1
|
Kim KJ, Han Y, Kwon SJ. Exploring single-entity electrochemistry beyond conventional potential windows: mechanistic insights into hydrazine/hydrazinium ion oxidation. NANOSCALE 2024; 16:18488-18493. [PMID: 39264321 DOI: 10.1039/d4nr02942a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Single-entity electrochemistry (SEE) enables research into the electrochemical properties of nanoparticles (NPs) at the individual NP level. Recent studies on active particle-active electrode systems have expanded the scope of SEE measurements, moving beyond the limitations of inert electrode-based methods that rely on distinct NP-electrode catalytic differences, thereby enhancing mechanistic understanding of catalytic reactions. In this study, we investigated SEE signals from Pt NPs colliding with Au ultramicroelectrodes (UME) at elevated potentials where both Pt and Au UME exhibit electrocatalytic activity. Under conditions where Au UME is activated for hydrazine oxidation, distinctive combined spike and staircase current responses were observed. SEE signals exhibited varied shapes depending on pH and hydrazine concentration. Analyzing these variations provided insights into changes in reaction mechanisms according to pH and hydrazine concentration.
Collapse
Affiliation(s)
- Ki Jun Kim
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea.
| | - Yujin Han
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea.
| | - Seong Jung Kwon
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea.
| |
Collapse
|
2
|
Cao L, Zhang J, Li M, Zhou J, Liu Y, Liu C, Li X. Single-Vesicle Electrochemistry Reveals Polysaccharide from Glochidion eriocarpum Champ. Regulates Vesicular Storage and Exocytotic Release of Dopamine. Anal Chem 2024. [PMID: 39262202 DOI: 10.1021/acs.analchem.4c02493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Polysaccharides, which are well-known natural macromolecules, have been recognized for their protective effects on neurons and their influence on extracellular dopamine levels in the brain. It is crucial to investigate the impact of plant polysaccharides on neurotransmission, particularly regarding the vesicular storage and exocytosis of neurotransmitters. In this study, we demonstrated the possibility of studying how the polysaccharide from Glochidion eriocarpum Champ.(GPS) affects vesicle dopamine content and the dynamics of exocytosis in pheochromocytoma (PC12) cells using single-cell amperometry (SCA) and intracellular vesicle impact electrochemical cytometry (IVIEC). Our results unambiguously demonstrate that GPS effectively enhances vesicular neurotransmitter content and alters the dynamics of exocytosis, favoring a smaller fraction of content released in exocytotic release, thereby inducing the partial release mode. These significant effects are attributed to GPS's efficient elevation of calcium influx, significant alteration in the composition of exocytosis-related membrane lipids, and enhancement of free radical scavenging ability. These findings not only establish GPS as a promising candidate for preventive or therapeutic interventions against neurodegenerative disorders but also reiterate the importance of screening native neurologic drugs with single-vesicle electrochemical approaches, the combination of SCA and IVIEC, from a neurotransmitter-centric perspective.
Collapse
Affiliation(s)
- Lijiao Cao
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Jing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Mo Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Junlan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Yuying Liu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Chunlan Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xianchan Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
3
|
Emran MY, Kotb A, Ganganboina AB, Okamoto A, Abolibda TZ, Alzahrani HAH, Gomha SM, Ma C, Zhou M, Shenashen MA. Tailored portable electrochemical sensor for dopamine detection in human fluids using heteroatom-doped three-dimensional g-C 3N 4 hornet nest structure. Anal Chim Acta 2024; 1320:342985. [PMID: 39142767 DOI: 10.1016/j.aca.2024.342985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND There is widespread interest in the design of portable electrochemical sensors for the selective monitoring of biomolecules. Dopamine (DA) is one of the neurotransmitter molecules that play a key role in the monitoring of some neuronal disorders such as Alzheimer's and Parkinson's diseases. Facile synthesis of the highly active surface interface to design a portable electrochemical sensor for the sensitive and selective monitoring of biomolecules (i.e., DA) in its resources such as human fluids is highly required. RESULTS The designed sensor is based on a three-dimensional phosphorous and sulfur resembling a g-C3N4 hornet's nest (3D-PS-doped CNHN). The morphological structure of 3D-PS-doped CNHN features multi-open gates and numerous vacant voids, presenting a novel design reminiscent of a hornet's nest. The outer surface exhibits a heterogeneous structure with a wave orientation and rough surface texture. Each gate structure takes on a hexagonal shape with a wall size of approximately 100 nm. These structural characteristics, including high surface area and hierarchical design, facilitate the diffusion of electrolytes and enhance the binding and high loading of DA molecules on both inner and outer surfaces. The multifunctional nature of g-C3N4, incorporating phosphorous and sulfur atoms, contributes to a versatile surface that improves DA binding. Additionally, the phosphate and sulfate groups' functionalities enhance sensing properties, thereby outlining selectivity. The resulting portable 3D-PS-doped CNHN sensor demonstrates high sensitivity with a low limit of detection (7.8 nM) and a broad linear range spanning from 10 to 500 nM. SIGNIFICANCE The portable DA sensor based on the 3D-PS-doped CNHN/SPCE exhibits excellent recovery of DA molecules in human fluids, such as human serum and urine samples, demonstrating high stability and good reproducibility. The designed portable DA sensor could find utility in the detection of DA in clinical samples, showcasing its potential for practical applications in medical settings.
Collapse
Affiliation(s)
- Mohammed Y Emran
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan.
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Akhilesh Babu Ganganboina
- International Center for Young Scientists ICYS-NAMIKI, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Akihiro Okamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, 305-0044, Ibaraki, Japan
| | - Tariq Z Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Hassan A H Alzahrani
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, P.O. Box 355, Jeddah, Saudi Arabia
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mohamed A Shenashen
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia.
| |
Collapse
|
4
|
Park H, Park JH. Electrochemical Characterization of Neurotransmitters in a Single Submicron Droplet. BIOSENSORS 2024; 14:102. [PMID: 38392021 PMCID: PMC10886559 DOI: 10.3390/bios14020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Single-entity electrochemistry, which employs electrolysis during the collision of single particles on ultramicroelectrodes, has witnessed significant advancements in recent years, enabling the observation and characterization of individual particles. Information on a single aqueous droplet (e.g., size) can also be studied based on the redox species contained therein. Dopamine, a redox-active neurotransmitter, is usually present in intracellular vesicles. Similarly, in the current study, the electrochemical properties of neurotransmitters in submicron droplets were investigated. Because dopamine oxidation is accompanied by proton transfer, unique electrochemical properties of dopamine were observed in the droplet. We also investigated the electrochemical properties of the adsorbed droplets containing DA and the detection of oxidized dopamine by the recollision phenomenon.
