapse
|
16
|
Calabrese V, Lavanant H, Rosu F, Gabelica V, Afonso C. Collision Cross Sections of Phosphoric Acid Cluster Anions in Helium Measured by Drift Tube Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:969-981. [PMID: 32153193 DOI: 10.1021/jasms.0c00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the last years, ion mobility mass spectrometry (IMS-MS) has improved structural analysis and compound identification by giving access to the collision cross section (CCS). An increasingly wide and accurate database of CCS values is now available but often without assessment of the influence of different instrumental settings on CCS values. Here, we present 75 CCS values in helium (DTCCSHe) for phosphoric acid cluster anions [(H3PO4)n - zH]z- with charge state (z) up to 4-. The CCS values, noted DTCCSHe, were obtained with a commercial drift tube ion mobility mass spectrometer, in helium, by applying a classic multifield approach. Phosphoric acid clusters are fragile structures that allow to evaluate the effect of different experimental conditions on the retention of weak bonds and their effect on CCS values. We probed harsh and soft voltage gradients in the electrospray (ESI) source before the IMS and two different voltage gradients in the post-IMS region. The variations in the ion mobility and mass spectra consisted in a change in the distribution of the cluster anions aggregation numbers (n) and charge states (z), with a higher amount of multiply charged species for the soft pre-IMS voltage gradient and a lower proportion of cluster dissociation for soft post-IMS conditions. However, the CCS values did not change with experimental conditions for a given cluster, as long as it stays intact from the IMS to the mass analyzer. The DTCCSHe were found in good agreement among 3 to 10 replicated values, with a relative standard deviation between 0.1 and 1.7%.
Collapse
Affiliation(s)
- Valentina Calabrese
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Hélène Lavanant
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Frédéric Rosu
- CNRS, University of Bordeaux and INSERM, Institut Européen de Chimie et Biologie (IECB, UMS3033, US001), 2 Rue Robert Escarpit, 33600 Pessac, France
| | - Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), Site IECB, 2 Rue Robert Escarpit, 33600 Pessac, France
| | - Carlos Afonso
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| |
Collapse
|
17
|
Stiving AQ, Jones BJ, Ujma J, Giles K, Wysocki VH. Collision Cross Sections of Charge-Reduced Proteins and Protein Complexes: A Database for Collision Cross Section Calibration. Anal Chem 2020; 92:4475-4483. [PMID: 32048834 PMCID: PMC7170229 DOI: 10.1021/acs.analchem.9b05519] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of charge-reducing reagents to generate lower-charge ions has gained popularity in the field of native mass spectrometry (MS) and ion mobility mass spectrometry (IM-MS). This is because the lower number of charged sites decreases the propensity for Coulombic repulsions and unfolding/restructuring, helping to preserve the native-like structure. Furthermore, lowering the charge state consequently increases the mass-to-charge values (m/z), effectively increasing spacing between signals originating from small mass differences, such as different proteoforms or protein-drug complexes. IM-MS yields collision cross section (CCS, Ω) values that provide information about the three-dimensional structure of the ion. Traveling wave IM (TWIM) is an established and expanding technique within the native MS field. TWIM measurements require CCS calibration, which is achieved via the use of standard species of known CCS. Current databases for native-like proteins and protein complexes provide CCS values obtained using normal (i.e., non-charge-reducing) conditions. Herein, we explored the validity of using "normal" charge calibrants to calibrate for charge-reduced proteins and show cases where it is not appropriate. Using a custom linear field drift cell that enables the determination of ion mobilities from "first principles", we directly determined CCS values for 19 protein calibrant species under three solution conditions (yielding a broad range of charge states) and two drift gases. This has established a database of CCS and reduced-mobility (K0) values, along with their associated uncertainties, for proteins and protein complexes over a large m/z range. TWIM validation of this database shows improved accuracy over existing methods in calibrating CCS values for charge-reduced proteins.
Collapse
Affiliation(s)
- Alyssa Q. Stiving
- Department of Chemistry and Biochemistry
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA
| | - Benjamin J. Jones
- Department of Chemistry and Biochemistry
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA
| | - Jakub Ujma
- Waters Corporation, Wilmslow, SK9 4AX, United Kingdom
| | - Kevin Giles
- Waters Corporation, Wilmslow, SK9 4AX, United Kingdom
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Gelb AS, Lai R, Li H, Dodds ED. Composition and charge state influence on the ion-neutral collision cross sections of protonated N-linked glycopeptides: an experimental and theoretical deconstruction of coulombic repulsion vs. charge solvation effects. Analyst 2020; 144:5738-5747. [PMID: 31453603 DOI: 10.1039/c9an00875f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ion mobility spectrometry (IMS) is of significant interest as a platform for glycoanalysis. While much attention has been focused on the resolution of isomeric carbohydrates and glycoconjugates, another appealing aspect of IMS is the ability to sort different classes of biomolecules into distinct regions of mass vs. mobility space. This capability has potential to greatly simplify glycoproteomic analyses, as glycosylated and non-glycosylated peptides can be rapidly partitioned in the gas phase. Nevertheless, the physical and chemical characteristics of glycopeptides that dictate their mass vs. mobility loci have yet to be systematically investigated. This report presents an IMS study of model protonated glycopeptide ions with systematically varied oligosaccharide topologies, polypeptide sequences, and charge states. In all, over 110 ion-neutral collision cross sections (CCSs) were measured and analyzed in the context of the physicochemical characteristics of the analytes. Glycan size and composition emerged as a decisive factor in dictating the CCS space occupied by the glycopeptides and exerted this influence in a charge state dependent fashion. Furthermore, elongation of the glycan group was found to either increase or decrease glycopeptide CCSs depending on the ion charge state and the size of the glycan. Molecular dynamics (MD) simulations of the gas phase structures and CCSs of selected glycopeptides revealed that the experimental observations were consistent with a glycan size and charge state dependent interplay between destabilizing coulombic repulsion effects (tending to result in more extended structures) and stabilizing charge solvation effects in which the glycan plays a major role (tending to result in more compact structures). Taken together, these IMS and MD findings suggest the possibility of predicting and delineating glycopeptide-enriched regions of mass vs. mobility space for applications in glycoproteomics.
