1
|
Ribeiro M, Douis L, da Silva JAL, Castanheira I, Leufroy A, Jitaru P. The Impact of Various Types of Cooking on the Fate of Hg and Se in Predatory Fish Species. Foods 2024; 13:374. [PMID: 38338510 PMCID: PMC10855049 DOI: 10.3390/foods13030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
This study addresses the effect of various cooking approaches on total Hg (HgT) and total Se (SeT) contents in three predatory fish species. For this purpose, samples of swordfish, dogfish, and tuna from regular French (fish) markets were cooked by boiling, steaming, grilling, and frying, respectively. The levels of HgT and SeT in raw and cooked samples were determined by inductively coupled plasma-mass spectrometry. The data showed a significant increase in HgT and SeT levels between raw and cooked samples (33% of the samples for SeT and 67% for HgT) due to the water loss during the cooking. High intra-species variation related to HgT and SeT levels was found. Considering the level of exposure to HgT through fish consumption and taking also into account the possible protective effect of Se (expressed here via the Se/Hg molar ratio), the safest cooking approach corresponds to grilled swordfish, fried tuna, and steamed dogfish, which show Se/Hg molar ratios of (1.0 ± 0.5), (4.3 ± 4.2), and (1.0 ± 0.6), respectively.
Collapse
Affiliation(s)
- Mariana Ribeiro
- Laboratory for Food Safety, University Paris Est Creteil, Anses, 94700 Maisons-Alfort, France; (M.R.); (L.D.); (A.L.)
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, INSA IP, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
- Centre for Structural Chemistry, Institute of Molecular Sciences, Chemical Engineering Department, Higher Technical Institute, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - Laurène Douis
- Laboratory for Food Safety, University Paris Est Creteil, Anses, 94700 Maisons-Alfort, France; (M.R.); (L.D.); (A.L.)
| | - José Armando Luísa da Silva
- Centre for Structural Chemistry, Institute of Molecular Sciences, Chemical Engineering Department, Higher Technical Institute, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - Isabel Castanheira
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, INSA IP, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Axelle Leufroy
- Laboratory for Food Safety, University Paris Est Creteil, Anses, 94700 Maisons-Alfort, France; (M.R.); (L.D.); (A.L.)
| | - Petru Jitaru
- Laboratory for Food Safety, University Paris Est Creteil, Anses, 94700 Maisons-Alfort, France; (M.R.); (L.D.); (A.L.)
| |
Collapse
|
2
|
Wang X, Qiao Y, Zhang J, Song Y, Han Q. A SYBR Green I-based aptasensor for the label-free, fluorometric, and anti-interference detection of MeHg . Anal Bioanal Chem 2024; 416:299-311. [PMID: 37932512 DOI: 10.1007/s00216-023-05018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Methylmercury (MeHg+) is a common form of organic mercury that is substantially more toxic than inorganic mercury and is more likely to accumulate in organisms through biological enrichment. Therefore, developing a method to enable the specific and rapid detection of MeHg+ in seafood is important and remains challenging to accomplish. Herein, a rapid, label-free fluorescence detection method for MeHg+ determination was developed based on SYBR Green I. The detection system implemented "add and measure" detection mode can be completed in 10 min. Under optimal assay conditions, the detection platform showed a linear relationship with the concentration of MeHg+ within 1-50 nM (Y = 8.573x + 42.89, R2 = 0.9928), with a detection limit of 0.3218 nM. The results obtained for competitive substances, such as inorganic mercury ions and anions, show a high specificity of the method. In addition, this method successfully detected MeHg+ in seawater and marine products, with an accompanying spike recovery rate of 96.45-105.1%.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yinuo Qiao
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jinyang Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yuzhu Song
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qinqin Han
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
3
|
Fallah S, Baharfar R, Samadi-Maybodi A. Simple and green approach for photoluminescent carbon dots prepared from faba bean seeds as a luminescent probe for determination of Hg + ions and cell imaging. LUMINESCENCE 2023; 38:1929-1937. [PMID: 37591667 DOI: 10.1002/bio.4581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023]
Abstract
In this research, for the first time, a dedicated sensor was designed to detect Hg+ ions using photoluminescent carbon dots (CDs). Due to the preferred green synthesis of CDs from bio-resources, carbohydrate-rich faba bean seeds as a potential carbon precursor were applied to the synthesis of CDs. The CDs were prepared from the faba bean seeds using the hydrothermal method in an aqueous solution in the absence of substances such as an acid or base and any other additives. The synthesized CDs exhibited maximum emission intensity at 387 nm when excited at 310 nm and their luminescence quantum yield was calculated to be ~5.94%. Then, the fluorescence emission of CDs was examined in the presence of different metal ions. Results revealed that the CDs had good selectivity towards the Hg+ ions, so the fluorescence emission was significantly changed in the presence of these ions with a limit of detection (LOD) as low as 0.35 μM. Furthermore, because of their very low cytotoxicity, these CDs can be applied for cell imaging.
Collapse
Affiliation(s)
- Soheila Fallah
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | | | |
Collapse
|
4
|
Li R, Pan Y, Sun C, Lin C, Chen S, Wu Y, Fu F. A broad-applicability method for mercury speciation in various seafoods using microwave-assisted extraction and ion chromatography-inductively coupled plasma mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1802-1811. [PMID: 36943735 DOI: 10.1039/d3ay00289f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Almost all marine organisms contain both inorganic and organic mercury, and thus it is extremely important to determine mercury species in seafood to objectively and scientifically assess the health risk posed by mercury. We herein developed a broad-applicability microwave-assisted extraction method and a robust ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) method for the speciation analysis of mercury in various seafood samples including seaweeds, fishes and shellfishes. The extraction method has broad adaptability, it can be used to simultaneously extract mercury species from various seafood samples including seaweeds, fishes and shellfishes without altering the chemical species of mercury, with an extraction efficiency >90%. Especially, the seafood extract obtained with the extraction method can be directly used for the following IC-ICP-MS determination of mercury species without additional pretreatment. The IC-ICP-MS method used low-cost cation guard columns as the separation column, and has an instrument detection limit of 0.02-0.05 ng mL-1 for Hg2+, CH3Hg+ and C2H5Hg+. The developed extraction and IC-ICP-MS methods have been successfully used to determine Hg2+, CH3Hg+ and C2H5Hg+ in various seaweeds, fishes and shellfishes without the matrix effect, with a method detection limit of 2.4-6.0 ng g-1 dried weight, a recovery of 92-105%, and a relative standard deviation (RSD, n = 5) of less than or equal to 6%. The success of this study offers a reliable and universal approach for the speciation analysis of mercury in seafood, which may provide the database for objectively assessing the health risks of mercury in seafood and ensuring the safety of consumption of seafood.