Collapse
Affiliation(s)
| | - Jun Hui Park
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
5
|
Zhang L, Liu XA, Gillis KD, Glass TE. Synthesis of a Near-Infrared Fluorescent Probe for Imaging Catecholamines via a Tandem Nucleophilic Aromatic Substitution. Org Lett 2023; 25:9103-9107. [PMID: 38108670 DOI: 10.1021/acs.orglett.3c03343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
A near-infrared (NIR) fluorescent probe NS667 was developed using a novel synthetic strategy by integrating an electron-rich 1,2,3,4-tetrahydroquinoxaline (THQ) into the scaffold from NS510, which binds to catecholamines with high affinity. The fluorophore core was constructed with a tandem nucleophilic aromatic substitution. Upon binding to catecholamines, the fluorescence of this probe shifted, with the emission in the NIR region. Live cell imaging results demonstrate that NS667 can effectively image norepinephrine in chromaffin cells with shifted fluorescence, which highlights the potential of the probe for neuroimaging in tissues.
Collapse
Affiliation(s)
- Le Zhang
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Xin A Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Kevin D Gillis
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Timothy E Glass
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Wang H, Yang B, Tang H, Ding S, Liu G. Hairpin DNA-based electrochemical amplification strategy for miRNA sensing by using single gold nanoelectrodes. Analyst 2023; 148:5636-5641. [PMID: 37846736 DOI: 10.1039/d3an01551c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A new sensor has been developed to detect miRNA-15 using nanoelectrodes and a hairpin DNA-based electrochemical amplification technique. By utilizing a complex DNA cylinder connected with hairpin DNA1, the sensor is able to absorb more methylene blue (MB) than simple double-stranded DNA. Another hairpin DNA2 is modified on an Au nanoelectrode surface and, when miRNA-15 is introduced, it triggers a chain reaction. This reaction unlocks two hairpins alternatively to polymerize into a complex structure that attaches more MB. The miRNA-15 is then replaced by DNA1 due to strand displacement reactions and continues to react with the next DNA2 to achieve circular amplification. The electrochemical signal from MB oxidation has a linear relationship with the miRNA-15 concentrations, making it possible to detect miRNA-15. Moreover, this method can be readily adapted for the detection of various other miRNA species. The newly devised nanosensor holds promising applications for the in vivo detection of miRNA-15 within biological systems, which is achieved by leveraging the advantageous characteristics of nanoelectrodes, including their low resistance-capacitance time constant, rapid mass transfer kinetics, and small diameter.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| | - Binbin Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| | - Haoran Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| | - Sufang Ding
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| | - Gen Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| |
Collapse
|
7
|
Lim K, Goines S, Deng M, McCormick H, Kauffmann PJ, Dick JE. A troubleshooting guide for laser pulling platinum nanoelectrodes. Analyst 2023. [PMID: 37313574 DOI: 10.1039/d3an00268c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While there are numerous publications on laser-assisted fabrication and characterization of Pt nanoelectrodes, the exact replication of those procedures is not as straightforward as following a single recipe across laboratories. Often, the working procedures vary by day, by laser puller, or by person. Only a handful of nanoelectrode fabrication papers record their parameters, and even fewer offer troubleshooting advice. Here, we provide a step-by-step guide for laser-assisted Pt nanoelectrode fabrication using low-cost equipment including a laser puller, voltammetry, and simple microscope images captured via cell phone. We also offer solutions for common failures experienced throughout the process to guide beginners as they troubleshoot their own fabrication procedures.
Collapse
Affiliation(s)
- Koun Lim
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sondrica Goines
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Mingchu Deng
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Hadley McCormick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Philip J Kauffmann
- Department of Chemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47906, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
8
|
Zhao T, Wang JW, Zhang HS, Zheng X, Chen YP, Tang H, Jiang JH. Development of Dual-Nanopore Biosensors for Detection of Intracellular Dopamine and Dopamine Efflux from Single PC12 Cell. Anal Chem 2022; 94:15541-15545. [DOI: 10.1021/acs.analchem.2c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Hong-Shuai Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Xin Zheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Yi-Ping Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Hao Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
9
|
Zhu Y, Qiu X, Chen X, Huang M, Li Y. Single gold nanowire-based nanosensor for adenosine triphosphate sensing by using in-situ surface-enhanced Raman scattering technique. Talanta 2022; 249:123675. [PMID: 35716474 DOI: 10.1016/j.talanta.2022.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 10/31/2022]
Abstract
Development of new hot spots for surface enhanced Raman scattering (SERS) technique is of great significance recently. Herein, we developed a single Au nanowire (NW)-based nanosensor for adenosine triphosphate (ATP) sensing by using in-situ SERS technique. Single Au NWs, fabricated by laser-assisted pulling method and hydrofluoric acid (HF) etching process, were linked with single-stranded HS-terminated DNA. After that, gold-silver bimetallic nanoparticles (Au/Ag NPs), attached with thiol-containing Raman dyes and ATP aptamer, were immobilized on DNA-modified single AuNW due to the designed affinity between ATP aptamer and single-stranded DNA. This single AuNW-based device exhibited strong SERS signals. In the presence of adenosine triphosphate (ATP), due to the strong specific affinity between the aptamer and the target, the Au/Ag NPs will be separated from the AuNW, resulting in the obvious decrease of the Raman signals, which can be used for ATP sensing with high sensitivity, selectivity and stability. This nanosensor can be used as an ideal platform for real applications, especially at some confined-space samples, such as trace detection, single cell and in vivo analysis.