Collapse
Affiliation(s)
- Abby S Gelb
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| | | | | | | |
Collapse
|
19
|
Rister AL, Dodds ED. Steroid analysis by ion mobility spectrometry. Steroids 2020; 153:108531. [PMID: 31672629 PMCID: PMC6986338 DOI: 10.1016/j.steroids.2019.108531] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022]
Abstract
Steroids are an important biomolecule class for analysis due to their promise as biomarkers for various diseases and their abuse as performance enhancers in sports. Current analytical methods, including chromatography and nuclear magnetic resonance spectroscopy, fall short of being able to confidently analyze steroids, partly due to the large number of steroid isomers. Ion mobility spectrometry (IMS), a gas-phase ion separator, has shown potential for steroid analysis both in conjunction with liquid chromatography (LC) and as a stand-alone technique. This review will examine the current literature on IMS analysis of steroids. Analysis by LC-IMS will include examination of steroids and steroid glucuronides in human urine and serum samples for enhanced signal-to-noise ratios and higher confidence of identification. The stand-alone IMS analysis will examine the use of derivatization of steroids and formation of multimers to enhance resolution for steroid isomers analysis, where both methods have been shown to greatly increase the separation of steroid isomer species. However, these methods have not been applied to biological mixtures to assess their applicability to medical and forensic applications, which should be a future direction of this field.
Collapse
Affiliation(s)
- Alana L Rister
- Department of Chemistry and University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA
| | - Eric D Dodds
- Department of Chemistry and University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
20
|
McKenna KR, Li L, Krishnamurthy R, Liotta CL, Fernández FM. Organic acid shift reagents for the discrimination of carbohydrate isobars by ion mobility-mass spectrometry. Analyst 2020; 145:8008-8015. [DOI: 10.1039/d0an01546f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Traveling wave and drift tube ion mobility were utilized to separate isomeric disaccharides. Organic acid shift reagents were necessary to increase the resolution of these separations for mixture analysis.
Collapse
Affiliation(s)
- Kristin R. McKenna
- NSF/NASA Center for Chemical Evolution
- USA
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
| | - Li Li
- NSF/NASA Center for Chemical Evolution
- USA
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
| | | | - Charles L. Liotta
- NSF/NASA Center for Chemical Evolution
- USA
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
| | - Facundo M. Fernández
- NSF/NASA Center for Chemical Evolution
- USA
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
| |
Collapse
|
21
|
Rister AL, Dodds ED. Liquid chromatography-ion mobility spectrometry-mass spectrometry analysis of multiple classes of steroid hormone isomers in a mixture. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1137:121941. [PMID: 31877426 DOI: 10.1016/j.jchromb.2019.121941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/08/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
Abstract
Methods for the analysis of steroids have long been of interest due to the multiple uses for such methods in medical applications, sports monitoring, and environmental science. The analysis of steroids involves inherent analytical hurdles due to their low biological concentrations, poor ionization efficiencies, and frequent occurrence of isomerism. One analytical technique that has been recently applied to steroid analysis is ion mobility spectrometry (IMS). While previous work has focused on the use of metal adduction and multimer formation to enhance separation through IMS analysis coupled to mass spectrometry (MS), this work furthers this approach by coupling IMS-MS with liquid chromatography (LC). Three different LC methods with varying tradeoffs between chromatographic resolution and run time were developed, with one of these achieving a resolution above 1.5 for all steroid isomers. These results also indicate that the coupling of LC to IMS-MS can increase the overall resolution of steroid isomers relative to what can be achieved by either LC or IMS alone. Furthermore, the use of LC and IMS in concert can allow for a more rapid analysis of steroid isomers than can be achieved by LC-MS alone. Finally, the IMS dimension provided for measurements of ion-neutral collision cross sections (CCSs), which were found to be in good agreement with previously reported measurements. Thus, this approach provides three complementary quantitative parameters (retention time, CCS, and mass-to-charge ratio) that can contribute the identification of analytes. Overall, the work presented here demonstrates the potential of coupling LC, IMS, and MS for the analysis of isomeric steroid hormones.
Collapse
Affiliation(s)
- Alana L Rister
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA
| | - Eric D Dodds
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
22
|
Dodds JN, Baker ES. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2185-2195. [PMID: 31493234 PMCID: PMC6832852 DOI: 10.1007/s13361-019-02288-2] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 05/07/2023]
Abstract
Ion mobility spectrometry (IMS) is a rapid separation technique that has experienced exponential growth as a field of study. Interfacing IMS with mass spectrometry (IMS-MS) provides additional analytical power as complementary separations from each technique enable multidimensional characterization of detected analytes. IMS separations occur on a millisecond timescale, and therefore can be readily nested into traditional GC and LC/MS workflows. However, the continual development of novel IMS methods has generated some level of confusion regarding the advantages and disadvantages of each. In this critical insight, we aim to clarify some common misconceptions for new users in the community pertaining to the fundamental concepts of the various IMS instrumental platforms (i.e., DTIMS, TWIMS, TIMS, FAIMS, and DMA), while addressing the strengths and shortcomings associated with each. Common IMS-MS applications are also discussed in this review, such as separating isomeric species, performing signal filtering for MS, and incorporating collision cross-section (CCS) values into both targeted and untargeted omics-based workflows as additional ion descriptors for chemical annotation. Although many challenges must be addressed by the IMS community before mobility information is collected in a routine fashion, the future is bright with possibilities.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
23
|
|
24
|
Monge ME, Dodds JN, Baker ES, Edison AS, Fernández FM. Challenges in Identifying the Dark Molecules of Life. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:177-199. [PMID: 30883183 PMCID: PMC6716371 DOI: 10.1146/annurev-anchem-061318-114959] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Metabolomics is the study of the metabolome, the collection of small molecules in living organisms, cells, tissues, and biofluids. Technological advances in mass spectrometry, liquid- and gas-phase separations, nuclear magnetic resonance spectroscopy, and big data analytics have now made it possible to study metabolism at an omics or systems level. The significance of this burgeoning scientific field cannot be overstated: It impacts disciplines ranging from biomedicine to plant science. Despite these advances, the central bottleneck in metabolomics remains the identification of key metabolites that play a class-discriminant role. Because metabolites do not follow a molecular alphabet as proteins and nucleic acids do, their identification is much more time consuming, with a high failure rate. In this review, we critically discuss the state-of-the-art in metabolite identification with specific applications in metabolomics and how technologies such as mass spectrometry, ion mobility, chromatography, and nuclear magnetic resonance currently contribute to this challenging task.
