1
|
Zhang X, Dumčius P, Mikhaylov R, Qi J, Stringer M, Sun C, Nguyen VD, Zhou Y, Sun X, Liang D, Liu D, Yan B, Feng X, Mei C, Xu C, Feng M, Fu Y, Clayton A, Zhi R, Tian L, Dong Z, Yang X. Surface Acoustic Wave-Enhanced Multi-View Acoustofluidic Rotation Cytometry (MARC) for Pre-Cytopathological Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403574. [PMID: 39136049 PMCID: PMC11497091 DOI: 10.1002/advs.202403574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/20/2024] [Indexed: 10/25/2024]
Abstract
Cytopathology, crucial in disease diagnosis, commonly uses microscopic slides to scrutinize cellular abnormalities. However, processing high volumes of samples often results in numerous negative diagnoses, consuming significant time and resources in healthcare. To address this challenge, a surface acoustic wave-enhanced multi-view acoustofluidic rotation cytometry (MARC) technique is developed for pre-cytopathological screening. MARC enhances cellular morphology analysis through comprehensive and multi-angle observations and amplifies subtle cell differences, particularly in the nuclear-to-cytoplasmic ratio, across various cell types and between cancerous and normal tissue cells. By prioritizing MARC-screened positive cases, this approach can potentially streamline traditional cytopathology, reducing the workload and resources spent on negative diagnoses. This significant advancement enhances overall diagnostic efficiency, offering a transformative vision for cytopathological screening.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Povilas Dumčius
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Roman Mikhaylov
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Jiangfa Qi
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Mercedes Stringer
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Chao Sun
- School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Van Dien Nguyen
- Systems Immunity University Research InstituteCardiff UniversityCardiffCF14 4XNUK
- Division of Infection and ImmunityCardiff UniversityCardiffCF14 4XNUK
| | - You Zhou
- Systems Immunity University Research InstituteCardiff UniversityCardiffCF14 4XNUK
- Division of Infection and ImmunityCardiff UniversityCardiffCF14 4XNUK
| | - Xianfang Sun
- School of Computer Science and InformaticsCardiff UniversityCardiffCF24 4AGUK
| | - Dongfang Liang
- Department of EngineeringUniversity of CambridgeCambridgeCB2 1PZUK
| | - Dongge Liu
- Department of PathologyBeijing HospitalBeijing100730P. R. China
| | - Bing Yan
- Department of Information ManagementBeijing HospitalBeijing100730P. R. China
| | - Xi Feng
- Department of PathologyHubei Cancer HospitalWuhan430079P. R. China
| | - Changjun Mei
- Department of PathologyXiangzhou District People's Hospital of XiangyangXiangyang441000P. R. China
| | - Cong Xu
- Department of PathologyXiangzhou District People's Hospital of XiangyangXiangyang441000P. R. China
| | - Mingqian Feng
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Yongqing Fu
- Faculty of Engineering and EnvironmentNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| | - Aled Clayton
- School of MedicineCardiff UniversityCardiffCF14 4XNUK
| | - Ruicong Zhi
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory of Knowledge Engineering for Materials ScienceBeijing100083P.R. China
| | - Liangfei Tian
- Department of Biomedical EngineeringMOE Key Laboratory of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Zhiqiang Dong
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| |
Collapse
|
2
|
Sun J, Yang B, Koukourakis N, Guck J, Czarske JW. AI-driven projection tomography with multicore fibre-optic cell rotation. Nat Commun 2024; 15:147. [PMID: 38167247 PMCID: PMC10762230 DOI: 10.1038/s41467-023-44280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Optical tomography has emerged as a non-invasive imaging method, providing three-dimensional insights into subcellular structures and thereby enabling a deeper understanding of cellular functions, interactions, and processes. Conventional optical tomography methods are constrained by a limited illumination scanning range, leading to anisotropic resolution and incomplete imaging of cellular structures. To overcome this problem, we employ a compact multi-core fibre-optic cell rotator system that facilitates precise optical manipulation of cells within a microfluidic chip, achieving full-angle projection tomography with isotropic resolution. Moreover, we demonstrate an AI-driven tomographic reconstruction workflow, which can be a paradigm shift from conventional computational methods, often demanding manual processing, to a fully autonomous process. The performance of the proposed cell rotation tomography approach is validated through the three-dimensional reconstruction of cell phantoms and HL60 human cancer cells. The versatility of this learning-based tomographic reconstruction workflow paves the way for its broad application across diverse tomographic imaging modalities, including but not limited to flow cytometry tomography and acoustic rotation tomography. Therefore, this AI-driven approach can propel advancements in cell biology, aiding in the inception of pioneering therapeutics, and augmenting early-stage cancer diagnostics.