Collapse
Affiliation(s)
- Yanyan Zhu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xiaohu Chen
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Mimi Huang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| |
Collapse
|
10
|
Kong W, Zhu D, Luo R, Yu S, Ju H. Framework-promoted charge transfer for highly selective photoelectrochemical biosensing of dopamine. Biosens Bioelectron 2022; 211:114369. [PMID: 35594626 DOI: 10.1016/j.bios.2022.114369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Traditional photoelectrochemical (PEC) systems with inorganic semiconductors as photoactive materials generally involve effortless recombination of electron-hole pairs, which greatly limit the detection sensitivity. The arrangement of multiple components with tunable bandgaps provides an effective way to accelerate charge transfer. In this work, a framework material with adjustable structure was used to promote the charge transfer in the PEC process. The framework was constructed with 9,10-di(p-carboxyphenyl)anthracene (DPA) ligands as the light collector to coordinate with Zn2+ nodes, which formed an electronegative metal-organic framework (ZnMOF), and showed good conductivity and PEC performance due to the π-π stacking of DPA and the intrareticular charge transfer. Based on the band and charge matching of dopamine (DA) with ZnMOF, the ZnMOF modified electrode as a biosensor showed excellent PEC response to DA with good selectivity, thus realized sensitive detection of DA ranging from 0.03 to 10 μM with a detection limit of 17.7 nM. The biosensor could be used to monitor the release of DA from PC12 cells and evaluate the stimulation of K+ to DA release. The conductive framework material provided an approach to develop highly selective sensing platform for trace bioanalysis.
Collapse
Affiliation(s)
- Weisu Kong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Da Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Siqi Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
11
|
Emran MY, Shenashen MA, Eid AI, Selim MM, El-Safty SA. Portable sensitive and selective biosensing assay of dopamine in live cells using dual phosphorus and nitrogen doped carbon urchin-like structure. CHEMICAL ENGINEERING JOURNAL 2022; 430:132818. [DOI: 10.1016/j.cej.2021.132818] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
In situ monitoring reactive oxygen species released by single cells using scanning electrochemical microscopy with A Specifically designed multi-potential step waveform. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Zhu L, Zhong L, Wang J, Tang Y, Liu Z. An Antifouling Photoelectrochemical Ultramicrosensor for Unbiased
Single‐Cell
Analysis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Linlin Zhu
- College of Chemistry and Chemical Engineering Hubei University Wuhan Hubei 430062 China
| | - Lin Zhong
- College of Chemistry and Chemical Engineering Hubei University Wuhan Hubei 430062 China
| | - Juan Wang
- College of Chemistry and Chemical Engineering Hubei University Wuhan Hubei 430062 China
| | - Ying Tang
- College of Chemistry and Molecular Science Wuhan University Wuhan Hubei 430072 China
| | - Zhihong Liu
- College of Chemistry and Molecular Science Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
14
|
Wang N, Wang D, Pan R, Wang D, Jiang D, Chen HY. Self-Referenced Nanopipette for Electrochemical Analysis of Hydrogen Peroxide in the Nucleus of a Single Living Cell. Anal Chem 2021; 93:10744-10749. [PMID: 34314583 DOI: 10.1021/acs.analchem.0c05025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In a typical intracellular electroanalytical measurement, a nanoelectrode is located inside a living cell and a reference electrode outside the cell. This setup faces a problem to drop a certain potential across the cellular plasma membrane that might interrupt the cellular activity. To solve this problem, a self-referenced nanopipette is assembled by incorporating a reference electrode inside the nanocapillary, with a Pt ring at the tip as the electrochemical surface. The potential applied between the Pt ring and the reference electrode is restricted inside the capillary and thus has a negligible effect on the surrounding cellular environment. Using this new setup, the nanopipette pierces into the nucleus of a single living cell for the measurement of hydrogen peroxide under oxidative stress. It is found that a lesser amount of hydrogen peroxide is measured in the nucleus compared with the cytoplasm, revealing uneven oxidative stress inside the cell. The result will not only greatly improve the current setup for intracellular electrochemical analysis but also provide biological information of the compartment inside the living cell.
Collapse
Affiliation(s)
- Nina Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| | - Dongni Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| | - Rongrong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100190, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| |
Collapse
|
15
|
Lemay SG, Moazzenzade T. Single-Entity Electrochemistry for Digital Biosensing at Ultralow Concentrations. Anal Chem 2021; 93:9023-9031. [PMID: 34167291 PMCID: PMC8264825 DOI: 10.1021/acs.analchem.1c00510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/09/2021] [Indexed: 12/02/2022]
Abstract
Quantifying ultralow analyte concentrations is a continuing challenge in the analytical sciences in general and in electrochemistry in particular. Typical hurdles for affinity sensors at low concentrations include achieving sufficiently efficient mass transport of the analyte, dealing with slow reaction kinetics, and detecting a small transducer signal against a background signal that itself fluctuates slowly in time. Recent decades have seen the advent of methods capable of detecting single analytes ranging from the nanoscale to individual molecules, representing the ultimate mass sensitivity to these analytes. However, single-entity detection does not automatically translate into a superior concentration sensitivity. This is largely because electrochemical transducers capable of such detection are themselves miniaturized, exacerbating mass transport and binding kinetic limitations. In this Perspective, we discuss how these challenges can be tackled through so-called digital sensing: large arrays of separately addressable single-entity detectors that provide real-time information on individual binding events. We discuss the advantages of this approach and the barriers to its implementation.
Collapse
Affiliation(s)
- Serge G. Lemay
- MESA+ Institute for Nanotechnology
and Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Taghi Moazzenzade
- MESA+ Institute for Nanotechnology
and Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
16
|
Xiong Q, Wu T, Song R, Zhang F, He P. Theoretical and experimental verification of imaging resolution factors in scanning electrochemical microscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1238-1246. [PMID: 33620355 DOI: 10.1039/d1ay00025j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The imaging resolution of scanning electrochemical microscopy (SECM) depends strongly on the tip electrode size and the tip-substrate distance. Herein, etched glass encapsulation was applied to fabricate a gold disk electrode, and the size of the tip electrode was accurately determined from the steady-state limiting current. Referring to the theoretical research carried out by our predecessors, the formula for the imaging resolution was derived, followed by the imaging of gold spots and cells with the prepared microelectrodes of different sizes and with different tip-substrate distances. A depth scan was performed to generate 2D current maps of the gold spot relative to the position of the microelectrode in the x-z plane. Probe approach curves and horizontal sweeps were obtained from one depth scan image by simply extracting vertical and horizontal cross-sectional lines, and further characterized by comparison with simulated curves through modeling of the experimental system. The experimental results were basically consistent with the theory, revealing that the highest imaging resolution can be obtained with the smallest tip electrode when d/a = 1, and when the size of the tip electrode is fixed the smallest tip-substrate distance can give the highest imaging resolution.