Collapse
Affiliation(s)
- María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Ciudad de Buenos Aires, Argentina
| | - James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Arthur S Edison
- Department of Genetics, Department of Biochemistry and Molecular Biology, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology and Petit Institute for Biochemistry and Bioscience, Atlanta, Georgia 30332, USA;
| |
Collapse
|
25
|
Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JL, Bleiholder C, Bowers MT, Bilbao A, Bush MF, Campbell JL, Campuzano ID, Causon T, Clowers BH, Creaser CS, De Pauw E, Far J, Fernandez‐Lima F, Fjeldsted JC, Giles K, Groessl M, Hogan CJ, Hann S, Kim HI, Kurulugama RT, May JC, McLean JA, Pagel K, Richardson K, Ridgeway ME, Rosu F, Sobott F, Thalassinos K, Valentine SJ, Wyttenbach T. Recommendations for reporting ion mobility Mass Spectrometry measurements. MASS SPECTROMETRY REVIEWS 2019; 38:291-320. [PMID: 30707468 PMCID: PMC6618043 DOI: 10.1002/mas.21585] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 05/02/2023]
Abstract
Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site2 rue Robert Escarpit, 33600PessacFrance
| | | | | | - Perdita Barran
- Michael Barber Centre for Collaborative Mass SpectrometryManchester Institute for Biotechnology, University of ManchesterManchesterUK
| | - Justin L.P. Benesch
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford, Mansfield Road, OX1 3TAOxfordUK
| | - Christian Bleiholder
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida32311
| | | | - Aivett Bilbao
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashington
| | - Matthew F. Bush
- Department of ChemistryUniversity of WashingtonSeattleWashington
| | | | | | - Tim Causon
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Brian H. Clowers
- Department of ChemistryWashington State UniversityPullmanWashington
| | - Colin S. Creaser
- Centre for Analytical ScienceDepartment of Chemistry, Loughborough UniversityLoughboroughUK
| | - Edwin De Pauw
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | - Johann Far
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | | | | | | | - Michael Groessl
- Department of Nephrology and Hypertension and Department of BioMedical ResearchInselspital, Bern University Hospital, University of Bern, Switzerland and TofwerkThunSwitzerland
| | | | - Stephan Hann
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Hugh I. Kim
- Department of ChemistryKorea UniversitySeoulKorea
| | | | - Jody C. May
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - John A. McLean
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - Kevin Pagel
- Freie Universitaet BerlinInstitute for Chemistry and BiochemistryBerlinGermany
| | | | | | - Frédéric Rosu
- CNRS, INSERM and University of BordeauxInstitut Européen de Chimie et BiologiePessacFrance
| | - Frank Sobott
- Antwerp UniversityBiomolecular & Analytical Mass SpectrometryAntwerpBelgium
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonWC1E 6BTUK
- United Kingdom and Institute of Structural and Molecular BiologyDepartment of Biological Sciences, Birkbeck College, University of LondonLondonWC1E 7HXUK
| | - Stephen J. Valentine
- C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownWest Virginia
| | | |
Collapse
|
26
|
Kirk AT, Bohnhorst A, Raddatz CR, Allers M, Zimmermann S. Ultra-high-resolution ion mobility spectrometry-current instrumentation, limitations, and future developments. Anal Bioanal Chem 2019; 411:6229-6246. [PMID: 30957205 DOI: 10.1007/s00216-019-01807-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022]
Abstract
With recent advances in ionization sources and instrumentation, ion mobility spectrometers (IMS) have transformed from a detector for chemical warfare agents and explosives to a widely used tool in analytical and bioanalytical applications. This increasing measurement task complexity requires higher and higher analytical performance and especially ultra-high resolution. In this review, we will discuss the currently used ion mobility spectrometers able to reach such ultra-high resolution, defined here as a resolving power greater than 200. These instruments are drift tube IMS, traveling wave IMS, trapped IMS, and field asymmetric or differential IMS. The basic operating principles and the resulting effects of experimental parameters on resolving power are explained and compared between the different instruments. This allows understanding the current limitations of resolving power and how ion mobility spectrometers may progress in the future. Graphical abstract.
Collapse
Affiliation(s)
- Ansgar T Kirk
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany.
| | - Alexander Bohnhorst
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Christian-Robert Raddatz
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Maria Allers
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| |
Collapse
|
27
|
Rister AL, Martin TL, Dodds ED. Application of Group I Metal Adduction to the Separation of Steroids by Traveling Wave Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:248-255. [PMID: 30414066 PMCID: PMC6551524 DOI: 10.1007/s13361-018-2085-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 05/04/2023]
Abstract
Steroids represent an interesting class of small biomolecules due to their use as biomarkers and their status as scheduled drugs. Although the analysis of steroids is complicated by the potential for many isomers, ion mobility spectrometry (IMS) has previously shown promise for the rapid separation of steroid isomers. This work is aimed at the further development of IMS separation for the analysis of steroids. Here, traveling wave ion mobility spectrometry (TWIMS) was applied to the study of group I metal adducted steroids and their corresponding multimers for five sets of isomers. Each set of isomers had a minimum of one dimeric metal ion adduct that exhibited a resolution greater than one (i.e., approaching baseline resolution). Additionally, ion-neutral collision cross sections (CCSs) were measured using polyalanine as a calibrant, which may provide an additional metric contributing to analyte identification. Where possible, measured CCSs were compared to previously reported values. When measuring CCSs of steroid isomers using polyalanine as the calibrant, nitrogen CCS values were within 1.0% error for monomeric sodiated adducts and slightly higher for the dimeric sodiated adducts. Overall, TWIMS was found to successfully separate steroids as dimeric adducts of group I metals. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Alana L Rister
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE, 68588-0304, USA
| | - Tiana L Martin
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE, 68588-0304, USA
- Department of Chemistry and Biochemistry, Spelman College, Atlanta, GA, 30314-4399, USA
| | - Eric D Dodds
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE, 68588-0304, USA.