Collapse
Affiliation(s)
- Jiawei Sun
- Shanghai Artificial Intelligence Laboratory, Longwen Road 129, Xuhui District, 200232, Shanghai, China.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany.
| | - Bin Yang
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany
| | - Nektarios Koukourakis
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Juergen W Czarske
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Institute of Applied Physics, TU Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Sharif S, Jung D, Cao HX, Park JO, Kang B, Choi E. Ultrasonic Manipulation of Hydrodynamically Driven Microparticles in Vessel Bifurcation: Simulation, Optimization, Experimental Validation, and Potential for Targeted Drug Delivery. MICROMACHINES 2023; 15:13. [PMID: 38276841 PMCID: PMC10819303 DOI: 10.3390/mi15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Microrobots driven by multiple external power sources have emerged as promising tools for targeted drug and stem cell delivery in tissue regeneration. However, navigating and imaging these devices within a complex colloidal vascular system at a clinical scale is challenging. Ultrasonic actuators have gained interest in the field of non-contact manipulation of micromachines due to their label-free biocompatible nature and safe operation history. This research presents experimentally validated simulation results of ultrasonic actuation using a novel ultrasonic transducer array with a hemispherical arrangement that generates active traveling waves with phase modulation. Blood flow is used as a carrier force while the direction and path are controlled by blocking undesirable paths using a highly focused acoustic field. In the experiments, the microrobot cluster was able to follow a predefined trajectory and reach the target. The microrobot size, maximum radiation pressure, and focus position were optimized for certain blood flow conditions. The outcomes suggest that this acoustic manipulation module has potential applications in targeted tumor therapy.
Collapse
Affiliation(s)
- Saqib Sharif
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea;
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea; (D.J.); (H.X.C.); (J.-O.P.)
| | - Daewon Jung
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea; (D.J.); (H.X.C.); (J.-O.P.)
| | - Hiep Xuan Cao
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea; (D.J.); (H.X.C.); (J.-O.P.)
- College of AI Convergence, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea; (D.J.); (H.X.C.); (J.-O.P.)
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea; (D.J.); (H.X.C.); (J.-O.P.)
- College of AI Convergence, Chonnam National University, Gwangju 61186, Republic of Korea
- Graduate School of Data Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea;
- Korea Institute of Medical Microrobotics, Gwangju 61011, Republic of Korea; (D.J.); (H.X.C.); (J.-O.P.)
- College of AI Convergence, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Cao HX, Nguyen VD, Jung D, Choi E, Kim CS, Park JO, Kang B. Acoustically Driven Cell-Based Microrobots for Targeted Tumor Therapy. Pharmaceutics 2022; 14:pharmaceutics14102143. [PMID: 36297578 PMCID: PMC9609374 DOI: 10.3390/pharmaceutics14102143] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Targeted drug delivery using microrobots manipulated by an external actuator has significant potential to be a practical approach for wireless delivery of therapeutic agents to the targeted tumor. This work aimed to develop a novel acoustic manipulation system and macrophage-based microrobots (Macbots) for a study in targeted tumor therapy. The Macbots containing superparamagnetic iron oxide nanoparticles (SPIONs) can serve as drug carriers. Under an acoustic field, a microrobot cluster of the Macbots is manipulated by following a predefined trajectory and can reach the target with a different contact angle. As a fundamental validation, we investigated an in vitro experiment for targeted tumor therapy. The microrobot cluster could be manipulated to any point in the 4 × 4 × 4 mm region of interest with a position error of less than 300 μm. Furthermore, the microrobot could rotate in the O-XY plane with an angle step of 45 degrees without limitation of total angle. Finally, we verified that the Macbots could penetrate a 3D tumor spheroid that mimics an in vivo solid tumor. The outcome of this study suggests that the Macbots manipulated by acoustic actuators have potential applications for targeted tumor therapy.
Collapse
Affiliation(s)
- Hiep Xuan Cao
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
| | - Van Du Nguyen
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
| | - Daewon Jung
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
| | - Chang-Sei Kim
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (C.-S.K.); (J.-O.P.); (B.K.)
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
- Correspondence: (C.-S.K.); (J.-O.P.); (B.K.)