Collapse
Affiliation(s)
- Qiang Xiong
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Tao Wu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Ranran Song
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| |
Collapse
|
17
|
Liu Y, Du J, Wang M, Zhang J, Liu C, Li X. Recent Progress in Quantitatively Monitoring Vesicular Neurotransmitter Release and Storage With Micro/Nanoelectrodes. Front Chem 2021; 8:591311. [PMID: 33505953 PMCID: PMC7831278 DOI: 10.3389/fchem.2020.591311] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
Exocytosis is one of the essential steps for chemical signal transmission between neurons. In this process, vesicles dock and fuse with the plasma membrane and release the stored neurotransmitters through fusion pores into the extracellular space, and all of these steps are governed with various molecules, such as proteins, ions, and even lipids. Quantitatively monitoring vesicular neurotransmitter release in exocytosis and initial neurotransmitter storage in individual vesicles is significant for the study of chemical signal transmission of the central nervous system (CNS) and neurological diseases. Electrochemistry with micro/nanoelectrodes exhibits great spatial-temporal resolution and high sensitivity. It can be used to examine the exocytotic kinetics from the aspect of neurotransmitters and quantify the neurotransmitter storage in individual vesicles. In this review, we first introduce the recent advances of single-cell amperometry (SCA) and the nanoscale interface between two immiscible electrolyte solutions (nanoITIES), which can monitor the quantity and release the kinetics of electrochemically and non-electrochemically active neurotransmitters, respectively. Then, the development and application of the vesicle impact electrochemical cytometry (VIEC) and intracellular vesicle impact electrochemical cytometry (IVIEC) and their combination with other advanced techniques can further explain the mechanism of neurotransmitter storage in vesicles before exocytosis. It has been proved that these electrochemical techniques have great potential in the field of neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Chunlan Liu
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xianchan Li
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
18
|
Affiliation(s)
- Kira L. Rahn
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Robbyn K. Anand
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| |
Collapse
|
19
|
Wang L, Song J, Wang X, Qi H, Gao Q, Zhang C. Monitoring casein kinase II at subcellular level via bio-bar-code-based electrochemiluminescence biosensing method. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Zheng J, Li X, Wang K, Song J, Qi H. Electrochemical Nanoaptasensor for Continuous Monitoring of ATP Fluctuation at Subcellular Level. Anal Chem 2020; 92:10940-10945. [PMID: 32700526 DOI: 10.1021/acs.analchem.0c00569] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monitoring the fluctuation of adenosine 5'-triphosphate (ATP) at the subcellular level is important for the study of cell energy metabolism. Herein, we fabricated an electrochemical nanoaptasensor for continuously monitoring ATP fluctuation at the subcellular level. A gold nanoelectrode with a diameter of 120 nm was fabricated, and ferrocene (Fc)-labeled anti-ATP aptamer was self-assembled onto the nanoelectrode surface to form a nanoaptasensor. In the presence of ATP, the ferrocene-labeled anti-ATP aptamer bound with two ATP units to form an ATP-aptamer conjugation, resulting in the close proximity of Fc to the nanoelectrode surface and then an increase of oxidation current of Fc. ATP can be detected with a detection limit of 26 μM within 2 min. Cell viability assays indicated that the nanoaptasensor was biocompatible with negligible biological effects. By taking advantage of the good biocompatibility of the nanoaptasensor, ATP fluctuation at the subcellular level was monitored under glucose starvation and Ca2+ induction. This work demonstrates that the nanoaptasensor is a useful tool for investigating ATP-relevant biological processes via the electrochemical method.
Collapse
Affiliation(s)
- Jingyi Zheng
- School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Xiaoxia Li
- School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Ke Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Jiajia Song
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
21
|
Wang Y, Jin R, Sojic N, Jiang D, Chen H. Intracellular Wireless Analysis of Single Cells by Bipolar Electrochemiluminescence Confined in a Nanopipette. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002323] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuling Wang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Rong Jin
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255 University of Bordeaux 33607 Pessac France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| |
Collapse
|
22
|
Wang Y, Jin R, Sojic N, Jiang D, Chen H. Intracellular Wireless Analysis of Single Cells by Bipolar Electrochemiluminescence Confined in a Nanopipette. Angew Chem Int Ed Engl 2020; 59:10416-10420. [DOI: 10.1002/anie.202002323] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Yuling Wang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Rong Jin
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255 University of Bordeaux 33607 Pessac France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| |
Collapse
|
23
|
Zhang XW, Hatamie A, Ewing AG. Simultaneous Quantification of Vesicle Size and Catecholamine Content by Resistive Pulses in Nanopores and Vesicle Impact Electrochemical Cytometry. J Am Chem Soc 2020; 142:4093-4097. [PMID: 32069039 PMCID: PMC7108759 DOI: 10.1021/jacs.9b13221] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We have developed the means to simultaneously
measure the physical
size and count catecholamine molecules in individual nanometer transmitter
vesicles. This is done by combining resistive pulse (RP) measurements
in a nanopore pipet and vesicle impact electrochemical cytometry (VIEC)
at an electrode as the vesicle exits the nanopore. Analysis of freshly
isolated bovine adrenal vesicles shows that the size and internal
catecholamine concentration of vesicles varies with the occurrence
of a dense core inside the vesicles. These results might benefit the
understanding about the vesicles maturation, especially involving
the “sorting by retention” process and concentration
increase of intravesicular catecholamine. The methodology is applicable
to understanding soft nanoparticle collisions on electrodes, vesicles
in exocytosis and phagocytosis, intracellular vesicle transport, and
analysis of electroactive drugs in exosomes.