Collapse
Affiliation(s)
- Ruiling Li
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yuquan Pan
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Chaochen Sun
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Chen Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Shilong Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of China Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
5
|
Mercury in Selected Abiotic and Biotic Elements in Two Lakes in Poland: Implications for Environmental Protection and Food Safety. Animals (Basel) 2023; 13:ani13040697. [PMID: 36830482 PMCID: PMC9952536 DOI: 10.3390/ani13040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Mercury, which tends to bioaccumulate and biomagnify in aquatic food webs, poses a potential health risk to wildlife and to consumers of predatory fish in particular. Its concentration in biota can be high even at low environmental concentrations. Therefore, the aim of this study was to determine mercury in both abiotic (water and sediment) and biotic elements (common reed (Phragmites australis) and fish: pike (Esox lucius), bream (Abramis brama) and roach (Rutilus rutilus)) in the context of assessing the pollution of two lakes in Poland and the safety of fish consumers. The possibility of Hg biomagnification in fish was also considered. Mercury was determined by means of cold vapor atomic absorption spectrometry (CVAAS). The concentrations of Hg in water and bottom sediments of Lake Ińsko were lower than in Lake Wisola. In the bottom sediments of both lakes, a positive correlation was found between the Hg content and organic matter. The concentration of mercury in the organs of common reed did not exceed 0.017 mg/kg dry weight (dw), and its distribution can be presented as follows: root > leaves > stems > rhizomes. In fish organs from both lakes, the average mercury content did not exceed 0.086 mg/kg of wet weight (ww) and in most cases it was the highest in pike. Higher values were only observed in the muscles and skin of roach. This indicates a lack of biomagnification in the relationships between planktivorous-predatory and benthivores-predatory fish. Based on the maximum levels of mercury in fish and the calculated parameters, i.e., estimated daily intake (EDI), target hazard quotient (THQ) and tolerable weekly intake (TWI), the muscles of the examined fish were found to be safe for consumption. The average dietary exposure to total mercury (THg) and methylmercury (MeHg) was below 0.3% of the TWI.
Collapse
|
6
|
Kumar N, Chandan NK, Bhushan S, Singh DK, Kumar S. Health risk assessment and metal contamination in fish, water and soil sediments in the East Kolkata Wetlands, India, Ramsar site. Sci Rep 2023; 13:1546. [PMID: 36707609 PMCID: PMC9883242 DOI: 10.1038/s41598-023-28801-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
East Kolkata Wetlands (EKW) is an important site for fish culture in sewage-fed areas, which are major receivers of pollutants and wastages from Kolkata. EKW is internationally important as the Ramsar site was declared on Aug 2002 with an area of 125 km2. EKW is a natural water body where wastewater-fed natural aquaculture has been practiced for more than 70 years. It is ecologically vulnerable due to the discharge of toxic waste through sewage canals from cities. Assessing the EKW to understand the inflow and load of the toxic metal (s) in fish, water, and sediments samples is essential. The field (samples collection from 13 sites) and lab (determination of toxic level of metals) based research were carried out to assess metal toxicity and health risk assessment in EKW. The levels of eighteen metals (18), namely Chromium, Vanadium, Cobalt, Manganese, Copper, Nickel, Zinc, Silver, Molybdenum, Arsenic, Selenium, Tin, Gallium, Germanium, Strontium, Cadmium, Mercury, and Lead, were determined using Inductively coupled plasma mass spectrometry (ICP-MS) in five fish tissues viz. muscle, liver, kidney, gill and brain, along with the water samples and soil sediments in 13 sampling sites. The bioaccumulation and concentration of metals in fish tissues, soil sediments, and water samples were well within the safe level concerning the recommendation of different national and international agencies except for a few metals in a few sampling sites like Cd, As, and Pb. The geoaccumulation index (Igeo) was also determined in the soil sediments, indicating moderate arsenic, selenium, and mercury contamination in a few sites. The contamination index in water was also determined in 13 sampling sites. The estimated daily intake (EDI), reference dose (RfD), target hazard quotient (THQ), slope factor and cancer risk of Cr, Mn, Co, Ni, Cu, Zn, As, Se, Cd, Pb and Hg from fish muscle were determined. Based on the results of the present investigation, it is concluded that fish consumption in the East Kolkata Wetland (EKW) is safe. The effects of bioaccumulation of metals in muscle tissue were well within the safe level for consumption as recommended by WHO/FAO.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management (NIASM), Malegaon, Baramati, Pune, 413115, India.
| | | | - Shashi Bhushan
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | - Dilip Kumar Singh
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | - Satish Kumar
- ICAR-National Institute of Abiotic Stress Management (NIASM), Malegaon, Baramati, Pune, 413115, India
| |
Collapse
|
7
|
Li Q, Li H, Li K, Gu Y, Wang Y, Yang D, Yang Y, Gao L. Specific colorimetric detection of methylmercury based on peroxidase-like activity regulation of carbon dots/Au NPs nanozyme. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129919. [PMID: 36099738 DOI: 10.1016/j.jhazmat.2022.129919] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Methylmercury (MeHg+) is one of the common organic species of mercury, and has much higher toxicity than inorganic mercury. Based on the selective enhancement of the activity of nanozyme (NA-CDs/AuNPs) by MeHg+, a novel colorimetric nanoprobe for MeHg+ assay is proposed. The noradrenaline-based carbon dots (NA-CDs) as the reducing agent was applied to prepare the NA-CDs/AuNPs. The formation of gold amalgamation (Au@HgNPs) between nanozyme and MeHg+ allows to simultaneously accelerate the electron transfer from Au and Hg to NA-CDs and the generation of radicals (i.e. ∙OH, ∙O2- and ∙CH3). The NA-CDs/AuNPs has an outstanding anti-interference performance even in the presence of different mercury. Further density functionality theory (DFT) calculations revealed that the formation of Au@HgNPs via MeHg+ contributes to the significantly lowered activation energy, resulting in the peroxidase-like activity generation and acceleration. This leads to rapid (10 min) and specific colorimetric detection of MeHg+ with the detection limit of 0.06 μg L-1. This introduces a novel method for simple and sensitive detection of MeHg+, giving a new horizon for the assay of organometallic compounds.