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
- College of AI Convergence, Chonnam National University, Gwangju 61186, Korea
- Graduate School of Data Science, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (C.-S.K.); (J.-O.P.); (B.K.)
| |
Collapse
|
5
|
Puttaswamy SV, Bhalla N, Kelsey C, Lubarsky G, Lee C, McLaughlin J. Independent and grouped 3D cell rotation in a microfluidic device for bioimaging applications. Biosens Bioelectron 2020; 170:112661. [PMID: 33032194 DOI: 10.1016/j.bios.2020.112661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 09/26/2020] [Indexed: 12/24/2022]
Abstract
Cell rotation reveals important information which facilitates identification and characterization of different cells. Markedly, achieving three dimensional (3D) rolling rotation of single cells within a larger group of cells is rare among existing cell rotation techniques. In this work we present a simple biochip which can be used to trap and rotate a single cell, or to rotate multiple cells relative to each other within a group of individual red blood cells (RBCs), which is crucial for imaging cells in 3D. To achieve single RBC trapping, we employ two parallel sidewall 3D electrodes to produce a dielectrophoretic force which traps cells inside the capturing chambers of the microfluidic device, where the hydrodynamic force then induces precise rotation of the cell inside the chamber. We have also demonstrated the possibility of using the developed biochip to preconcentrate and rotate RBC clusters in 3D. As our proposed cell trapping and rotation device reduces the intricacy of cell rotation, the developed technique may have important implications for high resolution 3D cell imaging in the investigation of complex cell dynamics and interactions in moving media.
Collapse
Affiliation(s)
- Srinivasu Valagerahally Puttaswamy
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom.
| | - Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom; Healthcare Technology Hub, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom.
| | - Colin Kelsey
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom
| | - Gennady Lubarsky
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| | - James McLaughlin
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom; Healthcare Technology Hub, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom.
| |
Collapse
|
6
|
Kunti G, Agarwal T, Bhattacharya A, Maiti TK, Chakraborty S. On-Chip Concentration and Patterning of Biological Cells Using Interplay of Electrical and Thermal Fields. Anal Chem 2019; 92:838-844. [PMID: 31769657 DOI: 10.1021/acs.analchem.9b03364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Golak Kunti
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal - 721302, India
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal - 721302, India
| | - Anandaroop Bhattacharya
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal - 721302, India
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal - 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal - 721302, India
| |
Collapse
|
7
|
Microfluidic dielectrophoretic cell manipulation towards stable cell contact assemblies. Biomed Microdevices 2018; 20:95. [DOI: 10.1007/s10544-018-0341-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Huang L, He W, Wang W. A cell electro-rotation micro-device using polarized cells as electrodes. Electrophoresis 2018; 40:784-791. [DOI: 10.1002/elps.201800360] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument; Department of Precision Instrument; Tsinghua University; Beijing P. R. China
| | - Weihua He
- State Key Laboratory of Precision Measurement Technology and Instrument; Department of Precision Instrument; Tsinghua University; Beijing P. R. China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument; Department of Precision Instrument; Tsinghua University; Beijing P. R. China
| |
Collapse
|
9
|
Huang L, Zhao P, Wang W. 3D cell electrorotation and imaging for measuring multiple cellular biophysical properties. LAB ON A CHIP 2018; 18:2359-2368. [PMID: 29946598 DOI: 10.1039/c8lc00407b] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
3D rotation is one of many fundamental manipulations to cells and imperative in a wide range of applications in single cell analysis involving biology, chemistry, physics and medicine. In this article, we report a dielectrophoresis-based, on-chip manipulation method that can load and rotate a single cell for 3D cell imaging and multiple biophysical property measurements. To achieve this, we trapped a single cell in constriction and subsequently released it to a rotation chamber formed by four sidewall electrodes and one transparent bottom electrode. In the rotation chamber, rotating electric fields were generated by applying appropriate AC signals to the electrodes for driving the single cell to rotate in 3D under control. The rotation spectrum for in-plane rotation was used to extract the cellular dielectric properties based on a spherical single-shell model, and the stacked images of out-of-plane cell rotation were used to reconstruct the 3D cell morphology to determine its geometric parameters. We have tested the capabilities of our method by rotating four representative mammalian cells including HeLa, C3H10, B lymphocyte, and HepaRG. Using our device, we quantified the area-specific membrane capacitance and cytoplasm conductivity for the four cells, and revealed the subtle difference of geometric parameters (i.e., surface area, volume, and roughness) by 3D cell imaging of cancer cells and normal leukocytes. Combining microfluidics, dielectrophoresis, and microscopic imaging techniques, our electrorotation-on-chip (EOC) technique is a versatile method for manipulating single cells under investigation and measuring their multiple biophysical properties.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | | | | |
Collapse
|
10
|
Abstract
Single-cell rotation is a fundamental manipulation used in a wide range of biotechnological applications such as cell injection and enucleation. However, there are currently few methods for the 3D rotation of single cells. Here, this chapter presents different biochip platforms based on a dielectrophoresis technique to achieve 3D rotation. In-plane (yaw) and out-of-plane rotation (pitch) can be achieved by applying different AC signal configurations, respectively. This use of 3D rotation facilitates several applications. For example, in-plane rotation can be used to measure the rotation spectra, and this can be used to estimate the dielectric parameters. The out-of-plane rotation can help reconstruct 3D cell models.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Peng Zhao
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Ji X, Xu L, Zhou T, Shi L, Deng Y, Li J. Numerical Investigation of DC Dielectrophoretic Deformable Particle⁻Particle Interactions and Assembly. MICROMACHINES 2018; 9:E260. [PMID: 30424193 PMCID: PMC6187325 DOI: 10.3390/mi9060260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/26/2022]
Abstract
In a non-uniform electric field, the surface charge of the deformable particle is polarized, resulting in the dielectrophoretic force acting on the surface of the particle, which causes the electrophoresis. Due to dielectrophoretic force, the two deformable particles approach each other, and distort the flow field between them, which cause the hydrodynamic force correspondingly. The dielectrophoresis (DEP) force and the hydrodynamic force together form the net force acting on the particles. In this paper, based on a thin electric double layer (EDL) assumption, we developed a mathematical model under the arbitrary Lagrangian⁻Eulerian (ALE) numerical approach method to simulate the flow field, electric field, and deformable particles simultaneously. Simulation results show that, when two deformable particles' distances are in a certain range, no matter the initial position of the two particles immersed in the fluid field, the particles will eventually form a particle⁻particle chain parallel to the direction of the electric field. In actual experiments, the biological cells used are deformable. Compared with the previous study on the DEP motion of the rigid particles, the research conclusion of this paper provides a more rigorous reference for the design of microfluidics.
Collapse
Affiliation(s)
- Xiang Ji
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China.
| | - Li Xu
- School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Teng Zhou
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China.
| | - Liuyong Shi
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China.
| | - Yongbo Deng
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China.
| | - Jie Li
- School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
12
|
Xie M, Shakoor A, Shen Y, Mills JK, Sun D. Out-of-Plane Rotation Control of Biological Cells With a Robot-Tweezers Manipulation System for Orientation-Based Cell Surgery. IEEE Trans Biomed Eng 2018; 66:199-207. [PMID: 29993395 DOI: 10.1109/tbme.2018.2828136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In many cell surgery applications, cell must be oriented properly such that the microsurgery tool can access the target components with minimum damage to the cell. In this paper, a scheme for out of image plane orientation control of suspended biological cells using robotic controlled optical tweezers is presented for orientation-based cell surgery. Based on our previous work on planar cell rotation using optical tweezers, the dynamic model of cell out-of-plane orientation control is formulated by using the T-matrix approach. Vision-based algorithms are developed to extract the cell out of image plane orientation angles, based on 2-D image slices obtained under an optical microscope. A robust feedback controller is then proposed to achieve cell out-of-plane rotation. Experiments of automated out of image plane rotational control for cell nucleus extraction surgery are performed to demonstrate the effectiveness of the proposed approach. This approach advances robot-aided single cell manipulation and produces impactful benefits to cell surgery applications such as nucleus transplantation and organelle biopsy in precision medicine.
Collapse
|
13
|
Yang X, Niu X, Liu Z, Zhao Y, Zhang G, Liang W, Li WJ. Accurate Extraction of the Self-Rotational Speed for Cells in an Electrokinetics Force Field by an Image Matching Algorithm. MICROMACHINES 2017; 8:E282. [PMID: 30400472 PMCID: PMC6190232 DOI: 10.3390/mi8090282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
We present an image-matching-based automated algorithm capable of accurately determining the self-rotational speed of cancer cells in an optically-induced electrokinetics-based microfluidic chip. To automatically track a specific cell in a video featuring more than one cell, a background subtraction technique was used. To determine the rotational speeds of cells, a reference frame was automatically selected and curve fitting was performed to improve the stability and accuracy. Results show that the algorithm was able to accurately calculate the self-rotational speeds of cells up to ~150 rpm. In addition, the algorithm could be used to determine the motion trajectories of the cells. Potential applications for the developed algorithm include the differentiation of cell morphology and characterization of cell electrical properties.