Collapse
Affiliation(s)
- Xin-Wei Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
24
|
Wang Y, Feng H, Zhang H, Chen Y, Huang W, Zhang J, Jiang X, Wang M, Jiang H, Wang X. Nanoelectrochemical biosensors for monitoring ROS in cancer cells. Analyst 2020; 145:1294-1301. [PMID: 31909779 DOI: 10.1039/c9an02390a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Compared with normal cells, cancer or tumor cells have a specific microenvironment and apparently possess a relatively large amount of ROS/RNS, and their overexpression is one of the important reasons for tumor development and deterioration. Therefore, monitoring the changes of intracellular ROS/RNS can improve the awareness of the clinical manifestations of the disease, which will be beneficial for the early diagnosis of cancer and improving treatment efficiency. Herein, in this study we have exploited and constructed a novel strategy based on the SiC@C nanowire electrode for intracellular electrochemical analysis to monitor ROS levels in cancer or tumor cells. Firstly, the SiC@C nanowire electrode was utilized to detect the intracellular ROS radical changes involved in the relevant biological processes of cancer cells where fluorescent zinc nanoclusters were biosynthesized in situ in target cancer cells by using the intracellular microenvironment and specificity of these cancer cells. By combining a confocal fluorescence microscopy study simultaneously, our observations illustrate that accompanied by the apparent change of the intracellular ROS, these in situ biosynthesized fluorescent nanoclusters gradually accumulate inside the cytosolic area with the increase of the reaction time. Moreover, it is evident that the size of the SiC@C nanoelectrodes can match the single cell dimensions, and its unique high spatial resolution provides the possibility of relevant intracellular molecular detection. These nanoelectrochemical biosensors can be adopted to quantitatively determine the change of the ROS content in target single cells in the relevant biological microenvironment or during the in situ biosynthesis process, and are also beneficial for understanding the related mechanism of some specific biological processes including the in situ synthesis at the single cell level.
Collapse
Affiliation(s)
- Yihan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tang Y, Yang XK, Zhang XW, Wu WT, Zhang FL, Jiang H, Liu YL, Amatore C, Huang WH. Harpagide, a natural product, promotes synaptic vesicle release as measured by nanoelectrode amperometry. Chem Sci 2019; 11:778-785. [PMID: 34123052 PMCID: PMC8146302 DOI: 10.1039/c9sc05538j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neurons and low level of dopamine (DA) in the midbrain. Recent studies suggested that some natural products can protect neurons against injury, but their role on neurotransmitter release and the underlying mechanisms remained unknown. In this work, nanoelectrode electrochemistry was used for the first time to quantify DA release inside single DAergic synapses. Our results unambiguously demonstrated that harpagide, a natural product, effectively enhances synaptic DA release and restores DA release at normal levels from injured neurons in PD model. These important protective and curative effects are shown to result from the fact that harpagide efficiently inhibits the phosphorylation and aggregation of α-synuclein by alleviating the intracellular reactive oxygen level, being beneficial for vesicle loading and recycling. This establishes that harpagide offers promising avenues for preventive or therapeutic interventions against PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yun Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xiao-Ke Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xin-Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wen-Tao Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Fu-Li Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Hong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- PASTEUR, Departement de Chimie, Pcole Normale Superieure, PSL Research University, Sorbonne Universites, UPMC Univ. Paris 06, CNRS 24 rue Lhomond 75005 Paris France
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
26
|
Chang L, Wang YC, Ershad F, Yang R, Yu C, Fan Y. Wearable Devices for Single-Cell Sensing and Transfection. Trends Biotechnol 2019; 37:1175-1188. [DOI: 10.1016/j.tibtech.2019.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 02/01/2023]
|
27
|
LIU AX, YANG D, LI HN, LIU GH, FU Q, SHAN YP, YANG GC, HE J. Modulating Nanoparticle Translocation by Surface Chemistry of Gold Nanopores. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Abstract
A microfluidic device as a pivotal research tool in chemistry and life science is now widely recognized. Indeed, microfluidic techniques have made significant advancements in fundamental research, such as the inherent heterogeneity of single-cells studies in cell populations, which would be helpful in understanding cellular molecular mechanisms and clinical diagnosis of major diseases. Single-cell analyses on microdevices have shown great potential for precise fluid control, cell manipulation, and signal output with rapid and high throughput. Moreover, miniaturized devices also have open functions such as integrating with traditional detection methods, for example, optical, electrochemical or mass spectrometry for single-cell analysis. In this review, we summarized recent advances of single-cell analysis based on various microfluidic approaches from different dimensions, such as in vitro, ex vivo, and in vivo analysis of single cells.
Collapse
Affiliation(s)
- Xiaowen Ou
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology
| |
Collapse
|
29
|
Zhang L, Liu XA, Gillis KD, Glass TE. A High-Affinity Fluorescent Sensor for Catecholamine: Application to Monitoring Norepinephrine Exocytosis. Angew Chem Int Ed Engl 2019; 58:7611-7614. [PMID: 30791180 PMCID: PMC6534456 DOI: 10.1002/anie.201810919] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/09/2019] [Indexed: 01/15/2023]
Abstract
A fluorescent sensor for catecholamines, NS510, is presented. The sensor is based on a quinolone fluorophore incorporating a boronic acid recognition element that gives it high affinity for catecholamines and a turn-on response to norepinephrine. The sensor results in punctate staining of norepinephrine-enriched chromaffin cells visualized using confocal microscopy indicating that it stains the norepinephrine in secretory vesicles. Amperometry in conjunction with total internal reflection fluorescence (TIRF) microscopy demonstrates that the sensor can be used to observe destaining of individual chromaffin granules upon exocytosis. NS510 is the highest affinity fluorescent norepinephrine sensor currently available and can be used for measuring catecholamines in live-cell assays.