Collapse
Affiliation(s)
- Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Hong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 650093, Yunnan, China
| | - Kexiang Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yi Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yijie Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Lei Gao
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, Yunan, China
| |
Collapse
|
8
|
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023; 219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Chemical and biological contaminants are of primary concern in ensuring seafood safety. Rapid detection of such contaminants is needed to keep us safe from being affected. For over three decades, immunoassay (IA) technology has been used for the detection of contaminants in seafood products. However, limitations inherent to antibody generation against small molecular targets that cannot elicit an immune response, along with the instability of antibodies under ambient conditions greatly limit their wider application for developing robust detection and monitoring tools, particularly for non-biomedical applications. As an alternative, aptamer-based biosensors (aptasensors) have emerged as a powerful yet robust analytical tool for the detection of a wide range of analytes. Due to the high specificity of aptamers in recognising targets ranging from small molecules to large proteins and even whole cells, these have been suggested to be viable molecular recognition elements (MREs) in the development of new diagnostic and biosensing tools for detecting a wide range of contaminants including heavy metals, antibiotics, pesticides, pathogens and biotoxins. In this review, we discuss the recent progress made in the field of aptasensors for detection of contaminants in seafood products with a view of effectively managing their potential human health hazards. A critical outlook is also provided to facilitate translation of aptasensors from academic laboratories to the mainstream seafood industry and consumer applications.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Vijay Kumar Aralappanavar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Souvik Pal
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
9
|
Esmaeilbeigi M, Behzadi Tayemeh M, Johari SA, Ghorbani F, Sourinejad I, Yu IJ. In silico modeling of the antagonistic effect of mercuric chloride and silver nanoparticles on the mortality rate of zebrafish (Danio rerio) based on response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54733-54744. [PMID: 35306655 DOI: 10.1007/s11356-022-19693-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, in silico modeling was designed to examine the antagonistic effect of mercuric chloride (HgCl2) and silver nanoparticles (AgNPs) on the mortality rate of zebrafish (Danio rerio) based on response surface methodology (RSM). Adult zebrafish (Danio rerio) with an average weight of 0.75 ± 0.16 g were used in this study. An interaction between HgCl2 and AgNPs was evaluated using DLS, TEM, and EDX mapping. In addition, RSM was applied to determine and predict the mortality rate of zebrafish induced by HgCl2 in the presence of non-lethal concentrations of AgNPs and to optimize dependent and independent variables. Following exposure to HgCl2, in vitro observations showed an increase in the hydrodynamic size of AgNPs and the formation of irregular nanoparticles. EDX mapping analysis also demonstrated the deposition of Hg ions on the surface of AgNPs, indicating the interaction between HgCl2 and AgNPs (i.e., the amalgamation of Hg and AgNPs). Moreover, in silico and in vivo findings illustrated that the mortality rate of zebrafish increased significantly in a concentration-dependent manner; however, the mortality rate reduced greatly in the presence of AgNPs during 96-h exposure. Statistically significant correlation and regression were also observed for the mortality rate between the actual and predicted values based on the ANOVA results, showing that the proposed model fits well. The most critical conditions of mortality rate were occurred by HgCl2 concentration of 0.23 mg L-1 and AgNP concentration of 0.04 mg L-1 that yielding maximum fish mortality rate of 96.541%. Additionally, the obtained value for model desirability was equal to 1.000 (i.e., the highest possible value). In conclusion, this statistical model could accurately describe the relationship between independent and dependent variables, and consequently boost substantially the experimental design of ecotoxicological studies by reducing the number of model organisms, toxic and chemical substances, time, and budget.
Collapse
Affiliation(s)
- Milad Esmaeilbeigi
- Department of Marine Sciences, Tarbiat Modares University, Mazandaran, Noor, Iran
| | - Mohammad Behzadi Tayemeh
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, P.O. Box 416, 66177-15175, Sanandaj, Kurdistan, Iran
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, P.O. Box 416, 66177-15175, Sanandaj, Kurdistan, Iran.
| | - Farshid Ghorbani
- Department of Environment, Faculty of Natural Resources, University of Kurdistan, 6617715177, Sanandaj, Iran
| | - Iman Sourinejad
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Il Je Yu
- HCT CO., LTD, Icheon, Republic of Korea
| |
Collapse
|
10
|
Ali S, Mansha M, Baig N, Khan SA. Recent Trends and Future Perspectives of Emergent Analytical Techniques for Mercury Sensing in Aquatic Environments. CHEM REC 2022; 22:e202100327. [PMID: 35253977 DOI: 10.1002/tcr.202100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 11/10/2022]
Abstract
Environmental emissions of mercury from industrial waste and natural sources, even in trace amounts, are toxic to organisms and ecosystems. However, industrial-scale mercury detection is limited by the high cost, low sensitivity/specificity, and poor selectivity of the available analytical tools. This review summarizes the key sensors for mercury detection in aqueous environments: colorimetric-, electrochemical-, fluorescence-, and surface-enhanced Raman spectroscopy-based sensors reported between 2014-2021. It then compares the performances of these sensors in the determination of inorganic mercury (Hg2+ ) and methyl mercury (CH3 Hg+ ) species in aqueous samples. Mercury sensors for aquatic applications still face serious challenges in terms of difficult deployment in remote areas and low robustness, reliability, and selectivity in harsh environments. We provide future perspectives on the selective detection of organomercury species, which are especially toxic and reactive in aquatic environments. This review is intended as a valuable resource for scientists in the field of mercury sensing.
Collapse
Affiliation(s)
- Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
11
|
Tarasi S, Ramazani A, Morsali A, Hu ML. Highly Sensitive Colorimetric Naked-Eye Detection of Hg II Using a Sacrificial Metal-Organic Framework. Inorg Chem 2021; 60:13588-13595. [PMID: 34435495 DOI: 10.1021/acs.inorgchem.1c01894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study has developed a specific, easy, and novel approach to designing a sacrificial metal-organic framework (MOF) that can detect and measure the amount of Hg2+ in aqueous and nonaqueous solutions using the naked eye. The functionalized [Zn(oba)(RL3)0.5]n·1.5DMF (TMU-59) provides the ability of simple visual assessment or colorimetric readout without sophisticated analytical equipment. Because of the special interaction with Hg2+, degradation of the structure of this unique MOF causes the solution to change color from colorless to a pink that is easily recognizable to the naked eye. The presence of a methyl group plays a major role in naked-eye detection by a qualitative sensor. Furthermore, this qualitative sensor data for the production of a simple, instant, and portable red, green, and blue (RGB)-based quantitative sensor were used to determine the concentration of Hg2+ in different specimens. As a turn-off fluorescence sensor, this unique structure is also capable of detecting Hg2+ at very low concentrations (the limit of detection is 0.16 ppb). To the best of our knowledge, TMU-59 is the first MOF-based naked-eye sensor that can successfully and specifically display the presence of Hg2+ through a major color change.
Collapse
Affiliation(s)
- Somayeh Tarasi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Ali Ramazani
- Department of Biotechnology, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran.,Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.,Department of Agronomy, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran.,Department of Animal Science, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Mao-Lin Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
12
|
Kappen J, Bharathi S, John SA. Unusual Reactivity of Graphene Quantum Dot-Wrapped Silver Nanoparticles with Hg(II): Spontaneous Growth of Hg Flowers and Their Electrocatalytic Activity. Inorg Chem 2021; 60:8200-8210. [PMID: 34008969 DOI: 10.1021/acs.inorgchem.1c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The galvanic reaction (GR) between a graphene quantum dot (GQD)-stabilized AgNP (Ag-GQD)-modified glassy carbon (GC) surface and Hg(II) leads to complete dissolution of AgNPs within 15 min and subsequent growth of Hg(0) as a "flower" on the GQD surface. This is unusual because generally the GR of bulk Ag/AgNPs with Hg(II) leads to the formation of a Hg-Ag amalgam/core shell structure. The appearance of peaks at 99.9 and 103.9 eV in X-ray photoelectron spectroscopy confirms Hg(0) on GQDs, whereas the disappearance of a peak at 370 eV indicates complete dissolution of Ag(0). When 200 ppm Hg(II) interacts with Ag-GQDs for 10 min, coalescence of AgNPs takes place along with the formation of Hg(0) petals separately. However, Hg(0) is grown as a flower with 2 μm size, and complete dissolution of AgNPs occurs subsequently after 15 min. The reason for anti-amalgamation is the direct deposition of Hg(0) by the available oxygen functional groups, followed by its strong adsorption on the graphene surface of GQDs. The subsequent growth of Hg(0) as a flower is due to the GR between AgNPs and Hg(II). Interestingly, the Hg flower-GQD-modified GC electrode acts as a good electrocatalyst toward H2O2 reduction by decreasing its overpotential by 150 mV in contrast to GC/Ag-GQDs.