Collapse
Affiliation(s)
- Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
| | - Xihui Niu
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
| | - Zhu Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yuliang Zhao
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
| | - Guanglie Zhang
- Institute of Advanced and Intelligent Sensing Systems, Shenzhen Academy of Robotics, Shenzhen 518057, China.
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Wen Jung Li
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
- Institute of Advanced and Intelligent Sensing Systems, Shenzhen Academy of Robotics, Shenzhen 518057, China.
| |
Collapse
|
14
|
|
15
|
Huang L, Tu L, Zeng X, Mi L, Li X, Wang W. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation. MICROMACHINES 2016; 7:E141. [PMID: 30404313 PMCID: PMC6190350 DOI: 10.3390/mi7080141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 12/15/2022]
Abstract
Single cell manipulation technology has been widely applied in biological fields, such as cell injection/enucleation, cell physiological measurement, and cell imaging. Recently, a biochip platform with a novel configuration of electrodes for cell 3D rotation has been successfully developed by generating rotating electric fields. However, the rotation platform still has two major shortcomings that need to be improved. The primary problem is that there is no on-chip module to facilitate the placement of a single cell into the rotation chamber, which causes very low efficiency in experiment to manually pipette single 10-micron-scale cells into rotation position. Secondly, the cell in the chamber may suffer from unstable rotation, which includes gravity-induced sinking down to the chamber bottom or electric-force-induced on-plane movement. To solve the two problems, in this paper we propose a new microfluidic chip with manipulation capabilities of single cell trap and single cell 3D stable rotation, both on one chip. The new microfluidic chip consists of two parts. The top capture part is based on the least flow resistance principle and is used to capture a single cell and to transport it to the rotation chamber. The bottom rotation part is based on dielectrophoresis (DEP) and is used to 3D rotate the single cell in the rotation chamber with enhanced stability. The two parts are aligned and bonded together to form closed channels for microfluidic handling. Using COMSOL simulation and preliminary experiments, we have verified, in principle, the concept of on-chip single cell traps and 3D stable rotation, and identified key parameters for chip structures, microfluidic handling, and electrode configurations. The work has laid a solid foundation for on-going chip fabrication and experiment validation.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Long Tu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Xueyong Zeng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Lu Mi
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Xuzhou Li
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
| |
Collapse
|
16
|
Soffe R, Baratchi S, Tang SY, Mitchell A, McIntyre P, Khoshmanesh K. Concurrent shear stress and chemical stimulation of mechano-sensitive cells by discontinuous dielectrophoresis. BIOMICROFLUIDICS 2016; 10:024117. [PMID: 27099646 PMCID: PMC4826375 DOI: 10.1063/1.4945309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/17/2016] [Indexed: 05/02/2023]
Abstract
Microfluidic platforms enable a variety of physical or chemical stimulation of single or multiple cells to be examined and monitored in real-time. To date, intracellular calcium signalling research is, however, predominantly focused on observing the response of cells to a single mode of stimulation; consequently, the sensitising/desensitising of cell responses under concurrent stimuli is not well studied. In this paper, we provide an extended Discontinuous Dielectrophoresis procedure to investigate the sensitising of chemical stimulation, over an extensive range of shear stress, up to 63 dyn/cm(2), which encompasses shear stresses experienced in the arterial and venus systems (10 to 60 dyn/cm(2)). Furthermore, the TRPV4-selective agonist GSK1016790A, a form of chemical stimulation, did not influence the ability of the cells' to remain immobilised under high levels of shear stress; thus, enabling us to investigate shear stress stimulation on agonism. Our experiments revealed that shear stress sensitises GSK1016790A-evoked intracellular calcium signalling of cells in a shear-stimulus dependent manner, as observed through a reduction in the cellular response time and an increase in the pharmacological efficacy. Consequently, suggesting that the role of TRPV4 may be underestimated in endothelial cells-which experience high levels of shear stress. This study highlights the importance of conducting studies at high levels of shear stress. Additionally, our approach will be valuable for examining the effect of high levels of shear on different cell types under different conditions, as presented here for agonist activation.