| |
Collapse
|
28
|
Hupin S, Lavanant H, Renaudineau S, Proust A, Izzet G, Groessl M, Afonso C. A calibration framework for the determination of accurate collision cross sections of polyanions using polyoxometalate standards. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1703-1710. [PMID: 29989245 DOI: 10.1002/rcm.8230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Polyoxometalates (POMs) are remarkable oxo-clusters forming compact highly charged anions. We measured their collision cross sections (CCS) in N2 with drift tube ion mobility spectrometry (DTIMS). These values were then used to calibrate a traveling wave ion mobility spectrometry (TWIMS) device and the accuracy of the calibration was tested. METHODS Six POM standards were analyzed by DTIM-MS (Tofwerk, Thun, Switzerland) at different voltages to determine absolute DT CCS (N2 ) values. Five POM compounds (Lindqvist TBA2 Mo6 O19; decatungstate TBA4 W10 O32; Keggin TBA3 PMo12 O40 ; TBA3 PW12 O40 and Dawson TBA6 P2 W18 O62 ) were used for the calibration of the TWIM-MS instrument (Synapt G2 HDMS, Waters, Manchester, UK) and a sixth Dawson POM, TBA9 P2 Nb3 W15 O62 , was used to compare the accuracy of the calibrations with POM or with polyalanine and dextran reference ions. RESULTS We determined 45 DT CCS (N2 ) values at 30°C or 60°C. Fourteen DT CCS (N2 ) values at 30°C were used to perform calibration of the TWIMS instrument. Better correlations were observed than when DT CCS values in helium from the literature were used. The accuracy tests on six ions of Dawson POM TBA9 P2 Nb3 W15 O62 led to relative errors below 3.1% while relative errors of 3.6% to 10.1% were observed when calibration was performed with polyalanine and dextran reference ions. CONCLUSIONS Our novel calibration strategy for determination of CCS values of multiply negatively charged ions on TWIM-MS devices based on DT CCS (N2 ) of standard POM structures covered a wider range of CCS and improved the accuracy to 2.1% relative error on average compared with 6.9% using polyalanine and dextran calibration.
Collapse
Affiliation(s)
- Sébastien Hupin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000, Rouen, France
| | - Hélène Lavanant
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000, Rouen, France
| | - Séverine Renaudineau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, F-75005, Paris, France
| | - Anna Proust
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, F-75005, Paris, France
| | - Guillaume Izzet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, F-75005, Paris, France
| | - Michael Groessl
- Department of Nephrology and Hypertension and Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Carlos Afonso
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000, Rouen, France
| |
Collapse
|
29
|
Lippens JL, Ranganathan SV, D'Esposito RJ, Fabris D. Modular calibrant sets for the structural analysis of nucleic acids by ion mobility spectrometry mass spectrometry. Analyst 2018; 141:4084-99. [PMID: 27152369 DOI: 10.1039/c6an00453a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study explored the use of modular nucleic acid (NA) standards to generate calibration curves capable of translating primary ion mobility readouts into corresponding collision cross section (CCS) data. Putative calibrants consisted of single- (ss) and double-stranded (ds) oligo-deoxynucleotides reaching up to ∼40 kDa in size (i.e., 64 bp) and ∼5700 Å(2) in CCS. To ensure self-consistency among reference CCS values, computational data obtained in house were preferred to any experimental or computational data from disparate sources. Such values were obtained by molecular dynamics (MD) simulations and either the exact hard sphere scattering (EHSS) or the projection superposition approximation (PSA) methods, and then plotted against the corresponding experimental values to generate separate calibration curves. Their performance was evaluated on the basis of their correlation coefficients and ability to provide values that matched the CCS of selected test samples mimicking typical unknowns. The results indicated that the predictive power benefited from the exclusion of higher charged species that were more susceptible to the destabilizing effects of Coulombic repulsion. The results revealed discrepancies between EHSS and PSA data that were ascribable to the different approximations used to describe the ion mobility process. Within the boundaries defined by these approximations and the challenges of modeling NA structure in a solvent-free environment, the calibrant sets enabled the experimental determination of CCS with excellent reproducibility (precision) and error (accuracy), which will support the analysis of progressively larger NA samples of biological significance.