Collapse
Affiliation(s)
- Jincymol Kappen
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624 302 Dindigul, Tamilnadu, India
| | - Sinduja Bharathi
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624 302 Dindigul, Tamilnadu, India
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624 302 Dindigul, Tamilnadu, India
| |
Collapse
|
13
|
Huang L, Li P, Lin C, Wu Y, Chen Z, Fu F. DNA-templated fluorescent silver nanoclusters on-off switch for specific and sensitive determination of organic mercury in seafood. Biosens Bioelectron 2021; 183:113217. [PMID: 33862395 DOI: 10.1016/j.bios.2021.113217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/14/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Organic mercury including methyl-mercury and ethyl-mercury (CH3Hg+ and C2H5Hg+) has high toxicity and bio-accumulation, and thus is easy to generate bio-amplification in food chain. Hence, the specific detection of organic mercury has great significance for objectively assessing the health risk of mercury in seafood. We herein designed an aptamer (AS-T7), which consists of a silver nanoclusters (AgNCs) scaffold sequence (AS) and a T-rich sequence (AT7), for simultaneously synthetizing DNA-templated AgNCs and recognizing organic mercury, and further developed a label-free fluorescent method for the sensitive and specific determination of organic mercury (CH3Hg+ and C2H5Hg+ total concentration) by using DNA-templated AgNCs as signal. Without organic mercury, Ag+ in the mixture of aptamer and Ag+ was bond on AS of aptamer to form AS-templated AgNCs after reduction, and thus emitted strong fluorescence. Whereas, in the presence of organic mercury, CH3Hg+/C2H5Hg+ was bond on AT7 of aptamer to generate photoinduced electron transfer (PET) between CH3Hg+/C2H5Hg+ and AS-templated AgNCs, and thus results in fluorescence quenching of AS-templated AgNCs. The fluorescent method could be used to rapidly detect organic mercury with a detection limit of 5.0 nM (i.e. 1.01 ng Hg/g), which meets the U.S. EPA standard of 0.3 mg/kg (wet). The method was successfully used to detect organic mercury in water and fish muscle with a recovery of 96%-104% and an inter-days RSD (n = 5) < 7%. The success of the study promised a reliable method for rapid and specific detection of organic mercury in environmental and biological samples.
Collapse
Affiliation(s)
- Lin Huang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Peipei Li
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Chen Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of China Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Zhiqiang Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
14
|
Deng L, Zhai J, Du X, Xie X. Ionophore-Based Ion-Selective Nanospheres Based on Monomer-Dimer Conversion in the Near-Infrared Region. ACS Sens 2021; 6:1279-1285. [PMID: 33566586 DOI: 10.1021/acssensors.0c02577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here, we report ion-selective nanospheres with readout in the near-infrared (NIR) region in both fluorescence and absorbance modes. The nanospheres rely on an ionophore-mediated monomer-dimer conversion of an NIR transducer, DTTC. The DTTC monomer in the nanospheres emits fluorescence around 820 nm, while the dimer in the aqueous environment generates strong blue-shifted emission around 660 nm. With a lead ionophore, an unprecedented lower detection limit of 3 pM for Pb2+ was achieved, allowing us to determine Pb2+ levels in river water without diluting the sample. Also, the Cu2+-selective nanospheres showed a detection limit of 5 nM. Taking advantage of the biologically desired NIR window, blood potassium concentrations were also determined without a complicated sample pretreatment. The sensing process was explained with a theoretical model. The detection range was found finely adjustable by the amount of nanospheres used. Therefore, the nanospheres formed a highly selective, sensitive, versatile, and rapid analytical platform for metal-ion sensing.
Collapse
Affiliation(s)
- Li Deng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinfeng Du
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Mao MX, Zheng R, Peng CF, Wei XL. DNA-Gold Nanozyme-Modified Paper Device for Enhanced Colorimetric Detection of Mercury Ions. BIOSENSORS-BASEL 2020; 10:bios10120211. [PMID: 33353224 PMCID: PMC7766257 DOI: 10.3390/bios10120211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
In this work, a paper device consisted of a patterned paper chip, wicking pads, and a base was fabricated. On the paper chip, DNA–gold nanoparticles (DNA–AuNPs) were deposited and Hg2+ ions could be adsorbed by the DNA–AuNPs. The formed DNA–AuNP/Hg2+ nanozyme could catalyze the tetramethylbenzidine (TMB)–H2O2 chromogenic reaction. Due to the wicking pads, a larger volume of Hg2+ sample could be applied to the paper device for Hg2+ detection and therefore the color response could be enhanced. The paper device achieved a cut-off value of 50 nM by the naked eye for Hg2+ under optimized conditions. Moreover, quantitative measurements could be implemented by using a desktop scanner and extracting grayscale values. A linear range of 50–2000 nM Hg2+ was obtained with a detection limit of 10 nM. In addition, the paper device could be applied in the detection of environmental water samples with high recoveries ranging from 85.7% to 105.6%. The paper-device-based colorimetric detection was low-cost, simple, and demonstrated high potential in real-sample applications.
Collapse
Affiliation(s)
- Min-Xin Mao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Rong Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Chi-Fang Peng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- Correspondence:
| | - Xin-Lin Wei
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China;
| |
Collapse
|
16
|
He Z, Yin H, Chang CC, Wang G, Liang X. Interfacing DNA with Gold Nanoparticles for Heavy Metal Detection. BIOSENSORS 2020; 10:E167. [PMID: 33172098 PMCID: PMC7694790 DOI: 10.3390/bios10110167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
The contamination of heavy metals (e.g., Hg, Pb, Cd and As) poses great risks to the environment and human health. Rapid and simple detection of heavy metals of considerable toxicity in low concentration levels is an important task in biological and environmental analysis. Among the many convenient detection methods for heavy metals, DNA-inspired gold nanoparticles (DNA-AuNPs) have become a well-established approach, in which assembly/disassembly of AuNPs is used for colorimetric signaling of the recognition event between DNA and target heavy metals at the AuNP interface. This review focuses on the recent efforts of employing DNA to manipulate the interfacial properties of AuNPs, as well as the major advances in the colorimetric detection of heavy metals. Beginning with the introduction of the fundamental aspects of DNA and AuNPs, three main strategies of constructing DNA-AuNPs with DNA binding-responsive interface are discussed, namely, crosslinking, electrostatic interaction and base pair stacking. Then, recent achievements in colorimetric biosensing of heavy metals based on manipulation of the interface of DNA-AuNPs are surveyed and compared. Finally, perspectives on challenges and opportunities for future research in this field are provided.