Collapse
Affiliation(s)
- Rebecca Soffe
- School of Engineering, RMIT University , Victoria 3001, Australia
| | - Sara Baratchi
- School of Medical and Biomedical Science, RMIT University , Victoria 3083, Australia
| | - Shi-Yang Tang
- School of Engineering, RMIT University , Victoria 3001, Australia
| | - Arnan Mitchell
- School of Engineering, RMIT University , Victoria 3001, Australia
| | - Peter McIntyre
- School of Medical and Biomedical Science, RMIT University , Victoria 3083, Australia
| | | |
Collapse
|
17
|
Knoerzer M, Szydzik C, Tovar-Lopez FJ, Tang X, Mitchell A, Khoshmanesh K. Dynamic drag force based on iterative density mapping: A new numerical tool for three-dimensional analysis of particle trajectories in a dielectrophoretic system. Electrophoresis 2016; 37:645-57. [PMID: 26643028 DOI: 10.1002/elps.201500454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 01/26/2023]
Abstract
Dielectrophoresis is a widely used means of manipulating suspended particles within microfluidic systems. In order to efficiently design such systems for a desired application, various numerical methods exist that enable particle trajectory plotting in two or three dimensions based on the interplay of hydrodynamic and dielectrophoretic forces. While various models are described in the literature, few are capable of modeling interactions between particles as well as their surrounding environment as these interactions are complex, multifaceted, and computationally expensive to the point of being prohibitive when considering a large number of particles. In this paper, we present a numerical model designed to enable spatial analysis of the physical effects exerted upon particles within microfluidic systems employing dielectrophoresis. The model presents a means of approximating the effects of the presence of large numbers of particles through dynamically adjusting hydrodynamic drag force based on particle density, thereby introducing a measure of emulated particle-particle and particle-liquid interactions. This model is referred to as "dynamic drag force based on iterative density mapping." The resultant numerical model is used to simulate and predict particle trajectory and velocity profiles within a microfluidic system incorporating curved dielectrophoretic microelectrodes. The simulated data are compared favorably with experimental data gathered using microparticle image velocimetry, and is contrasted against simulated data generated using traditional "effective moment Stokes-drag method," showing more accurate particle velocity profiles for areas of high particle density.
Collapse
Affiliation(s)
- Markus Knoerzer
- School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC, Australia.,Institute for Optofluidics and Nanophotonics (IONAS), Karlsruhe University of Applied Sciences, Karlsruhe, Germany
| | - Crispin Szydzik
- School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC, Australia
| | | | - Xinke Tang
- School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC, Australia
| | - Arnan Mitchell
- School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC, Australia
| | - Khashayar Khoshmanesh
- School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Soffe R, Baratchi S, Tang SY, Nasabi M, McIntyre P, Mitchell A, Khoshmanesh K. Analysing calcium signalling of cells under high shear flows using discontinuous dielectrophoresis. Sci Rep 2015. [PMID: 26202725 PMCID: PMC4648442 DOI: 10.1038/srep11973] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Immobilisation of cells is an important feature of many cellular assays, as it enables the physical/chemical stimulation of cells; whilst, monitoring cellular processes using microscopic techniques. Current approaches for immobilising cells, however, are hampered by time-consuming processes, the need for specific antibodies or coatings, and adverse effects on cell integrity. Here, we present a dielectrophoresis-based approach for the robust immobilisation of cells, and analysis of their responses under high shear flows. This approach is quick and label-free, and more importantly, minimises the adverse effects of electric field on the cell integrity, by activating the field for a short duration of 120 s, just long enough to immobilise the cells, after which cell culture media (such as HEPES) is flushed through the platform. In optimal conditions, at least 90% of the cells remained stably immobilised, when exposed to a shear stress of 63 dyn/cm2. This approach was used to examine the shear-induced calcium signalling of HEK-293 cells expressing a mechanosensitive ion channel, transient receptor potential vaniloid type 4 (TRPV4), when exposed to the full physiological range of shear stress.
Collapse
Affiliation(s)
- Rebecca Soffe
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia
| | - Sara Baratchi
- Health Innovations Research Institute and School of Medical Sciences, RMIT University, Melbourne, Australia
| | - Shi-Yang Tang
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia
| | - Mahyar Nasabi
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia
| | - Peter McIntyre
- Health Innovations Research Institute and School of Medical Sciences, RMIT University, Melbourne, Australia
| | - Arnan Mitchell
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia
| | - Khashayar Khoshmanesh
- School of Electrical and Computer Engineering, RMIT University, Melbourne, Australia
| |
Collapse
|