Collapse
Affiliation(s)
| | | | | | - Daniele Fabris
- University at Albany, Albany, New York, USA. and SUNY, Albany, The RNA Institute, 1400 Washington Avenue, Albany, New York, USA
| |
Collapse
|
30
|
Hinnenkamp V, Klein J, Meckelmann SW, Balsaa P, Schmidt TC, Schmitz OJ. Comparison of CCS Values Determined by Traveling Wave Ion Mobility Mass Spectrometry and Drift Tube Ion Mobility Mass Spectrometry. Anal Chem 2018; 90:12042-12050. [DOI: 10.1021/acs.analchem.8b02711] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vanessa Hinnenkamp
- IWW Water Centre, Moritzstraße 26, 45476 Muelheim an der Ruhr, Germany
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research, Universitaetsstrasse 5, 45141 Essen, Germany
| | | | | | - Peter Balsaa
- IWW Water Centre, Moritzstraße 26, 45476 Muelheim an der Ruhr, Germany
| | - Torsten C. Schmidt
- IWW Water Centre, Moritzstraße 26, 45476 Muelheim an der Ruhr, Germany
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research, Universitaetsstrasse 5, 45141 Essen, Germany
| | | |
Collapse
|
31
|
Canzani D, Laszlo KJ, Bush MF. Ion Mobility of Proteins in Nitrogen Gas: Effects of Charge State, Charge Distribution, and Structure. J Phys Chem A 2018; 122:5625-5634. [DOI: 10.1021/acs.jpca.8b04474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniele Canzani
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Kenneth J. Laszlo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
32
|
Mookherjee A, Guttman M. Bridging the structural gap of glycoproteomics with ion mobility spectrometry. Curr Opin Chem Biol 2018; 42:86-92. [DOI: 10.1016/j.cbpa.2017.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
|
33
|
Poyer S, Lopin-Bon C, Jacquinet JC, Salpin JY, Daniel R. Isomer separation and effect of the degree of polymerization on the gas-phase structure of chondroitin sulfate oligosaccharides analyzed by ion mobility and tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:2003-2010. [PMID: 28901031 DOI: 10.1002/rcm.7987] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Chondroitin sulfate (CS) glycosaminoglycans are bioactive sulfated polysaccharides comprising repeating units of uronic acid and N-acetyl galactose sulfated at various positions. The optimal length and sulfation pattern of the CS bioactive sequences remain elusive so that structure-activity relationships cannot be easily established. Development of efficient analytical methods allowing the differentiation of the various sulfation patterns of CS sequences is therefore of particular importance to correlate their biological functions to the sulfation pattern. METHODS Discrimination of different oligomers (dp2 to dp6) of synthetic chondroitin sulfate isomers was evaluated by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in the negative-ion mode from deprotonated and alkali adduct species. In addition, ion mobility mass spectrometry (IMS-MS) was used to study the influence of both the degree of polymerization and sulfate group location on the gas-phase conformation of CS oligomers. RESULTS ESI-MS/MS spectra of chondroitin sulfate isomers show characteristic product ions exclusively from alkali adduct species (Li, Na, K and Cs). Whatever the alkali adducts studied, MS/MS of chondroitin oligosaccharides sulfated at position 6 yields a specific product ion at m/z 139 while CS oligosaccharides sulfated at position 4 show a specific product ion at m/z 154. Being observed for the different CS oligomers di-, tetra- and hexasaccharides, these fragment ions are considered as diagnostic ions for chondroitin 6-O-sulfate and chondroitin 4-O-sulfate, respectively. IMS-MS experiments reveal that collision cross-sections (CCS) of CS oligomers with low charge states evolved linearly with degrees of polymerization indicating a similar gas-phase conformation. CONCLUSIONS This study allows the fast and unambiguous differentiation of CS isomers sulfated at position 6 or 4 for both saturated and unsaturated analogues from MS/MS experiments. In addition, the CCS linear evolution of CS oligomers in function of the degree of polymerization indicates that no folding occurs even for hexasaccharides.
Collapse
Affiliation(s)
- Salomé Poyer
- Université Paris-Saclay, CNRS, CEA, Univ Evry, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, F-91025, Evry, France
| | | | | | - Jean-Yves Salpin
- Université Paris-Saclay, CNRS, CEA, Univ Evry, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, F-91025, Evry, France
| | - Régis Daniel
- Université Paris-Saclay, CNRS, CEA, Univ Evry, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, F-91025, Evry, France
| |
Collapse
|
34
|
Morrison KA, Clowers BH. Contemporary glycomic approaches using ion mobility-mass spectrometry. Curr Opin Chem Biol 2017; 42:119-129. [PMID: 29248736 DOI: 10.1016/j.cbpa.2017.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
Abstract
Characterization of complex oligosaccharides has historically required extensive sample handling and separations before analysis using nuclear magnetic resonance spectroscopy and electron impact mass spectra following hydrolysis, derivatization, and gas chromatographic separation. Advances in liquid chromatography separations and tandem mass spectrometry have expanded the range of intact glycan analysis, but carbohydrate structure and conformation-integral chemical characteristics-are often difficult to assess with minimal amounts of sample in a rapid fashion. Because ion mobility spectrometry (IMS) separates analytes based upon an effective 'size-to-charge' ratio, IMS is, by extension, highly applicable to glycomics. Furthermore, the speed of IMS, its growing levels of separation efficiency, and direct compatibility with all forms of mass spectrometry, illustrates is core role in the future of glycomics efforts. This review assesses the current state of ion mobility-mass spectrometry applied to glycan, glycoprotein, and glycoconjugate analysis. Currently, assessing optimal ion polarity and adduct type for a glycan class along with the appropriate tandem mass spectrometry technique underpin many of the current glycan analysis efforts using ion mobility-mass spectrometry (IMMS). Once determined, these parameters have enabled a growing and impressive range of glycomics campaigns employing this technique. Additionally, the combination of IMS with tandem mass spectrometry, and even spectroscopic methods, further expands the dimensionality of hybrid instrumentation to provide a more comprehensive assessment of glycan structure across a wide dynamic range. Continued computational efforts to complement experimental and instrumental advancements also serve as a core component of IMMS workflows applied to glycomics and promise to maximize the information gained from mobility separations.
Collapse
Affiliation(s)
- Kelsey A Morrison
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
35
|
Regueiro J, Negreira N, Hannisdal R, Berntssen MH. Targeted approach for qualitative screening of pesticides in salmon feed by liquid chromatography coupled to traveling-wave ion mobility/quadrupole time-of-flight mass spectrometry. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Hofmann J, Pagel K. Glykananalyse mittels Ionenmobilitäts-Massenspektrometrie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Johanna Hofmann
- Abteilung Molekülphysik; Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Kevin Pagel
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustraße 3 Deutschland
| |
Collapse
|
37
|
Hofmann J, Pagel K. Glycan Analysis by Ion Mobility-Mass Spectrometry. Angew Chem Int Ed Engl 2017; 56:8342-8349. [DOI: 10.1002/anie.201701309] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Johanna Hofmann
- Abteilung Molekülphysik; Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustraße 3 Germany
| |
Collapse
|
38
|
Hofmann J, Stuckmann A, Crispin M, Harvey DJ, Pagel K, Struwe WB. Identification of Lewis and Blood Group Carbohydrate Epitopes by Ion Mobility-Tandem-Mass Spectrometry Fingerprinting. Anal Chem 2017; 89:2318-2325. [PMID: 28192913 DOI: 10.1021/acs.analchem.6b03853] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glycans have several elements that contribute to their structural complexity, involving a range of monosaccharide building blocks, configuration of linkages between residues and various degrees of branching on a given structure. Their analysis remains challenging and resolving minor isomeric variants can be difficult, in particular terminal fucosylated Lewis and blood group antigens present on N- and O-glycans. Accurately characterizing these isomeric structures by current techniques is not straightforward and typically requires a combination of methods and/or sample derivatization. Yet the ability to monitor the occurrence of these epitopes is important as structural changes are associated with several human diseases. The use of ion mobility-mass spectrometry (IM-MS), which separates ions in the gas phase based on their size, charge and shape, offers a new potential tool for glycan analysis and recent reports have demonstrated its potential for glycomics. Here we show that Lewis and blood group isomers, which have identical fragmentation spectra, exhibit very distinctive IM drift times and collision cross sections (CCS). We show that IM-MS/MS analysis can rapidly and accurately differentiate epitopes from parotid gland N-glycans and milk oligosaccharides based on fucosylated fragment ions with characteristic CCSs.