Collapse
Affiliation(s)
- Zhiyu He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Z.H.); (H.Y.); (X.L.)
| | - Huiling Yin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Z.H.); (H.Y.); (X.L.)
| | - Chia-Chen Chang
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Z.H.); (H.Y.); (X.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Z.H.); (H.Y.); (X.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
17
|
Analytical methods for mercury speciation, detection, and measurement in water, oil, and gas. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116016] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Courrol LC, Vallim MA. Spectroscopic Analysis of Chicken Meat Contaminated with E. coli, Salmonella, and Campylobacter. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01888-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
López-Alled CM, Murfin LC, Kociok-Köhn G, James TD, Wenk J, Lewis SE. Colorimetric detection of Hg 2+ with an azulene-containing chemodosimeter via dithioacetal hydrolysis. Analyst 2020; 145:6262-6269. [PMID: 32926021 DOI: 10.1039/d0an01404d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Azulene is a bicyclic aromatic chromophore that absorbs in the visible region. Its absorption maximum undergoes a hypsochromic shift if a conjugated electron-withdrawing group is introduced at the C1 position. This fact can be exploited in the design of a colorimetric chemodosimeter that functions by the transformation of a dithioacetal to the corresponding aldehyde upon exposure to Hg2+ ions. This chemodosimeter exhibits good chemoselectivity over other metal cations, and responds with an unambiguous colour change clearly visible to the naked eye. Its synthesis is concise and its ease of use makes it appropriate in resource-constrained environments, for example in determing mercury content of drinking water sources in the developing world.
Collapse
Affiliation(s)
- Carlos M López-Alled
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Di Bella C, Traina A, Giosuè C, Carpintieri D, Lo Dico GM, Bellante A, Del Core M, Falco F, Gherardi S, Uccello MM, Ferrantelli V. Heavy Metals and PAHs in Meat, Milk, and Seafood From Augusta Area (Southern Italy): Contamination Levels, Dietary Intake, and Human Exposure Assessment. Front Public Health 2020; 8:273. [PMID: 32733834 PMCID: PMC7359620 DOI: 10.3389/fpubh.2020.00273] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Abstract
Heavy metals and PAHs were measured in animal foodstuffs from Augusta-Melilli-Priolo area in order to evaluate the potential human health risk associated to their consumption. All heavy metals were detected in seafood products while most of them were 1 for baby, children and teenagers, indicating a non-carcinogenic risk for these age categories by seafood ingestion. The CRAs overcame 1*10-5 for almost age categories (except "baby") and for elderly, by seafood and beef ingestions respectively. Moreover, the MOE for PAHs showed a certain cancer risk for "baby" related to cow milk ingestion.
Collapse
Affiliation(s)
- Calogero Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia (IZSSi), Palermo, Italy
| | - Anna Traina
- National Research Council of Italy-Institute of Anthropic Impacts and Sustainability in Marine Environment (IAS-CNR), Palermo, Italy
| | - Cristina Giosuè
- National Research Council of Italy-Institute of Anthropic Impacts and Sustainability in Marine Environment (IAS-CNR), Palermo, Italy
| | - Davide Carpintieri
- Istituto Zooprofilattico Sperimentale della Sicilia (IZSSi), Palermo, Italy
| | | | - Antonio Bellante
- National Research Council of Italy-Institute of Anthropic Impacts and Sustainability in Marine Environment (IAS-CNR), Palermo, Italy
| | - Marianna Del Core
- National Research Council of Italy-Institute of Anthropic Impacts and Sustainability in Marine Environment (IAS-CNR), Palermo, Italy
| | - Francesca Falco
- National Research Council of Italy- Institute for Biological Resources and Marine Biotechnology (IRBIM-CNR), Mazara Del Vallo, Italy
| | - Serena Gherardi
- National Research Council of Italy-Institute of Marine Science (ISMAR-CNR), Naples, Italy
| | | | | |
Collapse
|
21
|
Oh S, Jeon J, Jeong J, Park J, Oh ET, Park HJ, Lee KH. Fluorescent Detection of Methyl Mercury in Aqueous Solution and Live Cells Using Fluorescent Probe and Micelle Systems. Anal Chem 2020; 92:4917-4925. [PMID: 32153189 DOI: 10.1021/acs.analchem.9b05025] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It is highly challenging to develop fast and sensitive fluorescent methods for monitoring organic mercury in purely aqueous solutions as well as live cells. Especially, selective fluorescent detection of methylmercury over inorganic mercury ions has not been reported. We developed a fast and sensitive fluorescent detection method for Hg2+ ions as well as methylmercury using an amino acid-based fluorescent probe (1) and SDS micelles. The fluorescent probe in SDS micelles detected sensitively and selectively Hg2+ ions and methylmercury among 16 metal ions in purely aqueous solution by the enhancement of the red emission at 575 nm, and the detection of methylmercury was completed within 1 min. The probe in SDS micelles with EDTA showed highly sensitive and selective turn on detection for methylmercury over Hg2+. The limit of detection was 9.1 nM for Hg2+ (1.8 ppb, R2 = 0.989) and 206 nM for CH3Hg+ (R2 = 0.997). 1 rapidly penetrated live cells and detected intracellular Hg2+ ions as well as CH3Hg+ by the enhancement of both red emissions and green emissions. Subsequent treatment of EDTA into the cell confirmed the selective detection of methylmercury in the cells. The present work indicated that the fluorescent probe with micelle systems provided a fast, sensitive, and selective detection method for monitoring inorganic mercury as well as methyl mercury.
Collapse
Affiliation(s)
- Semin Oh
- Bioorganic Chemistry Laboratory, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Jongyong Jeon
- Bioorganic Chemistry Laboratory, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Jaewook Jeong
- Bioorganic Chemistry Laboratory, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Joohee Park
- Bioorganic Chemistry Laboratory, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 402-751, South Korea
| | - Heon Joo Park
- Department of Microbiology, College of Medicine, Inha University, Incheon 402-751, South Korea
| | - Keun-Hyeung Lee
- Bioorganic Chemistry Laboratory, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, South Korea
| |
Collapse
|
22
|
Li YK, Yang T, Chen ML, Wang JH. Recent Advances in Nanomaterials for Analysis of Trace Heavy Metals. Crit Rev Anal Chem 2020; 51:353-372. [PMID: 32182101 DOI: 10.1080/10408347.2020.1736505] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In an effort to achieve high sensitivity analysis methods for ultra-trace levels of heavy metals, numerous new nanomaterials are explored for the application in preconcentration processes and sensing systems. Nanomaterial-based methods have proven to be effective for selective analysis and speciation of heavy metals in combination with spectrometric techniques. This review outlined the different types of nanomaterials applied in the field of heavy metal analysis, and concentrated on the latest developments in various new materials. In particular, the functionalization of traditional materials and the exploitation of bio-functional materials could increase the specificity to target metals. The hybridization of multiple materials could improve material properties, to build novel sensor system or achieve detection-removal integration. Finally, we discussed the future perspectives of nanomaterials in the heavy metal preconcentration and sensor design, as well as their respective advantages and challenges. Despite impressive progress and widespread attention, the development of new nanomaterials and nanotechnology is still hampered by numerous challenges, particularly in the specificity to the target and the anti-interference performance in complex matrices.