Collapse
Affiliation(s)
- Le Zhang
- Department of Chemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Xin A Liu
- Dalton Cardiovascular Research Center, Department of Bioengineering and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Kevin D Gillis
- Dalton Cardiovascular Research Center, Department of Bioengineering and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Timothy E Glass
- Department of Chemistry, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
30
|
Xu M, Zhang Y, Wang K, Mao J, Ji W, Qiu W, Feng T, Zhang M, Mao L. Nanoskiving fabrication of size-controlled Au nanowire electrodes for electroanalysis. Analyst 2019; 144:2914-2921. [PMID: 30912775 DOI: 10.1039/c9an00122k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoskiving, benefiting from its simple operation and high reproducibility, is a promising method to fabricate nanometer-size electrodes. In this work, we report the fabrication of Au nanowire electrodes with different shapes and well-controlled sizes through nanoskiving. Au nanowire block electrodes, membrane electrodes and tip electrodes are prepared with good reproducibility. Steady-state cyclic voltammograms (CVs) demonstrate that all these electrodes behave well as nanoband ultramicroelectrodes. A fast heterogeneous electron transfer rate constant can be extracted reliably from steady-state CVs at various size Au nanowire block electrodes by the Koutecký-Levich (K-L) method. The Au nanowire membrane electrodes demonstrate good sensitivity toward the oxidation of catecholamine and could monitor catecholamine released from rat adrenal chromaffin cells stimulated by high K+.
Collapse
Affiliation(s)
- Muzhen Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Yue Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Kai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinpeng Mao
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Wenliang Ji
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Wanling Qiu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Taotao Feng
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
31
|
Zhang L, Liu XA, Gillis KD, Glass TE. A High‐Affinity Fluorescent Sensor for Catecholamine: Application to Monitoring Norepinephrine Exocytosis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Le Zhang
- Department of ChemistryUniversity of Missouri Columbia Missouri 65211 USA
| | - Xin A. Liu
- Dalton Cardiovascular Research CenterDepartment of Bioengineering and Department of Medical Pharmacology and PhysiologyUniversity of Missouri Columbia Missouri 65211 USA
| | - Kevin D. Gillis
- Dalton Cardiovascular Research CenterDepartment of Bioengineering and Department of Medical Pharmacology and PhysiologyUniversity of Missouri Columbia Missouri 65211 USA
| | - Timothy E. Glass
- Department of ChemistryUniversity of Missouri Columbia Missouri 65211 USA
| |
Collapse
|
32
|
Liu X, Tong Y, Fang PP. Recent development in amperometric measurements of vesicular exocytosis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Tang H, Zhu J, Wang D, Li Y. Dual-signal amplification strategy for miRNA sensing with high sensitivity and selectivity by use of single Au nanowire electrodes. Biosens Bioelectron 2019; 131:88-94. [DOI: 10.1016/j.bios.2019.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/15/2019] [Accepted: 02/01/2019] [Indexed: 12/15/2022]
|
34
|
Zhang N, Zhao W, Xu CH, Xu JJ, Chen HY. Amperometric monitoring of vesicular dopamine release using a gold nanocone electrode. Chem Commun (Camb) 2019; 55:3461-3464. [PMID: 30839997 DOI: 10.1039/c9cc01280j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a facile approach to fabricate a gold nanocone electrode for monitoring dopamine release from individual vesicles.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | | | | | | | | |
Collapse
|
35
|
Zhao H, Ye D, Mao X, Li F, Xu J, Li M, Zuo X. Stepping gating of ion channels on nanoelectrode via DNA hybridization for label-free DNA detection. Biosens Bioelectron 2019; 133:141-146. [PMID: 30925363 DOI: 10.1016/j.bios.2019.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/10/2019] [Accepted: 03/17/2019] [Indexed: 12/21/2022]
Abstract
Natural ion channels on cell membrane can gate the transport of ions and molecules by the conformational alteration of transmembrane proteins to regulate the normal physiological activities of cells. Inspired by the similarity of the conformation change under specific stimuli, here we introduce an ion channel gating model on a single nanoelectrode by anchoring DNA-gated switches on the very nanotip of gold nanoelectrode to mimic the response-to-stimulus behaviors of ion channels on bio-membranes. The surface-tethered DNA ion channels can be switched on by the Watson-Crick base pairing, which can alter the conformation of the tethered DNA from lying state to upright state. And these conformational alterations of the anchored DNA switches can effectively gate the transport of potassium ferricyanide onto the electrode interface. By continuously initiating the gates with DNA of different concentrations, we achieved the stepping gating of ion channels on a single nanoelectrode. Further, we demonstrated that the ion gating system on nanoelectrode showed excellent sensing performance. For example, the response kinetic was very fast with the signal saturation time of ~1 min, the reproducibility of the OFF/ON switch was robust enough to sustain for two cycles, and simultaneously, the specificity was high enough to distinguish complementary DNA and noncomplementary DNA. When used for label-free DNA detection, the limit of detection can be as low as 10 pM. This study provides a promising avenue to achieve label free and real-time detection of multiple biomolecules.
Collapse
Affiliation(s)
- Haipei Zhao
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Dekai Ye
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
36
|
Tang H, Hao H, Zhu J, Guan X, Qiu B, Li Y. Single Pt–Pd Bimetallic Nanoparticle Electrode: Controllable Fabrication and Unique Electrocatalytic Performance for the Methanol Oxidation Reaction. Chemistry 2019; 25:4935-4940. [DOI: 10.1002/chem.201900076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 P.R. China
| | - Huan Hao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 P.R. China
| | - Jiahui Zhu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 P.R. China
| | - Xianping Guan
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of EducationJiangsu University Zhenjiang 212013 P.R. China
| | - Baijing Qiu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of EducationJiangsu University Zhenjiang 212013 P.R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 P.R. China
| |
Collapse
|
37
|
Abstract
Advances in microfluidic techniques have prompted researchers to study the inherent heterogeneity of single cells in cell populations.