Collapse
Affiliation(s)
- Johanna Hofmann
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freien Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Alexandra Stuckmann
- Institut für Chemie und Biochemie, Freien Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , OX1 3QU Oxford, United Kingdom
| | - David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , OX1 3QU Oxford, United Kingdom
| | - Kevin Pagel
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Chemie und Biochemie, Freien Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , OX1 3QU Oxford, United Kingdom
| |
Collapse
|
39
|
Abstract
In this review, we focus on an important aspect of ion mobility (IM) research, namely the reporting of quantitative ion mobility measurements in the form of the gas-phase collision cross section (CCS), which has provided a common basis for comparison across different instrument platforms and offers a unique form of structural information, namely size and shape preferences of analytes in the absence of bulk solvent. This review surveys the over 24,000 CCS values reported from IM methods spanning the era between 1975 to 2015, which provides both a historical and analytical context for the contributions made thus far, as well as insight into the future directions that quantitative ion mobility measurements will have in the analytical sciences. The analysis was conducted in 2016, so CCS values reported in that year are purposely omitted. In another few years, a review of this scope will be intractable, as the number of CCS values which will be reported in the next three to five years is expected to exceed the total amount currently published in the literature.
Collapse
Affiliation(s)
- Jody C May
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Caleb B Morris
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute for Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
40
|
Metz TO, Baker ES, Schymanski EL, Renslow RS, Thomas DG, Causon TJ, Webb IK, Hann S, Smith RD, Teeguarden JG. Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go? Bioanalysis 2017; 9:81-98. [PMID: 27921453 PMCID: PMC5674211 DOI: 10.4155/bio-2016-0244] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/12/2016] [Indexed: 01/01/2023] Open
Abstract
Measuring the exposome remains a challenge due to the range and number of anthropogenic molecules that are encountered in our daily lives, as well as the complex systemic responses to these exposures. One option for improving the coverage, dynamic range and throughput of measurements is to incorporate ion mobility spectrometry (IMS) into current MS-based analytical methods. The implementation of IMS in exposomics studies will lead to more frequent observations of previously undetected chemicals and metabolites. LC-IMS-MS will provide increased overall measurement dynamic range, resulting in detections of lower abundance molecules. Alternatively, the throughput of IMS-MS alone will provide the opportunity to analyze many thousands of longitudinal samples over lifetimes of exposure, capturing evidence of transitory accumulations of chemicals or metabolites. The volume of data corresponding to these new chemical observations will almost certainly outpace the generation of reference data to enable their confident identification. In this perspective, we briefly review the state-of-the-art in measuring the exposome, and discuss the potential use for IMS-MS and the physico-chemical property of collisional cross section in both exposure assessment and molecular identification.
Collapse
Affiliation(s)
- Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Emma L Schymanski
- Eawag, Swiss Federal Institute of Aquatic Science & Technology, Dübendorf, Switzerland
| | - Ryan S Renslow
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Dennis G Thomas
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tim J Causon
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources & Life Sciences (BOKU Vienna), Vienna, Austria
| | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Stephan Hann
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources & Life Sciences (BOKU Vienna), Vienna, Austria
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Justin G Teeguarden
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
41
|
Regueiro J, Negreira N, Berntssen MHG. Ion-Mobility-Derived Collision Cross Section as an Additional Identification Point for Multiresidue Screening of Pesticides in Fish Feed. Anal Chem 2016; 88:11169-11177. [PMID: 27779869 DOI: 10.1021/acs.analchem.6b03381] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry allows for the measurement of the collision cross section (CCS), which provides information about the shape of an ionic molecule in the gas phase. Although the hyphenation of traveling-wave ion mobility spectrometry (TWIMS) with high-resolution quadrupole time-of-flight mass spectrometry (QTOFMS) has been mainly used for structural elucidation purposes, its potential for fast screening of small molecules in complex samples has not yet been thoroughly evaluated. The current work explores the capabilities of ultrahigh-performance liquid chromatography (UHPLC) coupled to a new design TWIMS-QTOFMS for the screening and identification of a large set of pesticides in complex salmon feed matrices. A database containing TWIMS-derived CCS values for more than 200 pesticides is hereby presented. CCS measurements showed high intra- and interday repeatability (RSD < 1%), and they were not affected by the complexity of the investigated matrices (ΔCCS ≤ 1.8%). The use of TWIMS in combination with QTOFMS was demonstrated to provide an extra-dimension, which resulted in increased peak capacity and selectivity in real samples. Thus, many false-positive detections could be straightforwardly discarded just by applying a maximum ΔCCS tolerance of ±2%. CCS was proposed as a valuable additional identification point in the pesticides screening workflow. Several commercial fish feed samples were finally analyzed to demonstrate the applicability of the proposed approach. Ethoxyquin and pirimiphos-methyl were identified in most of the analyzed samples, whereas tebuconazole and piperonil butoxide were identified for the first time in fish feed samples.