Collapse
Affiliation(s)
- Yi-Kun Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China.,Analytical and Testing Center, Northeastern University, Shenyang, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
23
|
Chen Z, Li P, Cheng X, Yang W, Wu Y, Chen Q, Fu F. Multicolor Aptasensor Based on DNA-Induced Au-Ag Nanorods for Simultaneous and Visual Detection of Inorganic and Organic Mercury. ACS OMEGA 2019; 4:15112-15119. [PMID: 31552356 PMCID: PMC6751705 DOI: 10.1021/acsomega.9b01994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Compared to inorganic mercury (Hg2+), methyl-mercury (CH3Hg+) and ethyl-mercury (C2H5Hg+) (organic mercury) not only have a much stronger toxicity but also are more easily accumulated by marine organisms to produce bioamplification. Therefore, the simultaneously onsite detection of Hg2+ and organic mercury is of great significance to ensure the safety of seafood, and it is also a hard challenge. We designed a T-rich aptamer, HT7, for specifically recognizing Hg2+ and organic mercury and developed a multicolor aptasensor for simultaneous discrimination and detection of Hg2+ and organic mercury with only bare-eye observation using HT7 as a recognition probe and gold nanorods (AuNRs) as a signal. In the presence of Hg2+ and Ag+, Hg2+ preferentially and specifically bind with HT7 immobilized on AuNRs surface and induce the formation of a monolayer Ag/Hg amalgam on the AuNRs surface after reduction, resulting in a change in color from orange to faint purple and a corresponding shift in the absorption peak from 820 to 730 nm in the solution. However, in the presence of CH3Hg+ or C2H5Hg+ and Ag+, CH3Hg+ or C2H5Hg+ preferentially bind with HT7 immobilized on the AuNRs surface and induce the formation of a monolayer Ag0 on the AuNRs surface after reduction, which results in the change in color from orange to atrovirens and the corresponding shift in the absorption peak shift from 820 to 670 nm in the solution. Thus, the inorganic and organic mercury (total of CH3Hg+ and C2H5Hg+) can be specifically discriminated and detected by only bare-eye observation. The method can be used to simultaneously detect inorganic and organic mercury in seawater by the bare-eye observation with a visual detection limit of 2.0 ppm for Hg2+ and 10.0 ppm for organic mercury. The success of this study is a useful enlightenment to develop an instrument-free method for an onsite detection of trace inorganic and organic mercury in environment by a bare-eye observation, although the sensitivity of the method is relatively low.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Key
Laboratory for Analytical Science of Food Safety and Biology of MOE,
Fujian Provincial Key Lab of Analysis and Detection for Food Safety,
College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Peipei Li
- Key
Laboratory for Analytical Science of Food Safety and Biology of MOE,
Fujian Provincial Key Lab of Analysis and Detection for Food Safety,
College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xian Cheng
- Key
Laboratory for Analytical Science of Food Safety and Biology of MOE,
Fujian Provincial Key Lab of Analysis and Detection for Food Safety,
College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Weijuan Yang
- State
Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops,
College of Plant Protection, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
| | - Yongning Wu
- China
National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Qingai Chen
- Department
of Tourism and Hotel Management, Fujian
Business University, Fuzhou 350012, P. R. China.
| | - FengFu Fu
- Key
Laboratory for Analytical Science of Food Safety and Biology of MOE,
Fujian Provincial Key Lab of Analysis and Detection for Food Safety,
College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
24
|
Donati P, Moglianetti M, Veronesi M, Prato M, Tatulli G, Bandiera T, Pompa PP. Nanocatalyst/Nanoplasmon‐Enabled Detection of Organic Mercury: A One‐Minute Visual Test. Angew Chem Int Ed Engl 2019; 58:10285-10289. [DOI: 10.1002/anie.201905669] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Paolo Donati
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
- Department of Chemistry and Industrial ChemistryUniversity of Genova Via Dodecaneso 31 16146 Genova Italy
| | - Mauro Moglianetti
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
- Nanobiointeractions&NanodiagnosticsCenter for Biomolecular Nanotechnologies (IIT) Via Barsanti 73010 Arnesano Italy
| | - Marina Veronesi
- D3-PharmaChemistryIstituto Italiano di Tecnologia (IIT) Genova Italy
| | - Mirko Prato
- Materials Characterization FacilityIstituto Italiano di Tecnologia (IIT) Genova Italy
| | - Giuseppina Tatulli
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
| | - Tiziano Bandiera
- D3-PharmaChemistryIstituto Italiano di Tecnologia (IIT) Genova Italy
| | - Pier Paolo Pompa
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
- Nanobiointeractions&NanodiagnosticsCenter for Biomolecular Nanotechnologies (IIT) Via Barsanti 73010 Arnesano Italy
| |
Collapse
|
25
|
Donati P, Moglianetti M, Veronesi M, Prato M, Tatulli G, Bandiera T, Pompa PP. Nanocatalyst/Nanoplasmon‐Enabled Detection of Organic Mercury: A One‐Minute Visual Test. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paolo Donati
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
- Department of Chemistry and Industrial ChemistryUniversity of Genova Via Dodecaneso 31 16146 Genova Italy
| | - Mauro Moglianetti
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
- Nanobiointeractions&NanodiagnosticsCenter for Biomolecular Nanotechnologies (IIT) Via Barsanti 73010 Arnesano Italy
| | - Marina Veronesi
- D3-PharmaChemistryIstituto Italiano di Tecnologia (IIT) Genova Italy
| | - Mirko Prato
- Materials Characterization FacilityIstituto Italiano di Tecnologia (IIT) Genova Italy
| | - Giuseppina Tatulli
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
| | - Tiziano Bandiera
- D3-PharmaChemistryIstituto Italiano di Tecnologia (IIT) Genova Italy
| | - Pier Paolo Pompa
- Nanobiointeractions&NanodiagnosticsIstituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
- Nanobiointeractions&NanodiagnosticsCenter for Biomolecular Nanotechnologies (IIT) Via Barsanti 73010 Arnesano Italy
| |
Collapse
|
26
|
Bahta M, Ahmed N. A novel 1,8-naphthalimide as highly selective naked-eye and ratiometric fluorescent sensor for detection of Hg2+ ions. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Bala Subramaniyan S, Veerappan A. Water soluble cadmium selenide quantum dots for ultrasensitive detection of organic, inorganic and elemental mercury in biological fluids and live cells. RSC Adv 2019; 9:22274-22281. [PMID: 35519466 PMCID: PMC9066711 DOI: 10.1039/c9ra04753k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/12/2019] [Indexed: 01/01/2023] Open
Abstract
CdSe QDs fluorescence is highly selective and sensitive to mercury.