Collapse
Affiliation(s)
- Qiushi Huang
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Sifeng Mao
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Mashooq Khan
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Jin-Ming Lin
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| |
Collapse
|
38
|
Neves MMPDS, Martín-Yerga D. Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging. BIOSENSORS 2018; 8:E100. [PMID: 30373209 PMCID: PMC6316691 DOI: 10.3390/bios8040100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
Individual (bio)chemical entities could show a very heterogeneous behaviour under the same conditions that could be relevant in many biological processes of significance in the life sciences. Conventional detection approaches are only able to detect the average response of an ensemble of entities and assume that all entities are identical. From this perspective, important information about the heterogeneities or rare (stochastic) events happening in individual entities would remain unseen. Some nanoscale tools present interesting physicochemical properties that enable the possibility to detect systems at the single-entity level, acquiring richer information than conventional methods. In this review, we introduce the foundations and the latest advances of several nanoscale approaches to sensing and imaging individual (bio)entities using nanoprobes, nanopores, nanoimpacts, nanoplasmonics and nanomachines. Several (bio)entities such as cells, proteins, nucleic acids, vesicles and viruses are specifically considered. These nanoscale approaches provide a wide and complete toolbox for the study of many biological systems at the single-entity level.
Collapse
Affiliation(s)
| | - Daniel Martín-Yerga
- Department of Chemical Engineering, KTH Royal Institute of Technology, 100-44 Stockholm, Sweden.
| |
Collapse
|
39
|
Wilde P, Quast T, Aiyappa HB, Chen Y, Botz A, Tarnev T, Marquitan M, Feldhege S, Lindner A, Andronescu C, Schuhmann W. Towards Reproducible Fabrication of Nanometre‐Sized Carbon Electrodes: Optimisation of Automated Nanoelectrode Fabrication by Means of Transmission Electron Microscopy. ChemElectroChem 2018. [DOI: 10.1002/celc.201800600] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Patrick Wilde
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Thomas Quast
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Harshitha B. Aiyappa
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Yen‐Ting Chen
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Alexander Botz
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Tsvetan Tarnev
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Miriam Marquitan
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Stephan Feldhege
- Mechanical Workshop of the Faculty of Chemistry and BiochemistryRuhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Armin Lindner
- Mechanical Workshop of the Faculty of Chemistry and BiochemistryRuhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Corina Andronescu
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| |
Collapse
|
40
|
Ying YL, Hu YX, Gao R, Yu RJ, Gu Z, Lee LP, Long YT. Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells. J Am Chem Soc 2018. [PMID: 29529376 DOI: 10.1021/jacs.7b12106] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Capturing real-time electron transfer, enzyme activity, molecular dynamics, and biochemical messengers in living cells is essential for understanding the signaling pathways and cellular communications. However, there is no generalizable method for characterizing a broad range of redox-active species in a single living cell at the resolution of cellular compartments. Although nanoelectrodes have been applied in the intracellular detection of redox-active species, the fabrication of nanoelectrodes to maximize the signal-to-noise ratio of the probe remains challenging because of the stringent requirements of 3D fabrication. Here, we report an asymmetric nanopore electrode-based amplification mechanism for the real-time monitoring of NADH in a living cell. We used a two-step 3D fabrication process to develop a modified asymmetric nanopore electrode with a diameter down to 90 nm, which allowed for the detection of redox metabolism in living cells. Taking advantage of the asymmetric geometry, the above 90% potential drop at the two terminals of the nanopore electrode converts the faradaic current response into an easily distinguishable bubble-induced transient ionic current pattern. Therefore, the current signal was amplified by at least 3 orders of magnitude, which was dynamically linked to the presence of trace redox-active species. Compared to traditional wire electrodes, this wireless asymmetric nanopore electrode exhibits a high signal-to-noise ratio by increasing the current resolution from nanoamperes to picoamperes. The asymmetric nanopore electrode achieves the highly sensitive and selective probing of NADH concentrations as low as 1 pM. Moreover, it enables the real-time nanopore monitoring of the respiration chain (i.e., NADH) in a living cell and the evaluation of the effects of anticancer drugs in an MCF-7 cell. We believe that this integrated wireless asymmetric nanopore electrode provides promising building blocks for the future imaging of electron transfer dynamics in live cells.
Collapse
Affiliation(s)
- Yi-Lun Ying
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Yong-Xu Hu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Rui Gao
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Ru-Jia Yu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Zhen Gu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Luke P Lee
- Biomedical Institute for Global Health Research and Technology , National University of Singapore , 117599 Singapore.,Departments of Bioengineering, Electrical Engineering, and Computer Sciences , ∥Berkeley Sensor and Actuator Center , and ⊥Biophysics Graduate Program , University of California , Berkeley , California 94720 , United States
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| |
Collapse
|
41
|
Zhang J, Zhou J, Pan R, Jiang D, Burgess JD, Chen HY. New Frontiers and Challenges for Single-Cell Electrochemical Analysis. ACS Sens 2018; 3:242-250. [PMID: 29276834 DOI: 10.1021/acssensors.7b00711] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous measurements of cell populations might obscure many important cellular differences, and new strategies for single-cell analyses are urgently needed to re-examine these fundamental biological principles for better diagnosis and treatment of diseases. Electrochemistry is a robust technique for the analysis of single living cells that has the advantages of minor interruption of cellular activity and provides the capability of high spatiotemporal resolution. The achievements of the past 30 years have revealed significant information about the exocytotic events of single cells to elucidate the mechanisms of cellular activity. Currently, the rapid developments of micro/nanofabrication and optoelectronic technologies drive the development of multifunctional electrodes and novel electrochemical approaches with higher resolution for single cells. In this Perspective, three new frontiers in this field, namely, electrochemical microscopy, intracellular analysis, and single-cell analysis in a biological system (i.e., neocortex and retina), are reviewed. The unique features and remaining challenges of these techniques are discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Junyu Zhou
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Rongrong Pan
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - Dechen Jiang
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| | - James D. Burgess
- Department
of Medical Laboratory, Imaging, and Radiologic Sciences, College of
Allied Health Sciences, Augusta University, Augusta, Georgia 30912, United States
| | - Hong-Yuan Chen
- The
State Key Laboratory of Analytical Chemistry for Life Science, School
of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210093, China
| |
Collapse
|
42