Collapse
Affiliation(s)
- Jorge Regueiro
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817 Bergen, Norway
| | - Noelia Negreira
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817 Bergen, Norway
| | - Marc H G Berntssen
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817 Bergen, Norway
| |
Collapse
|
42
|
Gray C, Thomas B, Upton R, Migas L, Eyers C, Barran P, Flitsch S. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim Biophys Acta Gen Subj 2016; 1860:1688-709. [DOI: 10.1016/j.bbagen.2016.02.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022]
|
43
|
Hines K, May JC, McLean JA, Xu L. Evaluation of Collision Cross Section Calibrants for Structural Analysis of Lipids by Traveling Wave Ion Mobility-Mass Spectrometry. Anal Chem 2016; 88:7329-36. [PMID: 27321977 PMCID: PMC4955523 DOI: 10.1021/acs.analchem.6b01728] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/18/2016] [Indexed: 02/07/2023]
Abstract
Collision cross section (CCS) measurement of lipids using traveling wave ion mobility-mass spectrometry (TWIM-MS) is of high interest to the lipidomics field. However, currently available calibrants for CCS measurement using TWIM are predominantly peptides that display quite different physical properties and gas-phase conformations from lipids, which could lead to large CCS calibration errors for lipids. Here we report the direct CCS measurement of a series of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in nitrogen using a drift tube ion mobility (DTIM) instrument and an evaluation of the accuracy and reproducibility of PCs and PEs as CCS calibrants for phospholipids against different classes of calibrants, including polyalanine (PolyAla), tetraalkylammonium salts (TAA), and hexakis(fluoroalkoxy)phosphazines (HFAP), in both positive and negative modes in TWIM-MS analysis. We demonstrate that structurally mismatched calibrants lead to larger errors in calibrated CCS values while the structurally matched calibrants, PCs and PEs, gave highly accurate and reproducible CCS values at different traveling wave parameters. Using the lipid calibrants, the majority of the CCS values of several classes of phospholipids measured by TWIM are within 2% error of the CCS values measured by DTIM. The development of phospholipid CCS calibrants will enable high-accuracy structural studies of lipids and add an additional level of validation in the assignment of identifications in untargeted lipidomics experiments.
Collapse
Affiliation(s)
- Kelly
M. Hines
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jody C. May
- Department
of Chemistry, Center for Innovative Technology, Vanderbilt Institute
of Chemical Biology, Vanderbilt Institute for Integrative Biosystems
Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John A. McLean
- Department
of Chemistry, Center for Innovative Technology, Vanderbilt Institute
of Chemical Biology, Vanderbilt Institute for Integrative Biosystems
Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Libin Xu
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
44
|
Huang Y, Dodds ED. Ion-neutral collisional cross sections of carbohydrate isomers as divalent cation adducts and their electron transfer products. Analyst 2016. [PMID: 26225371 DOI: 10.1039/c5an01093d] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the gravity of glycoscience continues to amass, a commensurate demand for rapid, sensitive, and structurally comprehensive glycoanalytical tools has arisen. Among the most elusive but desirable analytical capabilities is the ability to expeditiously and unambiguously detect, distinguish, and resolve carbohydrates that differ only in their constitutional isomerism and/or stereoisomerism. While ion mobility spectrometry (IMS) has proven a highly promising tool for such analyses, the facility of this method to discriminate larger oligosaccharides is still somewhat limited. In an effort to expand the capabilities of IMS to discriminate among carbohydrate isomers, the present investigation was focused on IMS studies of four trisaccharide isomers, four pentasaccharide isomers, and two hexasaccharide isomers, each as group II metal ion adducts and their corresponding gas-phase electron transfer (ET) products. These studies were also evaluated in the context of previously investigated group I metal ion adducts of the same saccharides. The orientationally averaged ion-neutral collisional cross sections (CCSs) of the various carbohydrate/metal ion adducts were found to be dependent on the structures of specific carbohydrate isomers, sensitive to the electronic characteristics of the bound cation, and responsive to the attachment of an additional electron (in the case of divalent metal ion adducts). Overall, these results underscore the utility of metal ions for probing carbohydrate structure in concert with IMS, and the capacity of gas-phase ion chemistry to expand the menu of such probes.
Collapse
Affiliation(s)
- Yuting Huang
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| | | |
Collapse
|
45
|
Forsythe JG, Petrov AS, Walker CA, Allen SJ, Pellissier JS, Bush MF, Hud NV, Fernández FM. Collision cross section calibrants for negative ion mode traveling wave ion mobility-mass spectrometry. Analyst 2016; 140:6853-61. [PMID: 26148962 DOI: 10.1039/c5an00946d] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Unlike traditional drift-tube ion mobility-mass spectrometry, traveling-wave ion mobility-mass spectrometry typically requires calibration in order to generate collision cross section (CCS) values. Although this has received a significant amount of attention for positive-ion mode analysis, little attention has been paid for CCS calibration in negative ion mode. Here, we provide drift-tube CCS values for [M - H](-) ions of two calibrant series, polyalanine and polymalic acid, and evaluate both types of calibrants in terms of the accuracy and precision of the traveling-wave ion mobility CCS values that they produce.
Collapse
|
46
|
A collision cross section and exact ion mass database of the formulation constituents polyethylene glycol 400 and polysorbate 80. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s12127-016-0195-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Harvey DJ, Scarff CA, Edgeworth M, Struwe WB, Pagel K, Thalassinos K, Crispin M, Scrivens J. Travelling-wave ion mobility and negative ion fragmentation of high-mannose N-glycans. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:219-35. [PMID: 26956389 PMCID: PMC4821469 DOI: 10.1002/jms.3738] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 05/02/2023]
Abstract
The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility mass spectrometry for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra, and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed, but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers or anomers were being separated. Collision cross sections of the isomers in positive and negative fragmentation mode were estimated from travelling-wave ion mobility mass spectrometry data using dextran glycans as calibrant. More complete collision cross section data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross-sectional data, details of the negative ion collision-induced dissociation spectra of all resolved isomers are discussed.