Collapse
Affiliation(s)
- Siva Bala Subramaniyan
- Department of Chemistry
- School of Chemical & Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| | - Anbazhagan Veerappan
- Department of Chemistry
- School of Chemical & Biotechnology
- SASTRA Deemed University
- Thanjavur – 613401
- India
| |
Collapse
|
28
|
Tauanov Z, Tsakiridis PE, Mikhalovsky SV, Inglezakis VJ. Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 224:164-171. [PMID: 30041095 DOI: 10.1016/j.jenvman.2018.07.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/07/2018] [Accepted: 07/15/2018] [Indexed: 06/08/2023]
Abstract
Coal fly ash-derived zeolites have attracted considerable interest in the last decade due to their use in several environmental applications such as the removal of dyes and heavy metals from aqueous solutions. In this work, coal fly ash-derived zeolites and silver nanoparticles-impregnated zeolites (nanocomposites) were synthesized and characterized by TEM/EDX, SEM/EDX, XRD, XRF, porosimetry (BET), particle size analysis (PSA) and zeta potential measurements. The synthesized materials were used for the removal of Hg2+ from aqueous solutions. The results demonstrated that nanocomposites can remove 99% of Hg2+, up to 10% and 90% higher than the removal achieved by the zeolite and the parent fly ash, respectively. Leaching studies further demonstrated the superiority of the nanocomposite over the parent materials. The Hg2+ removal mechanism is complex, involving adsorption, surface precipitation and amalgamation.
Collapse
Affiliation(s)
- Z Tauanov
- Environmental Science and Technology Group (ESTg), Chemical Engineering Department, School of Engineering, Nazarbayev University, Astana, 010000, Kazakhstan
| | - P E Tsakiridis
- School of Mining and Metallurgical Engineering, National Technical University of Athens, Athens, Greece
| | - S V Mikhalovsky
- School of Pharmacy and Biomolecular Sciences, University of Brighton, UK
| | - V J Inglezakis
- Environmental Science and Technology Group (ESTg), Chemical Engineering Department, School of Engineering, Nazarbayev University, Astana, 010000, Kazakhstan.
| |
Collapse
|
29
|
Xie ZJ, Bao XY, Peng CF. Highly Sensitive and Selective Colorimetric Detection of Methylmercury Based on DNA Functionalized Gold Nanoparticles. SENSORS 2018; 18:s18082679. [PMID: 30111699 PMCID: PMC6111283 DOI: 10.3390/s18082679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
A new colorimetric detection of methylmercury (CH3Hg+) was developed, which was based on the surface deposition of Hg enhancing the catalytic activity of gold nanoparticles (AuNPs). The AuNPs were functionalized with a specific DNA strand (HT7) recognizing CH3Hg+, which was used to capture and separate CH3Hg+ by centrifugation. It was found that the CH3Hg+ reduction resulted in the deposition of Hg onto the surface of AuNPs. As a result, the catalytic activity of the AuNPs toward the chromogenic reaction of 3,3,5,5-tetramethylbenzidine (TMB)-H2O2 was remarkably enhanced. Under optimal conditions, a limit of detection of 5.0 nM was obtained for CH3Hg+ with a linear range of 10–200 nM. We demonstrated that the colorimetric method was fairly simple with a low cost and can be conveniently applied to CH3Hg+ detection in environmental samples.
Collapse
Affiliation(s)
- Zheng-Jun Xie
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xian-Yu Bao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Shenzhen Academy of Inspection and Quarantine, Shenzhen 518045, China.
| | - Chi-Fang Peng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
30
|
Zhang Y, Guo S, Jiang Z, Mao G, Ji X, He Z. Rox-DNA Functionalized Silicon Nanodots for Ratiometric Detection of Mercury Ions in Live Cells. Anal Chem 2018; 90:9796-9804. [PMID: 30014694 DOI: 10.1021/acs.analchem.8b01574] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A ratiometric fluorescent sensor for mercury ions (Hg2+) has been constructed via covalent functionalization of silicon nanodot (SiND) with Hg2+-specific 6-carboxy-X-rhodamine (Rox)-tagged DNA. For the Rox-DNA functionalized SiND, the red fluorescence of Rox can be quenched by the blue-emitting SiND in the presence of Hg2+ due to structural change in DNA, which serves as the response signal. Meawhile, the fluorescence of SiND is insensitive to Hg2+ and acts as the reference signal. The wavelength difference in the optimal emission peak is as large as 190 nm between SiND (422 nm) and Rox (612 nm), which can efficaciously exclude the interference of the two emission peaks, and facilitates dual-color visualization of Hg2+ ions. The biofunctionalization of SiND improves the acid-base stability of SiND significantly, which is favorable for its application in the intracellular environment. Accordingly, a sensitive, simple, precise and rapid method for tracing Hg2+ was proposed. The limit of detection and precision of this method for Hg2+ was 9.2 nM and 8.8% (50 nM, n = 7), respectively. The increase of Hg2+ concentration in the range of 10-1500 nM was in accordance with linearly increase of the I422/ I612 ratio. As for practical application, the recoveries in spiked human urine and serum samples were in the range of 81-107%. Moreover, this fluorescent nanosensor was utilized to the ratiometric detection of Hg2+ in HeLa cells.