|
Zhang XW, Qiu QF, Jiang H, Zhang FL, Liu YL, Amatore C, Huang WH. Real-Time Intracellular Measurements of ROS and RNS in Living Cells with Single Core-Shell Nanowire Electrodes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707187] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xin-Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Quan-Fa Qiu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Hong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Fu-Li Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Yan-Lin Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
- PASTEUR; Département de chimie; École normale supérieure; PSL Research University; Sorbonne Universités; UPMC Univ. Paris 06; CNRS; 24 rue Lhomond 75005 Paris France
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| |
Collapse
|
43
|
Zhang XW, Qiu QF, Jiang H, Zhang FL, Liu YL, Amatore C, Huang WH. Real-Time Intracellular Measurements of ROS and RNS in Living Cells with Single Core-Shell Nanowire Electrodes. Angew Chem Int Ed Engl 2017; 56:12997-13000. [DOI: 10.1002/anie.201707187] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/07/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Xin-Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Quan-Fa Qiu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Hong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Fu-Li Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Yan-Lin Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
- PASTEUR; Département de chimie; École normale supérieure; PSL Research University; Sorbonne Universités; UPMC Univ. Paris 06; CNRS; 24 rue Lhomond 75005 Paris France
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| |
Collapse
|
44
|
Wang K, Zhao X, Li B, Wang K, Zhang X, Mao L, Ewing A, Lin Y. Ultrasonic-Aided Fabrication of Nanostructured Au-Ring Microelectrodes for Monitoring Transmitters Released from Single Cells. Anal Chem 2017; 89:8683-8688. [DOI: 10.1021/acs.analchem.7b02814] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Keqing Wang
- Department
of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xu Zhao
- Department
of Chemistry, Capital Normal University, Beijing 100048, China
| | - Bo Li
- Department
of Chemistry, Capital Normal University, Beijing 100048, China
| | - Kai Wang
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Xin Zhang
- Department
of Chemistry, Capital Normal University, Beijing 100048, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Andrew Ewing
- Department
of Chemistry and Chemical Engineering and Department of Chemistry and Molecular Biology, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Yuqing Lin
- Department
of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
45
|
Wang D, Xiao X, Xu S, Liu Y, Li Y. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay. Biosens Bioelectron 2017; 99:431-437. [PMID: 28810234 DOI: 10.1016/j.bios.2017.08.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/30/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023]
Abstract
In this work, single Au nanowire electrodes (AuNWEs) were fabricated by laser-assisted pulling/hydrofluoric acid (HF) etching process, which then were characterized by transmission electron microscopy (TEM), electrochemical method and finite-element simulation. The as-prepared single AuNWEs were used to construct electrochemical aptamer-based nanosensors (E-AB nanosensors) based on the formation of Au-S bond that duplex DNA tagged with methylene blue (MB) was modified on the surface of electrode. In the presence of adenosine triphosphate (ATP), the MB-labeled aptamer dissociated from the duplex DNA due to the strong specific affinity between aptamer and target, which lead to the reduction of MB electrochemical signals. Moreover, BSA was employed to further passivate electrode surface bonding sites for the stable of the sensor. The as-prepared E-AB nanosensor has been used for ATP assay with excellent sensitivity and selectivity, even in a complex system like cerebrospinal fluid of rat brain. Considering the unique properties of good stability, larger surface area and smaller overall dimensions, this E-AB nanosensor should be an ideal platform for widely sensing applications in living bio-system.
Collapse
Affiliation(s)
- Dongmei Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China; College of Chemistry and Material Engineering, Chaohu University, Chaohu, Anhui 238000, PR China
| | - Xiaoqing Xiao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Shen Xu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Yong Liu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
46
|
Zhang Y, Li M, Li Z, Li Q, Aldalbahi A, Shi J, Wang L, Fan C, Zuo X. Recognizing single phospholipid vesicle collisions on carbon fiber nanoelectrode. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9036-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Abstract
Recent progress in the electrochemical field enabled development of miniaturized sensing devices that can be used in biological settings to obtain fundamental and practical biochemically relevant information on physiology, metabolism, and disease states in living systems. Electrochemical sensors and biosensors have demonstrated potential for rapid, real-time measurements of biologically relevant molecules. This chapter provides an overview of the most recent advances in the development of miniaturized sensors for biological investigations in living systems, with focus on the detection of neurotransmitters and oxidative stress markers. The design of electrochemical (bio)sensors, including their detection mechanism and functionality in biological systems, is described as well as their advantages and limitations. Application of these sensors to studies in live cells, embryonic development, and rodent models is discussed.
Collapse
|
48
|
Ying YL, Ding Z, Zhan D, Long YT. Advanced electroanalytical chemistry at nanoelectrodes. Chem Sci 2017; 8:3338-3348. [PMID: 28507703 PMCID: PMC5416909 DOI: 10.1039/c7sc00433h] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/16/2017] [Indexed: 01/10/2023] Open
Abstract
Nanoelectrodes, with dimensions below 100 nm, have the advantages of high sensitivity and high spatial resolution. These electrodes have attracted increasing attention in various fields such as single cell analysis, single-molecule detection, single particle characterization and high-resolution imaging. The rapid growth of novel nanoelectrodes and nanoelectrochemical methods brings enormous new opportunities in the field. In this perspective, we discuss the challenges, advances, and opportunities for nanoelectrode fabrication, real-time characterizations and high-performance electrochemical instrumentation.
Collapse
Affiliation(s)
- Yi-Lun Ying
- School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China .
| | - Zhifeng Ding
- Department of Chemistry , University of Western Ontario , 1151 Richmond Street , London , ON N6A 5B7 , Canada
| | - Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces , Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P. R. China
| | - Yi-Tao Long
- School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China .
| |
Collapse
|
49
|
Affiliation(s)
- Lucas Armbrecht
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
50
|
Liu Y, Zhang Y, Hua H, Li Y. Fabrication of single Pt@Au nanowire electrodes for monitoring hydrogen peroxide released from living cells. RSC Adv 2017. [DOI: 10.1039/c7ra08085a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single Pt@AuNWEs were fabricated by a Cu UPD/Pt redox replacement technique, and were applied to monitoring H2O2 released from living cells.
Collapse
Affiliation(s)
- Yong Liu
- Anhui Key Laboratory of Chemo/Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- P. R. China
| | - Yaoyao Zhang
- Anhui Key Laboratory of Chemo/Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- P. R. China
| | - Hongmei Hua
- Anhui Key Laboratory of Chemo/Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- P. R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- P. R. China
| |
Collapse
|