Collapse
Affiliation(s)
- David J. Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Biological Sciences, University of Warwick, Coventry, CV47AL, UK
| | - Charlotte A. Scarff
- Department of Biological Sciences, University of Warwick, Coventry, CV47AL, UK
- Current address, Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Edgeworth
- Department of Biological Sciences, University of Warwick, Coventry, CV47AL, UK
| | - Weston B. Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse. 3, 14159 Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jim Scrivens
- Department of Biological Sciences, University of Warwick, Coventry, CV47AL, UK
| |
Collapse
|
48
|
Indelicato S, Bongiorno D, Ceraulo L, Calabrese V, Piazzese D, Napoli A, Mazzotti F, Avellone G, Di Stefano V, Turco Liveri V. Electrospray ion mobility mass spectrometry of positively and negatively charged (1R,2S)-dodecyl(2-hydroxy-1-methyl-2-phenylethyl)dimethylammonium bromide aggregates. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:230-238. [PMID: 26661990 DOI: 10.1002/rcm.7422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Self-assembling processes of surfactants in the gas phase constitute a developing research field of interest since they allow information to be gained on the peculiar structural organization of these aggregates, on their ability to incorporate from small molecules up to proteins and on their possible use as carriers of drugs in the gas phase or as cleaning agents and exotic reaction media. METHODS The mass spectra of charged aggregates of the chiral surfactant (1R,2S)-dodecyl(2-hydroxy-1-methyl-2-phenylethyl)dimethylammonium bromide (DMEB) in the gas phase have been recorded using a Synapt G2-Si mass spectrometer in the positive and negative ion mode. For comparison purposes, the mass spectra of sodium bis(2-ethylhexyl)sulfosuccinate and sodium octane sulfonate aggregates have also been recorded under the same experimental conditions. The collisional cross sections of positively and negatively charged DMEB aggregates were obtained through an appropriate calibration of the measured drift times. RESULTS For all the surfactants investigated, it has been found that there is a lowest and a highest limit of the aggregation number at each charge state: no aggregates are found outside this range. Moreover, the occurrence at each aggregation number and extra charge of a unique value of drift time points toward aggregates whose conformations do not show discernible shape change in the experiment time scale. The analysis of the collisional cross sections emphasizes that the DMEB aggregates are nearly spherical clusters somewhat affected by the charge state and constituted by interlaced polar and apolar domains. CONCLUSIONS The analysis of all the experimental findings indicates that in the gas phase DMEB forms supramolecular aggregates characterized by an internal organization whose stability is triggered by the charge state. The comparison of the behavior of DMEB aggregates with that of sodium bis(2-ethylhexyl)sulfosuccinate and sodium octane sulfonate aggregates allows us to highlight the effects on the aggregate organization in gas phase due to nature of the head group and alkyl chain steric hindrance.
Collapse
Affiliation(s)
- Serena Indelicato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Valentina Calabrese
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Daniela Piazzese
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, I-90128, Palermo, Italy
| | - Anna Napoli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/C, I-87036, Arcavacata di Rende, (CS)-Italy
| | - Fabio Mazzotti
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/C, I-87036, Arcavacata di Rende, (CS)-Italy
| | - Giuseppe Avellone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Vita Di Stefano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Vincenzo Turco Liveri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| |
Collapse
|
49
|
Chendo C, Moreira G, Tintaru A, Posocco P, Laurini E, Lefay C, Gigmes D, Viel S, Pricl S, Charles L. Anomerization of Acrylated Glucose During Traveling Wave Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1483-1493. [PMID: 26041082 DOI: 10.1007/s13361-015-1170-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
Anomerization of simple sugars in the liquid phase is known as an acid- and base-catalyzed process, which highly depends on solvent polarity. This reaction is reported here to occur in the gas phase, during traveling wave ion mobility spectrometry (TWIMS) experiments aimed at separating α- and β-anomers of penta-acrylated glucose generated as ammonium adducts in electrospray ionization. This compound was available in two samples prepared from glucose dissolved in solvents of different polarity, namely tetrahydrofuran (THF) and N,N-dimethylacetamide (DMAC), and analyzed by electrospray tandem mass spectrometry (ESI-MS/MS) as well as traveling wave ion mobility (ESI-TWIMS-MS). In MS/MS, an anchimerically-assisted process was found to be unique to the electrosprayed α-anomer, and was only observed for the THF sample. In ESI-TWIMS-MS, a signal was measured at the drift time expected for the α-anomer for both the THF and DMAC samples, in apparent contradiction to the MS/MS results, which indicated that the α-anomer was not present in the DMAC sample. However, MS/MS experiments performed after TWIMS separation revealed that ammonium adducts of the α-anomer produced from each sample, although exhibiting the same collision cross section, were clearly different. Indeed, while the α-anomer actually present in the THF sample was electrosprayed with the ammonium adducted at the C2 acrylate, its homologue only observed when the DMAC sample was subjected to TWIMS hold the adducted ammonium at the C1 acrylate. These findings were explained by a β/α inter-conversion upon injection in the TWIMS cell, as supported by theoretical calculation and dynamic molecular modeling.
Collapse
Affiliation(s)
- Christophe Chendo
- Aix-Marseille Université - CNRS, UMR 7273, Institut de Chimie Radicalaire, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Huang Y, Dodds ED. Discrimination of Isomeric Carbohydrates as the Electron Transfer Products of Group II Cation Adducts by Ion Mobility Spectrometry and Tandem Mass Spectrometry. Anal Chem 2015; 87:5664-8. [PMID: 25955237 DOI: 10.1021/acs.analchem.5b00759] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The rapid and unambiguous distinction of isomeric carbohydrate structures persists as a tremendous analytical challenge. This paper reports the first exploitation of carbohydrate/metal ion interactions in concert with gas-phase ion chemistry to improve discrimination of oligosaccharide isomers by both ion mobility spectrometry and tandem mass spectrometry. This is demonstrated for two isomeric pentasaccharides and two isomeric hexasaccharides, each studied in an underivatized form as their calcium ion adducts, barium ion adducts, and gas-phase electron transfer products thereof. With appropriate selection of the charge carrier, transfer of a single electron to the carbohydrate metal ion adducts resulted in isomer-distinguishing shifts in their ion/neutral collision cross sections and the appearance of unique features in their vibrational activation/dissociation spectra. These findings suggest novel and elegant gas-phase strategies for rapid differentiation of isomeric oligosaccharides.
Collapse
Affiliation(s)
- Yuting Huang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Eric D Dodds
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|