Collapse
Affiliation(s)
- Yanan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Shan Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Zhuoran Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Guobin Mao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
31
|
Chen Z, Wang X, Cheng X, Yang W, Wu Y, Fu F. Specifically and Visually Detect Methyl-Mercury and Ethyl-Mercury in Fish Sample Based on DNA-Templated Alloy Ag-Au Nanoparticles. Anal Chem 2018; 90:5489-5495. [PMID: 29601183 DOI: 10.1021/acs.analchem.8b01100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Methyl-mercury (CH3Hg+) and ethyl-mercury (C2H5Hg+) have much higher toxicity than Hg2+ and can be more easily accumulated by organisms to form severe bioamplification. Hence, the specific and on-site detection of CH3Hg+ and C2H5Hg+ in seafood is of great significance and a hard challenge. We herein designed two T-rich aptamers (HT5 and HT7) for specifically recognizing CH3Hg+ and the total of CH3Hg+ and C2H5Hg+, respectively. In the presence of all Au3+, Ag+, and T-rich aptamer, CH3Hg+ and C2H5Hg+ specifically and preferentially bind with aptamer and thus induced the formation of alloy Ag-Au nanoparticles after reduction, which led to the color change in solution. This provided a sensing platform for the instrument-free visual discrimination and detection of CH3Hg+ and C2H5Hg+. By using HT5 as probe, the method can be used to detect as low as 5.0 μM (equivalent to 1.0 μg Hg/g) of CH3Hg+ by bare eye observation and 0.5 μM (equivalent to 100 ng Hg/g) of CH3Hg+ by UV-visible spectrometry. By using HT7 as probe, the method can be used to detect the total concentration of CH3Hg+ and C2H5Hg+ with a visual detection limit of 5.0 μM (equivalent to 1.0 μg Hg/g) and a UV-visible spectrometry detection limit of 0.6 μM (equivalent to 120 ng Hg/g). The proposed method has been successfully used to detect CH3Hg+ and C2H5Hg+ in fish muscle samples with a recovery of 101-109% and a RSD ( n = 6) < 8%. The success of this study provided a potential method for the specific and on-site detection of CH3Hg+ and C2H5Hg+ in seafood by only bare eye observation.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Xusheng Wang
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Xian Cheng
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Weijuan Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou 350002 , P.R. China
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment , Beijing 100022 , China
| | - FengFu Fu
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
32
|
Chen Y, Chen L, Wang X, Xi Z, Wu Y, Fu F. DNA binding in combination with capillary electrophoresis and inductively coupled plasma mass spectrometry for the rapid speciation analysis of mercury. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201700015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yiquan Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE; Fujian Provincial Key Lab of Analysis and Detection for Food Safety; College of Chemistry; Fuzhou University; Fuzhou Fujian China
| | - Lian Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE; Fujian Provincial Key Lab of Analysis and Detection for Food Safety; College of Chemistry; Fuzhou University; Fuzhou Fujian China
| | - Xusheng Wang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE; Fujian Provincial Key Lab of Analysis and Detection for Food Safety; College of Chemistry; Fuzhou University; Fuzhou Fujian China
| | - Zhiming Xi
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE; Fujian Provincial Key Lab of Analysis and Detection for Food Safety; College of Chemistry; Fuzhou University; Fuzhou Fujian China
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment; Beijing China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE; Fujian Provincial Key Lab of Analysis and Detection for Food Safety; College of Chemistry; Fuzhou University; Fuzhou Fujian China
| |
Collapse
|
33
|
Chatterjee A, Banerjee M, Khandare DG, Gawas RU, Mascarenhas SC, Ganguly A, Gupta R, Joshi H. Aggregation-Induced Emission-Based Chemodosimeter Approach for Selective Sensing and Imaging of Hg(II) and Methylmercury Species. Anal Chem 2017; 89:12698-12704. [DOI: 10.1021/acs.analchem.7b02663] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amrita Chatterjee
- Department
of Chemistry, and ‡Department of Biological Sciences, BITS, Pilani, Goa Campus, NH
17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Mainak Banerjee
- Department
of Chemistry, and ‡Department of Biological Sciences, BITS, Pilani, Goa Campus, NH
17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Dipratn G. Khandare
- Department
of Chemistry, and ‡Department of Biological Sciences, BITS, Pilani, Goa Campus, NH
17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Ram U. Gawas
- Department
of Chemistry, and ‡Department of Biological Sciences, BITS, Pilani, Goa Campus, NH
17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Starlaine C. Mascarenhas
- Department
of Chemistry, and ‡Department of Biological Sciences, BITS, Pilani, Goa Campus, NH
17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Anasuya Ganguly
- Department
of Chemistry, and ‡Department of Biological Sciences, BITS, Pilani, Goa Campus, NH
17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Rishabh Gupta
- Department
of Chemistry, and ‡Department of Biological Sciences, BITS, Pilani, Goa Campus, NH
17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Hrishikesh Joshi
- Department
of Chemistry, and ‡Department of Biological Sciences, BITS, Pilani, Goa Campus, NH
17B Bypass Road, Zuarinagar, Goa 403726, India
| |
Collapse
|
34
|
Yang Y, Yao Z, Li W, Chen K, Liu L, Wu HC. Selective detection of mercury(II) and methylmercury(II) via coordination-induced emission of a small-molecule probe. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0137-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
35
|
Sing N, Roy S, Guin PS, Mahali K, Majee P, Mondal SK, Mahata P, Sengupta PS, Mondal P. A Co(ii) complex of a vitamer of vitamin B6acts as a sensor for Hg2+and pH in aqueous media. NEW J CHEM 2016. [DOI: 10.1039/c6nj00410e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new Co(ii) complex was prepared by template reaction, acting as a dual fluorescent sensor for Hg2+ions and pH in aqueous solution.
Collapse
Affiliation(s)
- Nilam Sing
- Department of Chemistry (UG & PG)
- Vivekananda Mahavidyalaya
- Burdwan-713103
- India
| | - Sanjay Roy
- Department of Chemistry
- Shibpur Dinobundhoo Institution (College)
- Howrah-711102
- India
| | - Partha Sarathi Guin
- Department of Chemistry
- Shibpur Dinobundhoo Institution (College)
- Howrah-711102
- India
| | | | - Prakash Majee
- Department of Chemistry
- Visva-Bharati
- Santiniketan-731235
- India
| | | | - Partha Mahata
- Department of Chemistry
- Suri Vidyasagar College
- Suri-731101
- India
| | | | - Palash Mondal
- Department of Chemistry (UG & PG)
- Vivekananda Mahavidyalaya
- Burdwan-713103
- India
| |
Collapse
|
36
|
Zhang P, Zhuo Y, Chang Y, Yuan R, Chai Y. Electrochemiluminescent Graphene Quantum Dots as a Sensing Platform: A Dual Amplification for MicroRNA Assay. Anal Chem 2015; 87:10385-91. [DOI: 10.1021/acs.analchem.5b02495] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pu Zhang
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry, Ministry of Education,
College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ying Zhuo
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry, Ministry of Education,
College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yuanyuan Chang
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry, Ministry of Education,
College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry, Ministry of Education,
College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry, Ministry of Education,
College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
37
|
Yang R, Song D, Wang C, Zhu A, Xiao R, Liu J, Long F. Etching of unmodified Au@Ag nanorods: a tunable colorimetric visualization for the rapid and high selective detection of Hg2+. RSC Adv 2015. [DOI: 10.1039/c5ra19627b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and cost-effective colorimetric approach based on unmodified Au@Ag nanorods (Au@Ag NRs) was developed for Hg2+ detection.
Collapse
Affiliation(s)
- Rong Yang
- School of Environment and Natural Resources
- Renmin University of China
- Beijing
- China
| | - Dan Song
- School of Environment and Natural Resources
- Renmin University of China
- Beijing
- China
| | - Chongwen Wang
- Beijing Institute of Radiation Medicine
- Beijing 100850
- China
| | - Anna Zhu
- School of Environment and Natural Resources
- Renmin University of China
- Beijing
- China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine
- Beijing 100850
- China
| | - Jingquan Liu
- School of Environment and Natural Resources
- Renmin University of China
- Beijing
- China
| | - Feng Long
- School of Environment and Natural Resources
- Renmin University of China
- Beijing
- China
| |
Collapse
|